Research Article
BibTex RIS Cite

MYH’de Farklı Katot Çözeltileri ile Atıksu Arıtımı ve Elektrik Üretimi

Year 2023, Volume: 25 Issue: 74, 513 - 523, 15.05.2023
https://doi.org/10.21205/deufmd.2023257420

Abstract

Eş zamanlı olarak atık sudan KOİ giderimi sağlanırken güç üretmek için katot ve anot odalarına sahip bir mikrobiyal yakıt hücresi (MYH), kullanılmıştır. Çeşitli oksidan çözeltileri kullanarak üretilen voltajı artırmak mümkündür. Anot bölümünde sentetik atık suyun (yaklaşık 1000 mg/L) anaerobik arıtımı sağlanırken, katot bölümü seyreltik hidrojen peroksit (300 mg/L), KMnO4 (300 mg/L), K2Cr2O7 (300 mg/L) ve Fenton reaktifi (H2O2/Fe(II), 300/20 mg/L) gibi çeşitli oksidan çözeltiler içermektedir. Aerobik atık su arıtma ve aralıklı ozon da katot bölümünde test edilmiştir. Katot bölümünün aralıklı ozonlanması ile en yüksek güç çıkışı (382 mW/m2) elde edilmiştir. Çalışma periyodunun sonunda, anot odasındaki KOİ konsantrasyonu 1170 mg/L'den 650 mg/L'ye düşmüş ve yaklaşık %45 KOİ giderimi sağlanmıştır. Katot odasında seyreltilmiş KMnO4 ve H2O2 çözeltilerinin kullanımı sırasıyla 35 ve 23 W/m2'lik yüksek güç yoğunlukları üretirken, diğer oksidanlar düşük güç yoğunlukları üretmiştir. 72 saatin sonunda, anaerobik bölümün KOİ içeriği 800 mg/L'den yaklaşık 333 mg/L'e düşmüş ve KMnO4 çözeltisi için yaklaşık %59 KOİ giderimi ile sonuçlanmıştır. Ozonlamanın yüksek maliyeti göz önüne alındığında, yüksek güç üretimi için katot odasında ya aerobik atıksu arıtımı ya da seyreltik KMnO4/H2O2 çözeltilerinin kullanılması önerilmektedir.

References

  • [1] Chaudhuri, S. K., and Lovley, D. R. 2003. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells: Nature Biotechnology, v. 21, p. 1229–1232.DOI: 10.1038/nbt867
  • [2] Park, D. H., and Zeikus, J. G. 2002. Improved fuel cell and electrode designs for producing electricity from microbial degradation: Biotechnology and Bioengineering, v. 81, p. 348–355.DOI: 10.1002/bit.10501
  • [3] Liu, H., and Logan, B. E. 200., Electricity Generation Using an Air-Cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane: Environmental Science & Technology, v. 38, p. 4040–4046.DOI: 10.1021/es0499344
  • [4] Oh, S., and Logan, B. E. 2005. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies: Water Research, v. 39, p. 4673–4682.DOI: 10.1016/j.watres.2005.09.019
  • [5] Ieropoulos, I. A., Greenman, J., Melhuish, C., and Hart, J. 2005. Comparative study of three types of microbial fuel cell: Enzyme and Microbial Technology, v. 37, p. 238–245.DOI: 10.1016/j.enzmictec.2005.03.006
  • [6] Kim, J. R., Min, B., and Logan, B. E. 2005. Evaluation of procedures to acclimate a microbial fuel cell for electricity production: Applied Microbiology and Biotechnology, v. 68, p. 23–30.DOI: 10.1007/s00253-004-1845-6
  • [7] Liu, H., Ramnarayanan, R., and Logan, B. E. 2004. Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell: Environmental Science & Technology, v. 38, p. 2281–2285.DOI: 10.1021/es034923g
  • [8] Liu, H., Cheng, S., and Logan, B. E. 2005. Power Generation in Fed-Batch Microbial Fuel Cells as a Function of Ionic Strength, Temperature, and Reactor Configuration: Environmental Science & Technology, v. 39, p. 5488–5493.DOI: 10.1021/es050316c
  • [9] Liu, H., Cheng, S., and Logan, B. E. 2004. Production of Electricity from Acetate or Butyrate Using a Single-Chamber Microbial Fuel Cell: Environmental Science & Technology, v. 39, p. 658–662.DOI: 10.1021/es048927c
  • [10] Rabaey, K., Ossieur, W., Verhaege, M., and Verstraete, W. 2005. Continuous microbial fuel cells convert carbohydratesto electricity: Water Science and Technology, v. 52, p. 515–523.DOI: 10.2166/wst.2005.0561
  • [11] Min, B., and Logan, B. E. 2004. Continuous Electricity Generation from Domestic Wastewater and Organic Substrates in a Flat Plate Microbial Fuel Cell: Environmental Science & Technology, v. 38, p. 5809–5814.DOI: 10.1021/es0491026
  • [12] Cheng, S., Liu, H., and Logan, B. E. 2006. Increased performance of single-chamber microbial fuel cells using an improved cathode structure: Electrochemistry Communications, v. 8, p. 489–494.DOI:10.1016/j.elecom.2006.01.010
  • [13] Delaney, G. M., Bennetto, H. P., Mason, J. R., Roller, S. D., Stirling, J. L., and Thurston, C. F. 2008. Electron-transfer coupling in microbial fuel cells. 2. performance of fuel cells containing selected microorganism-mediator-substrate combinations: Journal of Chemical Technology and Biotechnology. Biotechnology, v. 34, p. 13–27. DOI: 10.1002/jctb.280340104
  • [14] Lithgow, A.M.; Romero, L.; Sanchez, I.C.; Souto, F.A.; Vega, C.A. 1986. Interception of electron- transport chain in bacteria with hydrophilic redox mediators. J Chem Res. pp. 178- 179.
  • [15] Kim, H. J., Park, H. S., Hyun, M. S., Chang, I. S., Kim, M., and Kim, B. H. 2002. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens: Enzyme and Microbial Technology, v. 30, p. 145–152.DOI: 10.1016/S0141-0229(01)00478-1
  • [16] Pham, C. A., Jung, S. J., Phung, N. T., Lee, J., Chang, I. S., Kim, B. H., Yi, H., and Chun, J. 2003. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell: FEMS Microbiology Letters, v. 223, p. 129–134. DOI: 10.1016/S0378-1097(03)00354-9
  • [17] Bond, D. R., Holmes, D. E., Tender, L. M., and Lovley, D. R. 2002. Electrode-Reducing Microorganisms That Harvest Energy from Marine Sediments: Science, v. 295, p. 483–485. DOI: 10.1126/science.1066771
  • [18] Bond, D. R., and Lovley, D. R. 2003. Electricity Production by Geobacter sulfurreducens Attached to Electrodes: Applied and Environmental Microbiology, v. 69, p. 1548–1555.DOI: 10.1128/AEM.69.3.1548-1555.2003
  • [19] Logan, B. E., Murano, C., Scott, K., Gray, N. D., and Head, I. M. 2005. Electricity generation from cysteine in a microbial fuel cell: Water Research, v. 39, p. 942–952.DOI: 10.1016/j.watres.2004.11.019
  • [20] Min, B., Kim, J., Oh, S., Regan, J. M., and Logan, B. E. 2005. Electricity generation from swine wastewater using microbial fuel cells: Water Research, v. 39, p. 4961–4968.DOI: 10.1016/j.watres.2005.09.039
  • [21] Oh, S.-E., and Logan, B. E. 2006. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells: Applied Microbiology and Biotechnology, v. 70, p. 162–169.DOI: 10.1007/s00253-005-0066-y
  • [22] Cheng, S., Liu, H., and Logan, B. E. 2006. Increased Power Generation in a Continuous Flow MFC with Advective Flow through the Porous Anode and Reduced Electrode Spacing: Environmental Science & Technology, v. 40, p. 2426–2432.DOI: 10.1021/es051652w
  • [23] Menicucci, J., Beyenal, H., Marsili, E., Veluchamy, Demir, G., and Lewandowski, Z. 2005. Procedure for Determining Maximum Sustainable Power Generated by Microbial Fuel Cells: Environmental Science &Technology, v. 40, p. 1062–1068.DOI: 10.1021/es051180l
  • [24] Tartakovsky, B., and Guiot, S. R. 2006. A Comparison of Air and Hydrogen Peroxide Oxygenated Microbial Fuel Cell Reactors: Biotechnology Progress, v. 22, p. 241–246.DOI: 10.1021/bp050225j
  • [25] Rabaey, K., Clauwaert, P., Aelterman, P., and Verstraete, W. 2005. Tubular Microbial Fuel Cells for Efficient Electricity Generation: Environmental Science & Technology, v. 39, p. 8077–8082.DOI: 10.1021/es050986i
  • [26] Kargi, F., and Eker, S. 2007. Electricity generation with simultaneous wastewater treatment by a microbial fuel cell (MFC) with Cu and Cu–Au electrodes: Journal of Chemical Technology & Biotechnology, v. 82, p. 658–662.DOI: 10.1002/jctb.1723
  • [27] Dentel, S. K., Strogen, B., and Chiu, P. 2004. Direct generation of electricity from sludges and other liquid wastes: Water Science and Technology, v. 50, p. 161–168.DOI: 10.2166/wst.2004.0561
  • [28] You, S., Zhao, Q., Zhang, J., Jiang, J., and Zhao, S. 2006. A microbial fuel cell using permanganate as the cathodic electron acceptor: Journal of Power Sources, v. 162, p. 1409–1415.DOI: 10.1016/j.jpowsour.2006.07.063
  • [29] Tharali, A. D., Sain, N., and Osborne, W. J. 2016. Microbial fuel cells in bioelectricity production: Frontiers in Life Science, v. 9, p. 252–266.
  • [30] Ranjan, P., Maithani, D., Suyal, D. C., Singh, A. K., Giri, K., Sharma, V. K., and Soni, R. 2021. Microbial Fuel Cells for Wastewater Treatment: Bioremediation of Environmental Pollutants, p. 53–74.
  • [31] Mahmoud, R. H., Gomaa, O. M., & Hassan, R. Y. A. 2022. Bio-electrochemical frameworks governing microbial fuel cell performance: technical bottlenecks and proposed solutions. RSC advances, 12(10), 5749–5764.
  • [32] APHA, 2005. Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association, Washington, DC, USA.
  • [33] Fan, Y., Hu, H., and Liu, H. 2007. Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration: Journal of Power Sources, v. 171, p. 348–354. DOI: 10.1016/j.jpowsour.2007.06.220
  • [34] Min, B., Cheng, S., and Logan, B. E. 2005. Electricity generation using membrane and salt bridge microbial fuel cells: Water Research, v. 39, p. 1675–1686.DOI: 10.1016/j.watres.2005.02.002

Wastewater Treatment and Electricity Generation with Different Cathode Solutions in MFC

Year 2023, Volume: 25 Issue: 74, 513 - 523, 15.05.2023
https://doi.org/10.21205/deufmd.2023257420

Abstract

A microbial fuel cell (MFC) with cathode and anode chambers was utilized to generate power while simultaneously removing COD from wastewater. By utilizing various oxidant solutions, it is possible to increase the generated voltage. The anode chamber was used for anaerobic treatment of synthetic wastewater (approximately 1000 mg/L), whereas the cathode chamber contained various oxidant solutions such as dilute hydrogen peroxide (300 mg/L), KMnO4 (300 mg/L), K2Cr2O7 (300 mg/L) and Fenton reagent (H2O2/Fe(II), 300/20 mg/L). Aerobic wastewater treatment and intermittent ozonation were also tested in the cathode chamber. With intermittent ozonation of the cathode chamber, the highest power output (382 mW/m2) was obtained. At the conclusion of the operation period, the COD concentration in the anode chamber decreased from 1170 mg/L to 650 mg/L, resulting in nearly 45% COD removal. In the cathode chamber, the use of diluted KMnO4 and H2O2 solutions produced high power densities of 35 and 23 W/m2, respectively, while the other oxidants produced low power densities. At the end of 72 hours, the COD content of the anaerobic chamber decreased from 800 mg/L to nearly 333 mg/L, resulting in nearly 59% COD removal for the KMnO4 solution. Considering the high cost of ozonation, it is recommended that either aerobic wastewater treatment or dilute KMnO4/H2O2 solutions should be used in the cathode chamber for high power generation.

References

  • [1] Chaudhuri, S. K., and Lovley, D. R. 2003. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells: Nature Biotechnology, v. 21, p. 1229–1232.DOI: 10.1038/nbt867
  • [2] Park, D. H., and Zeikus, J. G. 2002. Improved fuel cell and electrode designs for producing electricity from microbial degradation: Biotechnology and Bioengineering, v. 81, p. 348–355.DOI: 10.1002/bit.10501
  • [3] Liu, H., and Logan, B. E. 200., Electricity Generation Using an Air-Cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane: Environmental Science & Technology, v. 38, p. 4040–4046.DOI: 10.1021/es0499344
  • [4] Oh, S., and Logan, B. E. 2005. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies: Water Research, v. 39, p. 4673–4682.DOI: 10.1016/j.watres.2005.09.019
  • [5] Ieropoulos, I. A., Greenman, J., Melhuish, C., and Hart, J. 2005. Comparative study of three types of microbial fuel cell: Enzyme and Microbial Technology, v. 37, p. 238–245.DOI: 10.1016/j.enzmictec.2005.03.006
  • [6] Kim, J. R., Min, B., and Logan, B. E. 2005. Evaluation of procedures to acclimate a microbial fuel cell for electricity production: Applied Microbiology and Biotechnology, v. 68, p. 23–30.DOI: 10.1007/s00253-004-1845-6
  • [7] Liu, H., Ramnarayanan, R., and Logan, B. E. 2004. Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell: Environmental Science & Technology, v. 38, p. 2281–2285.DOI: 10.1021/es034923g
  • [8] Liu, H., Cheng, S., and Logan, B. E. 2005. Power Generation in Fed-Batch Microbial Fuel Cells as a Function of Ionic Strength, Temperature, and Reactor Configuration: Environmental Science & Technology, v. 39, p. 5488–5493.DOI: 10.1021/es050316c
  • [9] Liu, H., Cheng, S., and Logan, B. E. 2004. Production of Electricity from Acetate or Butyrate Using a Single-Chamber Microbial Fuel Cell: Environmental Science & Technology, v. 39, p. 658–662.DOI: 10.1021/es048927c
  • [10] Rabaey, K., Ossieur, W., Verhaege, M., and Verstraete, W. 2005. Continuous microbial fuel cells convert carbohydratesto electricity: Water Science and Technology, v. 52, p. 515–523.DOI: 10.2166/wst.2005.0561
  • [11] Min, B., and Logan, B. E. 2004. Continuous Electricity Generation from Domestic Wastewater and Organic Substrates in a Flat Plate Microbial Fuel Cell: Environmental Science & Technology, v. 38, p. 5809–5814.DOI: 10.1021/es0491026
  • [12] Cheng, S., Liu, H., and Logan, B. E. 2006. Increased performance of single-chamber microbial fuel cells using an improved cathode structure: Electrochemistry Communications, v. 8, p. 489–494.DOI:10.1016/j.elecom.2006.01.010
  • [13] Delaney, G. M., Bennetto, H. P., Mason, J. R., Roller, S. D., Stirling, J. L., and Thurston, C. F. 2008. Electron-transfer coupling in microbial fuel cells. 2. performance of fuel cells containing selected microorganism-mediator-substrate combinations: Journal of Chemical Technology and Biotechnology. Biotechnology, v. 34, p. 13–27. DOI: 10.1002/jctb.280340104
  • [14] Lithgow, A.M.; Romero, L.; Sanchez, I.C.; Souto, F.A.; Vega, C.A. 1986. Interception of electron- transport chain in bacteria with hydrophilic redox mediators. J Chem Res. pp. 178- 179.
  • [15] Kim, H. J., Park, H. S., Hyun, M. S., Chang, I. S., Kim, M., and Kim, B. H. 2002. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens: Enzyme and Microbial Technology, v. 30, p. 145–152.DOI: 10.1016/S0141-0229(01)00478-1
  • [16] Pham, C. A., Jung, S. J., Phung, N. T., Lee, J., Chang, I. S., Kim, B. H., Yi, H., and Chun, J. 2003. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell: FEMS Microbiology Letters, v. 223, p. 129–134. DOI: 10.1016/S0378-1097(03)00354-9
  • [17] Bond, D. R., Holmes, D. E., Tender, L. M., and Lovley, D. R. 2002. Electrode-Reducing Microorganisms That Harvest Energy from Marine Sediments: Science, v. 295, p. 483–485. DOI: 10.1126/science.1066771
  • [18] Bond, D. R., and Lovley, D. R. 2003. Electricity Production by Geobacter sulfurreducens Attached to Electrodes: Applied and Environmental Microbiology, v. 69, p. 1548–1555.DOI: 10.1128/AEM.69.3.1548-1555.2003
  • [19] Logan, B. E., Murano, C., Scott, K., Gray, N. D., and Head, I. M. 2005. Electricity generation from cysteine in a microbial fuel cell: Water Research, v. 39, p. 942–952.DOI: 10.1016/j.watres.2004.11.019
  • [20] Min, B., Kim, J., Oh, S., Regan, J. M., and Logan, B. E. 2005. Electricity generation from swine wastewater using microbial fuel cells: Water Research, v. 39, p. 4961–4968.DOI: 10.1016/j.watres.2005.09.039
  • [21] Oh, S.-E., and Logan, B. E. 2006. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells: Applied Microbiology and Biotechnology, v. 70, p. 162–169.DOI: 10.1007/s00253-005-0066-y
  • [22] Cheng, S., Liu, H., and Logan, B. E. 2006. Increased Power Generation in a Continuous Flow MFC with Advective Flow through the Porous Anode and Reduced Electrode Spacing: Environmental Science & Technology, v. 40, p. 2426–2432.DOI: 10.1021/es051652w
  • [23] Menicucci, J., Beyenal, H., Marsili, E., Veluchamy, Demir, G., and Lewandowski, Z. 2005. Procedure for Determining Maximum Sustainable Power Generated by Microbial Fuel Cells: Environmental Science &Technology, v. 40, p. 1062–1068.DOI: 10.1021/es051180l
  • [24] Tartakovsky, B., and Guiot, S. R. 2006. A Comparison of Air and Hydrogen Peroxide Oxygenated Microbial Fuel Cell Reactors: Biotechnology Progress, v. 22, p. 241–246.DOI: 10.1021/bp050225j
  • [25] Rabaey, K., Clauwaert, P., Aelterman, P., and Verstraete, W. 2005. Tubular Microbial Fuel Cells for Efficient Electricity Generation: Environmental Science & Technology, v. 39, p. 8077–8082.DOI: 10.1021/es050986i
  • [26] Kargi, F., and Eker, S. 2007. Electricity generation with simultaneous wastewater treatment by a microbial fuel cell (MFC) with Cu and Cu–Au electrodes: Journal of Chemical Technology & Biotechnology, v. 82, p. 658–662.DOI: 10.1002/jctb.1723
  • [27] Dentel, S. K., Strogen, B., and Chiu, P. 2004. Direct generation of electricity from sludges and other liquid wastes: Water Science and Technology, v. 50, p. 161–168.DOI: 10.2166/wst.2004.0561
  • [28] You, S., Zhao, Q., Zhang, J., Jiang, J., and Zhao, S. 2006. A microbial fuel cell using permanganate as the cathodic electron acceptor: Journal of Power Sources, v. 162, p. 1409–1415.DOI: 10.1016/j.jpowsour.2006.07.063
  • [29] Tharali, A. D., Sain, N., and Osborne, W. J. 2016. Microbial fuel cells in bioelectricity production: Frontiers in Life Science, v. 9, p. 252–266.
  • [30] Ranjan, P., Maithani, D., Suyal, D. C., Singh, A. K., Giri, K., Sharma, V. K., and Soni, R. 2021. Microbial Fuel Cells for Wastewater Treatment: Bioremediation of Environmental Pollutants, p. 53–74.
  • [31] Mahmoud, R. H., Gomaa, O. M., & Hassan, R. Y. A. 2022. Bio-electrochemical frameworks governing microbial fuel cell performance: technical bottlenecks and proposed solutions. RSC advances, 12(10), 5749–5764.
  • [32] APHA, 2005. Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association, Washington, DC, USA.
  • [33] Fan, Y., Hu, H., and Liu, H. 2007. Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration: Journal of Power Sources, v. 171, p. 348–354. DOI: 10.1016/j.jpowsour.2007.06.220
  • [34] Min, B., Cheng, S., and Logan, B. E. 2005. Electricity generation using membrane and salt bridge microbial fuel cells: Water Research, v. 39, p. 1675–1686.DOI: 10.1016/j.watres.2005.02.002
There are 34 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Serkan Eker 0000-0002-7447-6584

Early Pub Date May 12, 2023
Publication Date May 15, 2023
Published in Issue Year 2023 Volume: 25 Issue: 74

Cite

APA Eker, S. (2023). Wastewater Treatment and Electricity Generation with Different Cathode Solutions in MFC. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 25(74), 513-523. https://doi.org/10.21205/deufmd.2023257420
AMA Eker S. Wastewater Treatment and Electricity Generation with Different Cathode Solutions in MFC. DEUFMD. May 2023;25(74):513-523. doi:10.21205/deufmd.2023257420
Chicago Eker, Serkan. “Wastewater Treatment and Electricity Generation With Different Cathode Solutions in MFC”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 25, no. 74 (May 2023): 513-23. https://doi.org/10.21205/deufmd.2023257420.
EndNote Eker S (May 1, 2023) Wastewater Treatment and Electricity Generation with Different Cathode Solutions in MFC. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 25 74 513–523.
IEEE S. Eker, “Wastewater Treatment and Electricity Generation with Different Cathode Solutions in MFC”, DEUFMD, vol. 25, no. 74, pp. 513–523, 2023, doi: 10.21205/deufmd.2023257420.
ISNAD Eker, Serkan. “Wastewater Treatment and Electricity Generation With Different Cathode Solutions in MFC”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 25/74 (May 2023), 513-523. https://doi.org/10.21205/deufmd.2023257420.
JAMA Eker S. Wastewater Treatment and Electricity Generation with Different Cathode Solutions in MFC. DEUFMD. 2023;25:513–523.
MLA Eker, Serkan. “Wastewater Treatment and Electricity Generation With Different Cathode Solutions in MFC”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 25, no. 74, 2023, pp. 513-2, doi:10.21205/deufmd.2023257420.
Vancouver Eker S. Wastewater Treatment and Electricity Generation with Different Cathode Solutions in MFC. DEUFMD. 2023;25(74):513-2.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.