This study aims to investigate the post-fire behavior of truss system T-joints made of pipe or box profiles under axial load using the finite element method. Hence, T-joints with different geometrical properties were modeled using the finite element program. First of all, heat transfer analysis was performed and the numerical models were heated based on the ISO 834 fire curve and then the joints were cooled. An axial load was applied from the end of the brace member to the joints, which were exposed to residual stresses and deformations after the fire, until they reached the maximum capacity. Each joint was failed due to plastification on the wall of the chord member. The strengths of the joints before and after the fire were compared. According to the findings obtained from the numerical results, the strength of tubular T-joints after fire decreases to up to 23.5%. In addition, the temperature distributions on the joints vary depending on the brace-to-chord member ratios and chord wall thicknesses. Residual stress and deformations after fire have a significant effect on the strength of both pipe and box T-joints.
[1] CYTHYDE . Çelik Yapıların Tasarım, Hesap ve Yapımına Dair Esaslar. T.C. Çevre ve Şehircilik Bakanlığı, Ankara; 2018.
[2] CEN. 2005. Design of Steel Structures, EN 1993-1-8-Design of Joints, London: Brussels, Belgium ,138s.
[3] Wardenier J., Kurobane Y., Packer J., van der Vegte G.J,, Zhao X. 2008. Design guide for circular hollow section (CHS) joint under predominantly static loading, Second Edition, Verlag TUV Rheinland, Germany, Cidect.
[4] Tan, K.H., Fung, T.C., Nguyen, M.P. 2012. Structural behaviour of CHS T-joints subjected to brace axial compression in fire condition, Journal of Structural Engineering, Cilt. 139 (1), s. 73-84. DOI: 10.1061/(ASCE)ST.1943-541X.0000604
[5] Ozyurt E. 2020. Finite element study on axially loaded reinforced Square Hollow Section T-joints at elevated temperatures, Thin-Walled Structures, Cilt. 148, s.1-16. DOI: oi.org/10.1016/j.tws.2019.106582
[6] Ozyurt E., Wang Y. 2018. Resistance of Axially Loaded T-and X-Joints of Elliptical Hollow Sections at Elevated Temperatures–A Finite Element Study, Structures, Cilt. 14, s. 15-31. DOI: 10.1016/j.istruc.2018.01.004
[7] Ozyurt E., Wang Y., Tan K. 2014. Elevated temperature resistance of welded tubular joints under axial load in the brace member, Engineering Structures, Cilt. 59, s.574-86. DOI: 10.1016/j.engstruct.2013.11.014
[8] Lan X., Huang Y. 2016. Structural design of cold-formed stainless steel tubular X- and T-joints at elevated temperatures, Thin-Walled Structures, Cilt. 08, s.270-279. DOI: 10.1016/j.tws.2016.08.014
[9] Lan X., Huang Y., Chan T.M., Young B. 2018. Static strength of stainless steel K- and N-joints at elevated temperatures, Thin-Walled Structures, Cilt. 122, s.501-509. DOI: 10.1016/j.tws.2017.10.009
[10] Lan X., Wang F., Luo Z., Liu D., Ning C., Xu X. 2016. Joint strength reduction factor of internally ring-stiffened tubular joints at elevated temperatures. Advances in Structural Engineering,ü Cilt. 19, s.1650-1660. DOI: 10.1177/1369433216648049
[11] Shao Y-B., Zheng Y., Zhao H., Yang D. 2016. Performance of tubular T-joints at elevated temperature by considering effect of chord compressive stress, Thin-Walled Structures, Cilt. 98, s.533-546. DOI: 10.1016/j.tws.2015.10.022
[12] Shao Y-B., Zhao H., Yang D. 2017. Discussion on two methods for determining static strength of tubular T-joints at elevated temperature, Advances in Structural Engineering, Cilt. 20, s.704-21. DOI: 10.1177/1369433216662287
[13] Shao Y-B., He S., Yang D. 2017. Prediction on static strength for CHS tubular K-joints at elevated temperature, Journal of Civil Engineering, Cilt. 21, s.900-911. DOI: 10.1007/s12205-016-0805-x
[14] Gao F., Guan X-Q., Zhu H-P., Xia Y. 2015. Hysteretic behaviour of tubular T-joints reinforced with doubler plates after fire exposure. Thin-Walled Structures. Cilt. 92, s.10-20. DOI: 10.1016/j.tws.2015.02.010.
[15] Gao F., Tang Z., Guan X., Zhu H., Chen Z. 2018. Ultimate strength of tubular T-joints reinforced with doubler plates after fire exposure. Thin-Walled Structures. Cilt. 132 s.616-628. DOI: 10.1016/j.tws.2018.09.021.
[16] Xu J., Jiang W., Han J., Wang J. 2022. Fire resistance of reinforced SHS T-joints considering gradient temperature effect under post-earthquake fire. Cilt.191 s.1-18. DOI: 10.1016/j.jcsr.2022.107195.
[17] Jin M., Zhao J., Chang J., Zhang D. 2012. Experimental and parametric study on the post-fire behavior of tubular T-joint, Journal of Constructional Steel Research, Cilt. 70, s.93-100. DOI: 10.1016/j.jcsr.2011.07.018
[18] Gao F., Zhu H., Liang H., Tian Y. 2017. Post-fire residual strength of steel tubular T-joint with concrete-filled chord, Journal of Constructional Steel Research, Cilt. 139, s.327-338. DOI: 10.1016/j.jcsr.2017.09.015
[19] Pandey M., Young B. 2021. Post-fire behaviour of cold-formed high strength steel tubular T-and X-joints, Journal of Constructional Steel Research, Cilt. 186, s. 1-26. DOI: 10.1016/j.jcsr.2021.106859
[20] Packer J.A., Wardenier J., Zhao X-L., van der Vegte G.J., Kurobane Y. 2009. Design guide for rectangular hollow section (RHS) joints under predominantly static loading, Second Edition. Verlag TUV Rheinland, 154s.
[21] Gao F., Guan X-Q., Zhu H-P., Liu X-N. 2015. Fire resistance behaviour of tubular T-joints reinforced with collar plates, Journal of Constructional Steel Research, Cilt. 115, s.106-120. DOI: 10.1016/j.jcsr.2015.07.021
[22] Wang Y., Ozyurt E. 2021. Static resistance of axially loaded multiplanar gap KK-joints of Circular Hollow sections at elevated temperatures, Engineering Structures, Cilt.229, s.1-12. DOI: doi.org/10.1016/j.engstruct.2020.111676
[23] He S., Shao Y-B., Zhang H., Wang Q. 2015. Parametric study on performance of circular tubular K-joints at elevated temperature, Fire Safety Journal, Cilt.71, s.174-186. DOI: 10.1016/j.firesaf.2014.11.001
[24] Cirpici B.K. Predicting and comparing the fire performance of a small-scale composite structure, Challenge Journal of Concrete Research Letters, Cilt. 12, s. 72-87. DOI: 10.20528/cjcrl.2021.03.001
[25] Yang J., Shao Y., Chen C. 2014. Experimental study on fire resistance of square hollow section (SHS) tubular T-joint under axial compression, Advanced Steel Construction, Cilt. 10, s.72-84. DOI: 10.18057/ijasc.2014.10.1.5
[26] CEN. 2005. Design of Steel Structures, EN 1993-1-2-Structural Fire Design, Brussels, Belgium, 84s.
[27] Ozyurt E., Yilmaz M. 2019. Düzlem İçi Eğilme Momenti Altındaki Elips Enkesitli T-birleşimlerinin Dayanımları, Gumushane Fen Bilimleri Enstitusu Dergisi, Cilt.9, s.547-556. DOI: 10.17714/gumusfenbil.504444
[28] Lu L.H., De Winkel G.D., Yu Y., Wardenier J. 1994. Deformation limit for the ultimate strength of hollow section joints, Proceedings of the Sixth International Symposium on Tubular Structure, 14-16 Aralık, Melbourne,Australia, 341-347.
Eksenel Yüke Maruz Çelik Boru ve Kutu T-birleşimlerinin Yangın sonrası Davranışı
Year 2023,
Volume: 25 Issue: 73, 9 - 20, 26.01.2023
Bu çalışma, boru ve kutu profillerden oluşmuş kafes sistem T-birleşimlerinin eksenel yük altında yangın sonrası davranışlarını sonlu elemanlar yöntemi kullanarak incelemeyi amaçlamaktadır. Bunu için farklı geometrik özelliklere sahip T-birleşimler sonlu elemanlar programı kullanılarak modellenildi. Öncelikle ısı transfer analizi yapılarak, oluşturulan sayısal modeller ISO 834 yangın eğrisine bağlı olarak ısıtıldı ve sonra soğutuldu. Yangın sonrası artık gerilmelere ve deformasyonlara maruz kalmış birleşimlere, maksimum dayanıma ulaşıncaya kadar örgü elemanı ucundan eksenel yük uygulanıldı. Tüm birleşimlerde göçme sınır durumu başlık elemanı cidarında plastikleşme olarak tespit edildi. Yangın öncesi ve sonrası birleşimlerin dayanımları karşılaştırıldı. Sayısal sonuçlardan elde edilinen bilgilere göre yangın sonrası tübüler T-birleşimlerin dayanımları %23,5 ’a kadar düşmektedir. Ayrıca, birleşimler üzerindeki sıcaklık dağılımları, örgü-başlık eleman oranlarına ve başlık elemanının et kalınlıklarına bağlı olarak değişmektedir. Yangın sonrasında oluşan artık gerilme ve deformasyonlar boru ve kutu T-birleşimlerin dayanımlarına önemli derecede etki etmektedir.
[1] CYTHYDE . Çelik Yapıların Tasarım, Hesap ve Yapımına Dair Esaslar. T.C. Çevre ve Şehircilik Bakanlığı, Ankara; 2018.
[2] CEN. 2005. Design of Steel Structures, EN 1993-1-8-Design of Joints, London: Brussels, Belgium ,138s.
[3] Wardenier J., Kurobane Y., Packer J., van der Vegte G.J,, Zhao X. 2008. Design guide for circular hollow section (CHS) joint under predominantly static loading, Second Edition, Verlag TUV Rheinland, Germany, Cidect.
[4] Tan, K.H., Fung, T.C., Nguyen, M.P. 2012. Structural behaviour of CHS T-joints subjected to brace axial compression in fire condition, Journal of Structural Engineering, Cilt. 139 (1), s. 73-84. DOI: 10.1061/(ASCE)ST.1943-541X.0000604
[5] Ozyurt E. 2020. Finite element study on axially loaded reinforced Square Hollow Section T-joints at elevated temperatures, Thin-Walled Structures, Cilt. 148, s.1-16. DOI: oi.org/10.1016/j.tws.2019.106582
[6] Ozyurt E., Wang Y. 2018. Resistance of Axially Loaded T-and X-Joints of Elliptical Hollow Sections at Elevated Temperatures–A Finite Element Study, Structures, Cilt. 14, s. 15-31. DOI: 10.1016/j.istruc.2018.01.004
[7] Ozyurt E., Wang Y., Tan K. 2014. Elevated temperature resistance of welded tubular joints under axial load in the brace member, Engineering Structures, Cilt. 59, s.574-86. DOI: 10.1016/j.engstruct.2013.11.014
[8] Lan X., Huang Y. 2016. Structural design of cold-formed stainless steel tubular X- and T-joints at elevated temperatures, Thin-Walled Structures, Cilt. 08, s.270-279. DOI: 10.1016/j.tws.2016.08.014
[9] Lan X., Huang Y., Chan T.M., Young B. 2018. Static strength of stainless steel K- and N-joints at elevated temperatures, Thin-Walled Structures, Cilt. 122, s.501-509. DOI: 10.1016/j.tws.2017.10.009
[10] Lan X., Wang F., Luo Z., Liu D., Ning C., Xu X. 2016. Joint strength reduction factor of internally ring-stiffened tubular joints at elevated temperatures. Advances in Structural Engineering,ü Cilt. 19, s.1650-1660. DOI: 10.1177/1369433216648049
[11] Shao Y-B., Zheng Y., Zhao H., Yang D. 2016. Performance of tubular T-joints at elevated temperature by considering effect of chord compressive stress, Thin-Walled Structures, Cilt. 98, s.533-546. DOI: 10.1016/j.tws.2015.10.022
[12] Shao Y-B., Zhao H., Yang D. 2017. Discussion on two methods for determining static strength of tubular T-joints at elevated temperature, Advances in Structural Engineering, Cilt. 20, s.704-21. DOI: 10.1177/1369433216662287
[13] Shao Y-B., He S., Yang D. 2017. Prediction on static strength for CHS tubular K-joints at elevated temperature, Journal of Civil Engineering, Cilt. 21, s.900-911. DOI: 10.1007/s12205-016-0805-x
[14] Gao F., Guan X-Q., Zhu H-P., Xia Y. 2015. Hysteretic behaviour of tubular T-joints reinforced with doubler plates after fire exposure. Thin-Walled Structures. Cilt. 92, s.10-20. DOI: 10.1016/j.tws.2015.02.010.
[15] Gao F., Tang Z., Guan X., Zhu H., Chen Z. 2018. Ultimate strength of tubular T-joints reinforced with doubler plates after fire exposure. Thin-Walled Structures. Cilt. 132 s.616-628. DOI: 10.1016/j.tws.2018.09.021.
[16] Xu J., Jiang W., Han J., Wang J. 2022. Fire resistance of reinforced SHS T-joints considering gradient temperature effect under post-earthquake fire. Cilt.191 s.1-18. DOI: 10.1016/j.jcsr.2022.107195.
[17] Jin M., Zhao J., Chang J., Zhang D. 2012. Experimental and parametric study on the post-fire behavior of tubular T-joint, Journal of Constructional Steel Research, Cilt. 70, s.93-100. DOI: 10.1016/j.jcsr.2011.07.018
[18] Gao F., Zhu H., Liang H., Tian Y. 2017. Post-fire residual strength of steel tubular T-joint with concrete-filled chord, Journal of Constructional Steel Research, Cilt. 139, s.327-338. DOI: 10.1016/j.jcsr.2017.09.015
[19] Pandey M., Young B. 2021. Post-fire behaviour of cold-formed high strength steel tubular T-and X-joints, Journal of Constructional Steel Research, Cilt. 186, s. 1-26. DOI: 10.1016/j.jcsr.2021.106859
[20] Packer J.A., Wardenier J., Zhao X-L., van der Vegte G.J., Kurobane Y. 2009. Design guide for rectangular hollow section (RHS) joints under predominantly static loading, Second Edition. Verlag TUV Rheinland, 154s.
[21] Gao F., Guan X-Q., Zhu H-P., Liu X-N. 2015. Fire resistance behaviour of tubular T-joints reinforced with collar plates, Journal of Constructional Steel Research, Cilt. 115, s.106-120. DOI: 10.1016/j.jcsr.2015.07.021
[22] Wang Y., Ozyurt E. 2021. Static resistance of axially loaded multiplanar gap KK-joints of Circular Hollow sections at elevated temperatures, Engineering Structures, Cilt.229, s.1-12. DOI: doi.org/10.1016/j.engstruct.2020.111676
[23] He S., Shao Y-B., Zhang H., Wang Q. 2015. Parametric study on performance of circular tubular K-joints at elevated temperature, Fire Safety Journal, Cilt.71, s.174-186. DOI: 10.1016/j.firesaf.2014.11.001
[24] Cirpici B.K. Predicting and comparing the fire performance of a small-scale composite structure, Challenge Journal of Concrete Research Letters, Cilt. 12, s. 72-87. DOI: 10.20528/cjcrl.2021.03.001
[25] Yang J., Shao Y., Chen C. 2014. Experimental study on fire resistance of square hollow section (SHS) tubular T-joint under axial compression, Advanced Steel Construction, Cilt. 10, s.72-84. DOI: 10.18057/ijasc.2014.10.1.5
[26] CEN. 2005. Design of Steel Structures, EN 1993-1-2-Structural Fire Design, Brussels, Belgium, 84s.
[27] Ozyurt E., Yilmaz M. 2019. Düzlem İçi Eğilme Momenti Altındaki Elips Enkesitli T-birleşimlerinin Dayanımları, Gumushane Fen Bilimleri Enstitusu Dergisi, Cilt.9, s.547-556. DOI: 10.17714/gumusfenbil.504444
[28] Lu L.H., De Winkel G.D., Yu Y., Wardenier J. 1994. Deformation limit for the ultimate strength of hollow section joints, Proceedings of the Sixth International Symposium on Tubular Structure, 14-16 Aralık, Melbourne,Australia, 341-347.
Özyurt, E. (2023). Eksenel Yüke Maruz Çelik Boru ve Kutu T-birleşimlerinin Yangın sonrası Davranışı. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 25(73), 9-20. https://doi.org/10.21205/deufmd.2023257302
AMA
Özyurt E. Eksenel Yüke Maruz Çelik Boru ve Kutu T-birleşimlerinin Yangın sonrası Davranışı. DEUFMD. January 2023;25(73):9-20. doi:10.21205/deufmd.2023257302
Chicago
Özyurt, Emre. “Eksenel Yüke Maruz Çelik Boru Ve Kutu T-birleşimlerinin Yangın Sonrası Davranışı”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 25, no. 73 (January 2023): 9-20. https://doi.org/10.21205/deufmd.2023257302.
EndNote
Özyurt E (January 1, 2023) Eksenel Yüke Maruz Çelik Boru ve Kutu T-birleşimlerinin Yangın sonrası Davranışı. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 25 73 9–20.
IEEE
E. Özyurt, “Eksenel Yüke Maruz Çelik Boru ve Kutu T-birleşimlerinin Yangın sonrası Davranışı”, DEUFMD, vol. 25, no. 73, pp. 9–20, 2023, doi: 10.21205/deufmd.2023257302.
ISNAD
Özyurt, Emre. “Eksenel Yüke Maruz Çelik Boru Ve Kutu T-birleşimlerinin Yangın Sonrası Davranışı”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 25/73 (January 2023), 9-20. https://doi.org/10.21205/deufmd.2023257302.
JAMA
Özyurt E. Eksenel Yüke Maruz Çelik Boru ve Kutu T-birleşimlerinin Yangın sonrası Davranışı. DEUFMD. 2023;25:9–20.
MLA
Özyurt, Emre. “Eksenel Yüke Maruz Çelik Boru Ve Kutu T-birleşimlerinin Yangın Sonrası Davranışı”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 25, no. 73, 2023, pp. 9-20, doi:10.21205/deufmd.2023257302.
Vancouver
Özyurt E. Eksenel Yüke Maruz Çelik Boru ve Kutu T-birleşimlerinin Yangın sonrası Davranışı. DEUFMD. 2023;25(73):9-20.