Research Article
BibTex RIS Cite

ZnO Katkılı Bazı Cam Örneklerinin Kütle Zayıflama Katsayılarının Monte Carlo ile Hesaplanması

Year 2023, Volume: 25 Issue: 75, 751 - 759, 27.09.2023
https://doi.org/10.21205/deufmd.2023257518

Abstract

Bu çalışma, Monte Carlo yöntemi kullanılarak ZnO katkılı bazı cam örneklerinin toplam kütle zayıflama katsayılarını hesaplamayı amaçlamaktadır. Simülasyonlar basitçe, silindir şeklinde soğurucu bir malzeme, NaI(Tl) detektörü,kolimatör ve soğurucuya doğru paralel bir ışın olarak yönlendirilen mono-enerjik fotonlar yayan nokta kaynaktan oluşmaktadır. Problem geometrisindeki tüm bileşenler, numune dışındaki malzemelerde herhangi bir etkileşimi önlemek için vakum bir küre ile çevrelenmiştir. Simülasyon düzeneği bu şekliyle, saçılan fotonların dedektördeki toplam akıya katkı yapması engellemiştir. Simülasyonlar, 10 keV-20 MeV enerji aralığında 39 farklı foton enerjisinde GAMOS 6.2 paketi kullanılarak gerçekleştirilmiştir. Bu çalışma .çinko oksitin cam örneklere ilave edilmesinin cam örneklerinin radyasyon soğurma özelliklerini arttırdığını göstermiştir. Çalışmanın sonuçları XCOM değerleri ile karşılaştırıldığında iyi bir uyum görülmektedir. Monte Carlo tekniğinin, basit bir model geometrisi kullanarak, geniş bir enerji aralığında, kütlesel zayıflama katsayılarının hesaplanması için bir alternatif olarak kullanılabileceğini ortaya koymuştur.

References

  • [1] Johnson, T.E., 2017. Introduction to Health Physics, Fifth Edition. McGraw-Hill Education,
  • [2] Shultis, J.K. Faw, R.E., 2016. Fundamentals of Nuclear Science and Engineering. CRC Press.
  • [3] Gunoglu, K. Akkurt, İ. 2021. Radiation shielding properties of concrete containing magnetite, Progress in Nuclear Energy, 137, s. 103776. DOI: 10.1016/j.pnucene.2021.103776
  • [4] Akkurt, İ., Waheed, F., Akyildirim, H. Gunoglu, K. 2021. Performance of NaI (Tl) detector for gamma-ray spectroscopy, Indian Journal of Physics, s. 1-7. DOI: 10.1007/s12648-021-02210-1
  • [5] Al-Buriahi, M.S., Arslan, H. Tonguç, B.T. 2019. Mass attenuation coefficients, water and tissue equivalence properties of some tissues by Geant4, XCOM and experimental data, Indian Journal of Pure & Applied Physics (IJPAP), 57(6), s. 433-437. DOI: 10.56042/ijpap.v57i6.22878
  • [6] Phelps, M.E., Hoffman, E.J. Ter-Pogossian, M.M. 1975. Attenuation coefficients of various body tissues, fluids, and lesions at photon energies of 18 to 136 keV, Radiology, 117(3), s. 573-583. DOI: 10.1148/117.3.573
  • [7] Akkurt, I., Malidarre, R.B. Kavas, T. 2021. Monte Carlo simulation of radiation shielding properties of the glass system containing Bi 2 O 3, The European Physical Journal Plus, 136(3), s. 1-10. DOI: 10.1140/epjp/s13360-021-01260-y
  • [8] Berger, M., Hubbell, J., Seltzer, S., Chang, J., Coursey, J., Sukumar, R., Zucker, D. Olsen, K. 2019. XCOM: Photon Cross Sections Database. NIST, PML, Radiation Physics Division, s. DOI: 10.18434/T48G6X
  • [9] Akkurt, I., Calik, A. Akyıldırım, H. 2011. The boronizing effect on the radiation shielding and magnetization properties of AISI 316L austenitic stainless steel, Nuclear engineering and design, 241(1), s. 55-58. DOI: 10.1016/j.nucengdes.2010.10.009
  • [10] Ermis, E., Pilicer, F., Pilicer, E. Celiktas, C. 2016. A comprehensive study for mass attenuation coefficients of different parts of the human body through Monte Carlo methods, Nuclear Science and Techniques, 27(3), s. 54. DOI: 10.1007/s41365-016-0053-2
  • [11] Jawad, A., Demirkol, N., Gunoğlu, K. Akkurt, I. 2019. Radiation shielding properties of some ceramic wasted samples, International Journal of Environmental Science and Technology, 16(9), s. 5039-5042. DOI: 10.1007/s13762-019-02240-7
  • [12] Kurtulus, R., Kavas, T., Mahmoud, K., Akkurt, I., Gunoglu, K. Sayyed, M. 2021. The effect of Nb 2 O 5 on waste soda‐lime glass in gamma‐rays shielding applications, Journal of Materials Science: Materials in Electronics, 32(4), s. 4903-4915. DOI: 10.1007/s10854-020-05230-5
  • [13] Sengul, A. Bozkurt, A. 2021. Monte Carlo Estimation of Mass Energy Absorption Coefficients of Some Biological Compounds, Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 16(2), s. 416-423. DOI: 10.1016/j.net.2021.04.004
  • [14] Şengül Aycan, A.K., Akkurt Iskender. 2022. Gamma-ray shielding properties of some dosimetric materials, Journal of the Australian Ceramic Society, s. 1-10. DOI: 10.1007/s41779-022-00817-z [15] A. Şengül, I.A., K. Gunoglu, K. Akgüngör, Ermis, R Banu. 2023. Experimental evaluation of gamma-rays shielding properties of ceramic materials used in dentistry, Radiation Physics and Chemistry, 204, s. 110701. DOI: 10.1016/j.radphyschem.2022.110701
  • [16] Rogers, D. 2006. Fifty years of Monte Carlo simulations for medical physics, Physics in Medicine & Biology, 51(13), s. R287. DOI: 10.1088/0031-9155/51/13/R17
  • [17] Martin, A., Harbison, S., Beach, K. Cole, P., 2018. An introduction to radiation protection. CRC Press.
  • [18] Cousins, C., Miller, D., Bernardi, G., Rehani, M., Schofield, P., Vañó, E., Einstein, A., Geiger, B., Heintz, P. Padovani, R. 2011. International commission on radiological protection, ICRP publication, 120, s. 1-125.
  • [19] Akkurt, I., Malidarre, R.B., Kartal, I. Gunoglu, K. 2021. Monte Carlo simulations study on gamma ray–neutron shielding characteristics for vinyl ester composites, Polymer Composites, 42(9), s. 4764-4774. DOI: 10.1002/pc.26185
  • [20] Malİdarre, R.B., Akkurt, İ., Gunoglu, K. Akyildirim, H. 2021. Fast neutrons shielding properties for HAP-Fe2O3 composite materials, International Journal of Computational and Experimental Science and Engineering, 7(3), s. 143-145. DOI: 10.22399/ijcesen.1012039
  • [21] Sengul, A., Akhtar, M.S., Akkurt, I., Malidarre, R.B., Er, Z. Ekmekci, I. 2023. Gamma-neutron shielding parameters of (S3Sb2) x (S2Ge) 100− x chalcogenide glasses nanocomposite, Radiation Physics and Chemistry, 204, s. 110675. DOI: 10.1016/j.radphyschem.2022.110675
  • [22] Baykal, D.Ş., Tekİn, H.O. Mutlu, R.B.Ç. 2021. An investigation on radiation shielding properties of borosilicate glass systems, International Journal of Computational and Experimental Science and Engineering, 7(2), s. 99-108. DOI: 10.22399/ijcesen.960151
  • [23] Tekin, H.O., Almisned, G., Susoy, G., Zakaly, H.M., Issa, S.A., Kilic, G., Rammah, Y.S., Lakshminarayana, G. Ene, A. 2022. A detailed investigation on highly dense CuZr bulk metallic glasses for shielding purposes, Open Chemistry, 20(1), s. 69-80. DOI: 10.1515/chem-2022-0127
  • [24] Dong, Q. Fang, Y. 2023. Metal-halide perovskites for high-efficiency radiation shielding applications, Light: Science & Applications, 12(1), s. 8. DOI: 10.1038/s41377-022-01060-8
  • [25] More, C.V., Alsayed, Z., Badawi, M.S., Thabet, A.A. Pawar, P.P. 2021. Polymeric composite materials for radiation shielding: A review, Environmental chemistry letters, 19, s. 2057-2090.
  • [26] Sharqi, I.H.S. 2022. Investıgatıon Of Radıatıon Dosımetrıc Parameters For Zno Doped Some Glass Samples. Suleyman Demirel University, Yüksek lisans.149, ISPARTA,
  • [27] Arce, P., Lagares, J.I., Harkness, L., Pérez-Astudillo, D., Cañadas, M., Rato, P., De Prado, M., Abreu, Y., De Lorenzo, G. Kolstein, M. 2014. Gamos: A framework to do Geant4 simulations in different physics fields with an user-friendly interface, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 735, s. 304-313.
  • [28] Arce, P., Rato, P., Canadas, M. Lagares, J.I. 2008. GAMOS: A Geant4-based easy and flexible framework for nuclear medicine applications. 2008 IEEE Nuclear Science Symposium Conference Record, 3162-3168.
  • [29] Glaser, A.K., Kanick, S.C., Zhang, R., Arce, P. Pogue, B.W. 2013. A GAMOS plug-in for GEANT4 based Monte Carlo simulation of radiation-induced light transport in biological media, Biomedical optics express, 4(5), s. 741-759. DOI: 10.1364/BOE.4.000741
  • [30] Akkurt, I. Akyıldırım, H. 2012. Radiation transmission of concrete including pumice for 662, 1173 and 1332 keV gamma rays, Nuclear Engineering and Design, 252, s. 163-166. DOI: 10.1016/j.nucengdes.2012.07.008
  • [31] Akkurt, I., Akyıldırım, H., Mavi, B., Kilincarslan, S. Basyigit, C. 2010. Photon attenuation coefficients of concrete includes barite in different rate, Annals of Nuclear Energy, 37(7), s. 910-914. DOI: 10.1016/j.anucene.2010.04.001
  • [32] Akyildirim, H., Kavaz, E., El-Agawany, F.I., Yousef, E. Rammah, Y.S. 2020. Radiation shielding features of zirconolite silicate glasses using XCOM and FLUKA simulation code, Journal of Non-Crystalline Solids, 545, s. 120245. DOI: https://DOI.org/10.1016/j.jnoncrysol.2020.120245
  • [33] Akman, F., Kaçal, M.R., Sayyed, M.I. Karataş, H.A. 2019. Study of gamma radiation attenuation properties of some selected ternary alloys, Journal of Alloys and Compounds, 782, s. 315-322. DOI: 10.1016/j.jallcom.2018.12.221
  • [34] Saad, M., Almohiy, H., Alshihri, A.A., Alelyani, M. Shalaby, R.M. 2023. Fabrication, microstructural modifications, elastic properties and radiation attenuation performance of ZnO nano-sized particles-reinforced Pb-based alloys for radiation shielding applications, Radiation Effects and Defects in Solids, s. 1-17.
  • [35] Alsaif, N.A., Ahmmad, S.K., Khattari, Z., Abdelghany, A., El-Refaey, A.M., Rammah, Y., Shams, M. Elsad, R. 2023. Synthesis, structure, radiation attenuation efficacy as well as prediction of density using artificial intelligence techniques of lead borate lithium zinc strontium glasses, Optical Materials, 137, s. 113599.
  • [36] Singh, R.U., Sekhar, K.C., Alzahrani, J.S., Alrowaili, Z., Shareefuddin, M., Purushotham, Y., Olarinoye, I. Al-Buriahi, M. 2023. Effect of MoO3 on Na2O–B2O3–CdO–ZnO glasses: Applications in optoelectronics, communication devices, and radiation shielding, Ceramics International, 49(7), s. 11600-11611. DOI: 10.1016/j.ceramint.2022.12.007
  • [37] Kurtulus, R., Kavas, T., Akkurt, I., Gunoglu, K., Tekin, H.O. Kurtulus, C. 2021. A comprehensive study on novel alumino-borosilicate glass reinforced with Bi2O3 for radiation shielding applications: synthesis, spectrometer, XCOM, and MCNP-X works, Journal of Materials Science: Materials in Electronics, 32(10), s. 13882-13896. DOI: 10.1007/s10854-021-05964-w
  • [38] Al-Buriahi, M., Bakhsh, E.M., Tonguc, B. Khan, S.B. 2020. Mechanical and radiation shielding properties of tellurite glasses doped with ZnO and NiO, Ceramics International, 46(11), s. DOI: 19078-19083. 10.1016/j.ceramint.2020.04.240
  • [39] Alzahrani, J.S., Kavas, T., Kurtulus, R., Olarinoye, I. Al-Buriahi, M. 2021. Physical, structural, mechanical, and radiation shielding properties of the PbO–B2O3–Bi2O3–ZnO glass system, Journal of Materials Science: Materials in Electronics, 32(14), s. 18994-19009.
  • [40] Kilic, G., Ilik, E., Issa, S.A., Almisned, G. Tekin, H. 2022. ZnO/CdO translocation in P2O5-TeO2-ZnO ternary glass systems: A reformative enhancement tool for physical, optical, and heavy-charged particles attenuation properties, Optik, 268, s. 169807.
  • [41] Shams, M., Marzouk, S.Y., El-Refaey, A.M., Abdel-Hafez, S.H., Olarinoye, I. Rammah, Y. 2021. Fabrication, linear/nonlinear optical properties, Judd–Ofelt parameters and gamma-ray attenuation capacity of Er2O3 doped P2O5–ZnO–CdO glasses, Journal of Materials Research and Technology, 15, s. 5540-5553.
  • [42] Rammah, Y., Özpolat, Ö., Alım, B., Şakar, E., El-Mallawany, R. El-Agawany, F. 2020. Assessment of gamma-ray attenuation features for La+ 3 co-doped zinc borotellurite glasses, Radiation Physics and Chemistry, 176, s. 109069.
  • [43] Abouhaswa, A., Perişanoğlu, U., Tekin, H., Kavaz, E. Henaish, A. 2020. Nuclear shielding properties of B2O3–Pb3O4–ZnO glasses: multiple impacts of Er2O3 additive, Ceramics International, 46(17), s. 27849-27859.
  • [44] Azooz, M. Elbatal, H. 2020. Preparation and characterization of invert ZnO–B2O3 glasses and its shielding behavior towards gamma irradiation, Materials Chemistry and Physics, 240, s. 122129. DOI: 10.1016/j.matchemphys.2019.122129
  • [45] Alzahrani, J.S., Kavas, T., Kurtulus, R. Al-Buriahi, M. 2021. Evaluations of physical and mechanical properties, and photon attenuation characteristics on lithium-germanate glass containing ZnO, Optik, 248, s. 168078. DOI: 10.1016/j.ijleo.2021.168078
  • [46] Medhat, M.E. Wang, Y. 2013. Geant4 code for simulation attenuation of gamma rays through scintillation detectors, Annals of Nuclear Energy, 62, s. 316-320. DOI: 10.1016/j.anucene.2013.06.034
  • [47] Singh, V.P., Medhat, M.E. Shirmardi, S.P. 2015. Comparative studies on shielding properties of some steel alloys using Geant4, MCNP, WinXCOM and experimental results, Radiation Physics and Chemistry, 106, s. 255-260. DOI: 10.1016/j.radphyschem.2014.07.002

Monte Carlo Estimation of Mass Attenuation Coefficients of Some ZnO-doped Glass Samples

Year 2023, Volume: 25 Issue: 75, 751 - 759, 27.09.2023
https://doi.org/10.21205/deufmd.2023257518

Abstract

This study aims to calculate the total mass attenuation coefficients of some ZnO-doped glass samples using the Monte Carlo method. The simulations simply consist of a cylindrical absorber material, a NaI(Tl) detector, a collimator, and a point source emitting mono-energetic photons directed as a parallel beam towards the absorber. All components in the problem geometry are surrounded by a vacuum sphere to prevent any interference with materials other than the sample. In this way, the simulation setup prevented the scattered photons from contributing to the total flux in the detector. The simulations were carried out using the GAMOS 6.2 package with 39 different photon energies in the energy range of 10 keV–20 MeV. In this study, it was shown that the addition of zinc oxide to glass samples increased their radiation absorption properties. A good agreement is seen when the results of the study are compared with the XCOM values. The results revealed that the Monte Carlo technique can be used as an alternative for calculating mass attenuation coefficients over a wide energy range using a simple model geometry.

References

  • [1] Johnson, T.E., 2017. Introduction to Health Physics, Fifth Edition. McGraw-Hill Education,
  • [2] Shultis, J.K. Faw, R.E., 2016. Fundamentals of Nuclear Science and Engineering. CRC Press.
  • [3] Gunoglu, K. Akkurt, İ. 2021. Radiation shielding properties of concrete containing magnetite, Progress in Nuclear Energy, 137, s. 103776. DOI: 10.1016/j.pnucene.2021.103776
  • [4] Akkurt, İ., Waheed, F., Akyildirim, H. Gunoglu, K. 2021. Performance of NaI (Tl) detector for gamma-ray spectroscopy, Indian Journal of Physics, s. 1-7. DOI: 10.1007/s12648-021-02210-1
  • [5] Al-Buriahi, M.S., Arslan, H. Tonguç, B.T. 2019. Mass attenuation coefficients, water and tissue equivalence properties of some tissues by Geant4, XCOM and experimental data, Indian Journal of Pure & Applied Physics (IJPAP), 57(6), s. 433-437. DOI: 10.56042/ijpap.v57i6.22878
  • [6] Phelps, M.E., Hoffman, E.J. Ter-Pogossian, M.M. 1975. Attenuation coefficients of various body tissues, fluids, and lesions at photon energies of 18 to 136 keV, Radiology, 117(3), s. 573-583. DOI: 10.1148/117.3.573
  • [7] Akkurt, I., Malidarre, R.B. Kavas, T. 2021. Monte Carlo simulation of radiation shielding properties of the glass system containing Bi 2 O 3, The European Physical Journal Plus, 136(3), s. 1-10. DOI: 10.1140/epjp/s13360-021-01260-y
  • [8] Berger, M., Hubbell, J., Seltzer, S., Chang, J., Coursey, J., Sukumar, R., Zucker, D. Olsen, K. 2019. XCOM: Photon Cross Sections Database. NIST, PML, Radiation Physics Division, s. DOI: 10.18434/T48G6X
  • [9] Akkurt, I., Calik, A. Akyıldırım, H. 2011. The boronizing effect on the radiation shielding and magnetization properties of AISI 316L austenitic stainless steel, Nuclear engineering and design, 241(1), s. 55-58. DOI: 10.1016/j.nucengdes.2010.10.009
  • [10] Ermis, E., Pilicer, F., Pilicer, E. Celiktas, C. 2016. A comprehensive study for mass attenuation coefficients of different parts of the human body through Monte Carlo methods, Nuclear Science and Techniques, 27(3), s. 54. DOI: 10.1007/s41365-016-0053-2
  • [11] Jawad, A., Demirkol, N., Gunoğlu, K. Akkurt, I. 2019. Radiation shielding properties of some ceramic wasted samples, International Journal of Environmental Science and Technology, 16(9), s. 5039-5042. DOI: 10.1007/s13762-019-02240-7
  • [12] Kurtulus, R., Kavas, T., Mahmoud, K., Akkurt, I., Gunoglu, K. Sayyed, M. 2021. The effect of Nb 2 O 5 on waste soda‐lime glass in gamma‐rays shielding applications, Journal of Materials Science: Materials in Electronics, 32(4), s. 4903-4915. DOI: 10.1007/s10854-020-05230-5
  • [13] Sengul, A. Bozkurt, A. 2021. Monte Carlo Estimation of Mass Energy Absorption Coefficients of Some Biological Compounds, Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 16(2), s. 416-423. DOI: 10.1016/j.net.2021.04.004
  • [14] Şengül Aycan, A.K., Akkurt Iskender. 2022. Gamma-ray shielding properties of some dosimetric materials, Journal of the Australian Ceramic Society, s. 1-10. DOI: 10.1007/s41779-022-00817-z [15] A. Şengül, I.A., K. Gunoglu, K. Akgüngör, Ermis, R Banu. 2023. Experimental evaluation of gamma-rays shielding properties of ceramic materials used in dentistry, Radiation Physics and Chemistry, 204, s. 110701. DOI: 10.1016/j.radphyschem.2022.110701
  • [16] Rogers, D. 2006. Fifty years of Monte Carlo simulations for medical physics, Physics in Medicine & Biology, 51(13), s. R287. DOI: 10.1088/0031-9155/51/13/R17
  • [17] Martin, A., Harbison, S., Beach, K. Cole, P., 2018. An introduction to radiation protection. CRC Press.
  • [18] Cousins, C., Miller, D., Bernardi, G., Rehani, M., Schofield, P., Vañó, E., Einstein, A., Geiger, B., Heintz, P. Padovani, R. 2011. International commission on radiological protection, ICRP publication, 120, s. 1-125.
  • [19] Akkurt, I., Malidarre, R.B., Kartal, I. Gunoglu, K. 2021. Monte Carlo simulations study on gamma ray–neutron shielding characteristics for vinyl ester composites, Polymer Composites, 42(9), s. 4764-4774. DOI: 10.1002/pc.26185
  • [20] Malİdarre, R.B., Akkurt, İ., Gunoglu, K. Akyildirim, H. 2021. Fast neutrons shielding properties for HAP-Fe2O3 composite materials, International Journal of Computational and Experimental Science and Engineering, 7(3), s. 143-145. DOI: 10.22399/ijcesen.1012039
  • [21] Sengul, A., Akhtar, M.S., Akkurt, I., Malidarre, R.B., Er, Z. Ekmekci, I. 2023. Gamma-neutron shielding parameters of (S3Sb2) x (S2Ge) 100− x chalcogenide glasses nanocomposite, Radiation Physics and Chemistry, 204, s. 110675. DOI: 10.1016/j.radphyschem.2022.110675
  • [22] Baykal, D.Ş., Tekİn, H.O. Mutlu, R.B.Ç. 2021. An investigation on radiation shielding properties of borosilicate glass systems, International Journal of Computational and Experimental Science and Engineering, 7(2), s. 99-108. DOI: 10.22399/ijcesen.960151
  • [23] Tekin, H.O., Almisned, G., Susoy, G., Zakaly, H.M., Issa, S.A., Kilic, G., Rammah, Y.S., Lakshminarayana, G. Ene, A. 2022. A detailed investigation on highly dense CuZr bulk metallic glasses for shielding purposes, Open Chemistry, 20(1), s. 69-80. DOI: 10.1515/chem-2022-0127
  • [24] Dong, Q. Fang, Y. 2023. Metal-halide perovskites for high-efficiency radiation shielding applications, Light: Science & Applications, 12(1), s. 8. DOI: 10.1038/s41377-022-01060-8
  • [25] More, C.V., Alsayed, Z., Badawi, M.S., Thabet, A.A. Pawar, P.P. 2021. Polymeric composite materials for radiation shielding: A review, Environmental chemistry letters, 19, s. 2057-2090.
  • [26] Sharqi, I.H.S. 2022. Investıgatıon Of Radıatıon Dosımetrıc Parameters For Zno Doped Some Glass Samples. Suleyman Demirel University, Yüksek lisans.149, ISPARTA,
  • [27] Arce, P., Lagares, J.I., Harkness, L., Pérez-Astudillo, D., Cañadas, M., Rato, P., De Prado, M., Abreu, Y., De Lorenzo, G. Kolstein, M. 2014. Gamos: A framework to do Geant4 simulations in different physics fields with an user-friendly interface, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 735, s. 304-313.
  • [28] Arce, P., Rato, P., Canadas, M. Lagares, J.I. 2008. GAMOS: A Geant4-based easy and flexible framework for nuclear medicine applications. 2008 IEEE Nuclear Science Symposium Conference Record, 3162-3168.
  • [29] Glaser, A.K., Kanick, S.C., Zhang, R., Arce, P. Pogue, B.W. 2013. A GAMOS plug-in for GEANT4 based Monte Carlo simulation of radiation-induced light transport in biological media, Biomedical optics express, 4(5), s. 741-759. DOI: 10.1364/BOE.4.000741
  • [30] Akkurt, I. Akyıldırım, H. 2012. Radiation transmission of concrete including pumice for 662, 1173 and 1332 keV gamma rays, Nuclear Engineering and Design, 252, s. 163-166. DOI: 10.1016/j.nucengdes.2012.07.008
  • [31] Akkurt, I., Akyıldırım, H., Mavi, B., Kilincarslan, S. Basyigit, C. 2010. Photon attenuation coefficients of concrete includes barite in different rate, Annals of Nuclear Energy, 37(7), s. 910-914. DOI: 10.1016/j.anucene.2010.04.001
  • [32] Akyildirim, H., Kavaz, E., El-Agawany, F.I., Yousef, E. Rammah, Y.S. 2020. Radiation shielding features of zirconolite silicate glasses using XCOM and FLUKA simulation code, Journal of Non-Crystalline Solids, 545, s. 120245. DOI: https://DOI.org/10.1016/j.jnoncrysol.2020.120245
  • [33] Akman, F., Kaçal, M.R., Sayyed, M.I. Karataş, H.A. 2019. Study of gamma radiation attenuation properties of some selected ternary alloys, Journal of Alloys and Compounds, 782, s. 315-322. DOI: 10.1016/j.jallcom.2018.12.221
  • [34] Saad, M., Almohiy, H., Alshihri, A.A., Alelyani, M. Shalaby, R.M. 2023. Fabrication, microstructural modifications, elastic properties and radiation attenuation performance of ZnO nano-sized particles-reinforced Pb-based alloys for radiation shielding applications, Radiation Effects and Defects in Solids, s. 1-17.
  • [35] Alsaif, N.A., Ahmmad, S.K., Khattari, Z., Abdelghany, A., El-Refaey, A.M., Rammah, Y., Shams, M. Elsad, R. 2023. Synthesis, structure, radiation attenuation efficacy as well as prediction of density using artificial intelligence techniques of lead borate lithium zinc strontium glasses, Optical Materials, 137, s. 113599.
  • [36] Singh, R.U., Sekhar, K.C., Alzahrani, J.S., Alrowaili, Z., Shareefuddin, M., Purushotham, Y., Olarinoye, I. Al-Buriahi, M. 2023. Effect of MoO3 on Na2O–B2O3–CdO–ZnO glasses: Applications in optoelectronics, communication devices, and radiation shielding, Ceramics International, 49(7), s. 11600-11611. DOI: 10.1016/j.ceramint.2022.12.007
  • [37] Kurtulus, R., Kavas, T., Akkurt, I., Gunoglu, K., Tekin, H.O. Kurtulus, C. 2021. A comprehensive study on novel alumino-borosilicate glass reinforced with Bi2O3 for radiation shielding applications: synthesis, spectrometer, XCOM, and MCNP-X works, Journal of Materials Science: Materials in Electronics, 32(10), s. 13882-13896. DOI: 10.1007/s10854-021-05964-w
  • [38] Al-Buriahi, M., Bakhsh, E.M., Tonguc, B. Khan, S.B. 2020. Mechanical and radiation shielding properties of tellurite glasses doped with ZnO and NiO, Ceramics International, 46(11), s. DOI: 19078-19083. 10.1016/j.ceramint.2020.04.240
  • [39] Alzahrani, J.S., Kavas, T., Kurtulus, R., Olarinoye, I. Al-Buriahi, M. 2021. Physical, structural, mechanical, and radiation shielding properties of the PbO–B2O3–Bi2O3–ZnO glass system, Journal of Materials Science: Materials in Electronics, 32(14), s. 18994-19009.
  • [40] Kilic, G., Ilik, E., Issa, S.A., Almisned, G. Tekin, H. 2022. ZnO/CdO translocation in P2O5-TeO2-ZnO ternary glass systems: A reformative enhancement tool for physical, optical, and heavy-charged particles attenuation properties, Optik, 268, s. 169807.
  • [41] Shams, M., Marzouk, S.Y., El-Refaey, A.M., Abdel-Hafez, S.H., Olarinoye, I. Rammah, Y. 2021. Fabrication, linear/nonlinear optical properties, Judd–Ofelt parameters and gamma-ray attenuation capacity of Er2O3 doped P2O5–ZnO–CdO glasses, Journal of Materials Research and Technology, 15, s. 5540-5553.
  • [42] Rammah, Y., Özpolat, Ö., Alım, B., Şakar, E., El-Mallawany, R. El-Agawany, F. 2020. Assessment of gamma-ray attenuation features for La+ 3 co-doped zinc borotellurite glasses, Radiation Physics and Chemistry, 176, s. 109069.
  • [43] Abouhaswa, A., Perişanoğlu, U., Tekin, H., Kavaz, E. Henaish, A. 2020. Nuclear shielding properties of B2O3–Pb3O4–ZnO glasses: multiple impacts of Er2O3 additive, Ceramics International, 46(17), s. 27849-27859.
  • [44] Azooz, M. Elbatal, H. 2020. Preparation and characterization of invert ZnO–B2O3 glasses and its shielding behavior towards gamma irradiation, Materials Chemistry and Physics, 240, s. 122129. DOI: 10.1016/j.matchemphys.2019.122129
  • [45] Alzahrani, J.S., Kavas, T., Kurtulus, R. Al-Buriahi, M. 2021. Evaluations of physical and mechanical properties, and photon attenuation characteristics on lithium-germanate glass containing ZnO, Optik, 248, s. 168078. DOI: 10.1016/j.ijleo.2021.168078
  • [46] Medhat, M.E. Wang, Y. 2013. Geant4 code for simulation attenuation of gamma rays through scintillation detectors, Annals of Nuclear Energy, 62, s. 316-320. DOI: 10.1016/j.anucene.2013.06.034
  • [47] Singh, V.P., Medhat, M.E. Shirmardi, S.P. 2015. Comparative studies on shielding properties of some steel alloys using Geant4, MCNP, WinXCOM and experimental results, Radiation Physics and Chemistry, 106, s. 255-260. DOI: 10.1016/j.radphyschem.2014.07.002
There are 46 citations in total.

Details

Primary Language Turkish
Subjects Material Physics
Journal Section Articles
Authors

Aycan Şengül 0000-0003-4548-5403

Early Pub Date September 16, 2023
Publication Date September 27, 2023
Published in Issue Year 2023 Volume: 25 Issue: 75

Cite

APA Şengül, A. (2023). ZnO Katkılı Bazı Cam Örneklerinin Kütle Zayıflama Katsayılarının Monte Carlo ile Hesaplanması. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 25(75), 751-759. https://doi.org/10.21205/deufmd.2023257518
AMA Şengül A. ZnO Katkılı Bazı Cam Örneklerinin Kütle Zayıflama Katsayılarının Monte Carlo ile Hesaplanması. DEUFMD. September 2023;25(75):751-759. doi:10.21205/deufmd.2023257518
Chicago Şengül, Aycan. “ZnO Katkılı Bazı Cam Örneklerinin Kütle Zayıflama Katsayılarının Monte Carlo Ile Hesaplanması”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 25, no. 75 (September 2023): 751-59. https://doi.org/10.21205/deufmd.2023257518.
EndNote Şengül A (September 1, 2023) ZnO Katkılı Bazı Cam Örneklerinin Kütle Zayıflama Katsayılarının Monte Carlo ile Hesaplanması. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 25 75 751–759.
IEEE A. Şengül, “ZnO Katkılı Bazı Cam Örneklerinin Kütle Zayıflama Katsayılarının Monte Carlo ile Hesaplanması”, DEUFMD, vol. 25, no. 75, pp. 751–759, 2023, doi: 10.21205/deufmd.2023257518.
ISNAD Şengül, Aycan. “ZnO Katkılı Bazı Cam Örneklerinin Kütle Zayıflama Katsayılarının Monte Carlo Ile Hesaplanması”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 25/75 (September 2023), 751-759. https://doi.org/10.21205/deufmd.2023257518.
JAMA Şengül A. ZnO Katkılı Bazı Cam Örneklerinin Kütle Zayıflama Katsayılarının Monte Carlo ile Hesaplanması. DEUFMD. 2023;25:751–759.
MLA Şengül, Aycan. “ZnO Katkılı Bazı Cam Örneklerinin Kütle Zayıflama Katsayılarının Monte Carlo Ile Hesaplanması”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 25, no. 75, 2023, pp. 751-9, doi:10.21205/deufmd.2023257518.
Vancouver Şengül A. ZnO Katkılı Bazı Cam Örneklerinin Kütle Zayıflama Katsayılarının Monte Carlo ile Hesaplanması. DEUFMD. 2023;25(75):751-9.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.