Research Article
BibTex RIS Cite

Termal Değişimlerin Tinkal Katkılı Kum-Bentonit ve Zeolit-Bentonit Karışımlarının Kayma Dayanımına Etkisi

Year 2024, Volume: 26 Issue: 77, 211 - 217, 27.05.2024
https://doi.org/10.21205/deufmd.2024267703

Abstract

Atık depolama alanları ve enerji geo-yapılarında geçirimsiz mühendislik bariyeri olarak kullanılan bentonit içerikli karışımlar zamanla termal etkiler altında değişimlere maruz kalabilirler. Zeminlerin, bu termal değişimler altında mühendislik özelliklerinin bozulmadan uzun süre korunması enerji geo-yapısının performansı ve çevre ve insan sağlığı için oldukça önemlidir. Bu çalışma kapsamında, sıcaklığın (25 ve 80 °C) ve sıcaklık döngülerinin sıkıştırılmış kum-bentonit ve zeolit-bentonit karışımlarının kayma dayanımı davranışı üzerindeki etkisi araştırılmıştır. Ayrıca sıcaklığa karşı direnci yüksek bir bor minerali olan tinkal, karışımlara ilave edilmiş ve bu katkının yüksek sıcaklıklarda karışımların kayma davranışına etkisi incelenmiştir. Karışımların kayma dayanımı genel olarak artan sıcaklıkla %5-%15 aralığında artış göstermiştir. Ayrıca tinkal ilavesi özellikle kum-bentonit karışımları için kayma dayanımı açısından faydalı bulunmuştur.

Supporting Institution

TÜBİTAK

Project Number

217M553

Thanks

Bu çalışma, Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından desteklenmiştir (Proje no: 217M553). Yazarlar bu destek ve SGA’ nın 100/2000 Yükseköğretim Kurulu (YÖK) Doktora Bursu için minnettardır.

References

  • Cho, W.J., Lee, J.O., Chun, K.S., Hahn, D.S. 1999. Basic Physicochemical Properties of Domestic Bentonite for Use as a Buffer Material in a High-Level Radioactive Waste Repository, Journal of the Korean Nuclear Society, Cilt. 31, s. 39-50.
  • Karnland, O., Birgersson, M. 2006. Montmorillonite Stability with Respect to KBS-3 Conditions. Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden. Technical Report, No. SKB-TR-06-11.
  • Villar, M.V., Lloret, A. 2008. Influence of Dry Density and Water Content on the Swelling of a Compacted Bentonite, Applied Clay Science, Cilt. 39(1–2), s. 38-49. DOI: 10.1016/j.clay.2007.04.007
  • Komine, H., Watanabe, Y. 2010. The Past, Present and Future of the Geo-Environment in Japan, Soils and Foundations, Cilt. 50(6), s. 977-982.
  • Nagra. 2008. Effects of Post-Disposal Gas Generation in a Repository for Low- and Intermediate-Level Waste Sited in the Opalinus Clay of Northern Switzerland, Technical Report 08-07. Wettingen, Switzerland: Nagra. Cilt. 41(10), 175s.
  • Mollins, L.H., Stewart, D., Cousens, T.W. 1996. Predicting the Properties of Bentonite-Sand Mixtures, Clay Minerals, Cilt. 31(02), s. 243-252. DOI: 10.1180/claymin.1996.031.2.10
  • Karakaya, M.Ç., Karakaya, N., Yavuz, F. 2015. Geology and Conditions of Formation of the Zeolite-Bearing Deposits Southeast of Ankara (Central Turkey), Clays and Clay Minerals, Cilt. 63(2), s. 85–109. DOI: 10.1346/CCMN.2015.0630202
  • Mumpton, F.A. 1999. La Roca Magica: Uses of Natural Zeolites in Agriculture and Industry, Proceedings of the National Academy of Sciences of the United States of America, Cilt. 96(7), s. 3463-3470. DOI: 10.1073/pnas.96.7.346
  • Kaya, A., Durukan, S., Oren, A.H., Yükselen, Y. 2006. Determining the Engineering Properties of Bentonite-Zeolite Mixtures, Teknik Dergi, Cilt. 17(3), s. 3879-3892.
  • Yukselen-Aksoy, Y. 2010. Characterization of Two Natural Zeolites for Geotechnical and Geoenvironmental Applications, Applied Clay Science, Cilt. 50, s. 130-136. DOI: 10.1016/j.clay.2010.07.015
  • Burghignoli, A., Desideri, A., Miliziano, S. 2000. A Laboratory Study on the Thermomechanical Behaviour of Clayey Soils, Canadian Geotechnical Journal, Cilt. 37, s. 764-780. DOI: 10.1139/cgj-37-4-764
  • Sultan, N., Delage, P., Cui, Y.J. 2002. Temperature Effects on the Volume Change Behaviour of Boom Clay, Engineering Geology, Cilt. 64, s. 135-145. DOI: 10.1016/S0013-7952(01)00143-0
  • Cekerevac, C., Laloui, L. 2004. Experimental Study of Thermal Effects on the Mechanical Behaviour of a Clay, International Journal for Numerical and Analytical Methods in Geomechanics, Cilt. 28, s. 209–28. DOI: 10.1002/nag.332
  • Abuel-Naga, H.M., Bergado, D.T., Ramana, G.V., Grino, L., Rujivipat, P., Thet, Y. 2006. Experimental Evaluation of Engineering Behavior of Soft Bangkok Clay under Elevated Temperature, Journal of Geotechnical and Geoenvironmental Engineering, Cilt. 132(7), s. 902–910. DOI: 10.1061/(ASCE)1090-0241(2006)132:7(902)
  • Maghsoodi, S., Cuisinier, O., Masrouri, F. 2018. Thermal Effects on Mechanical Behaviour of Soil–Structure Interface, Canadian Geotechnical Journal, Cilt, 57(1), s. 32-47. DOI: 10.1139/cgj-2018-0583
  • Lahoori, M., Rosin-Paumier, S., Masrouri, F. 2021. Effect of Monotonic and Cyclic Temperature Variations on the Mechanical Behavior of a Compacted Soil, Engineering Geology, Cilt. 290 s. 106195. DOI: 10.1016/j.enggeo.2021.106195
  • Zheng, L., Rutqvist, J., Birkholzer, J.T., Liu, H.H. 2015. On the Impact of Temperatures up to 200°C in Clay Repositories with Bentonite Engineer Barrier Systems: A Study with Coupled Thermal, Hydrological, Chemical, and Mechanical Modeling, Engineering Geology, Cilt. 197, s. 278–295. DOI: 10.1016/j.enggeo.2015.08.026
  • He, S.H., Shan, H.F., Xia, T.D., Liu Z.J., Ding, Z., Xia, F. 2021. The Effect of Temperature on the Drained Shear Behavior of Calcareous Sand, Acta Geotechnica, Cilt. 16, s. 613–33. DOI: 10.1007/s11440-020-01030-7J
  • De Bruyn, D., Thimus, J.F. 1996. The Influence of Temperature on Mechanical Characteristics of Boom Clay: The Results of an Initial Laboratory Programme, Engineering Geology, Cilt. 41(1-4), s. 117–126. DOI: 10.1016/0013-7952(95)00029-1
  • Lingnau, B.E., Yarechewski, D., Tanaka, N., Gray, M.N. 1996. Effects of Temperature on Strength and Compressibility of Sand-Bentonite Buffer, Engineering Geology, Cilt. 41(1–4), s. 103-115. DOI: 10.1016/0013-7952(95)00028-3
  • Gu, K., Tang, C., Shi, B. 2014. A Study of the Effect of Temperature on the Structural Strength of a Clayey Soil Using a Micropenetrometer, Bulletin of Engineering Geology and the Environment, Cilt. 73(3), s. 747–758. DOI: 10.1007/s10064-013-0543-y
  • Privett, K. 1987. J.E. Gillott Clay in Engineering Geology, 2nd Edition. (Developments in Geotechnical Engineering, 41.) Elsevier Science Publishers, Amsterdam, 474s.
  • ASTM D2487-17. 2017. Standard Practice for Classification of Soils for Engineering Purposes (Unified soil classification system), ASTM International, West Conshohocken, PA, USA, s. 1–10. DOI: 10.1520/D2487-17
  • ASTM D698-12. 2012. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International, West Conshohocken, PA, USA, s. 1–13. DOI: 10.1520/D0698-12E02
  • ASTM D3080/D3080M-18. 2018. Standard Test Method for Direct Shear Test of Soils under Consolidated Drained Conditions, ASTM International, West Conshohocken, PA, USA, s. 1–9. DOI: 10.1520/D3080
  • ASTM D2435/D2435M–11. 2020. Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading, ASTM International, West Conshohocken, PA, USA, s. 1-15. DOI: 10.1520/D2435_D2435M-11
  • Wersin, P., Johnson, L.H., Snellman, M. 2006. Impact of Iron Released from Steel Components on the Performance of the Bentonite Buffer: A Preliminary Assessment within the Framework of the KBS-3H Disposal Concept, Cambridge, MRS Online Proceedings Library, 932, 1171. DOI: 10.1557/proc-932-117.1
  • Wang, S., Zhu, W., Qian, X., Xu, H., Fan, X. 2017. Temperature Effects on Non-Darcy Flow of Compacted Clay, Applied Clay Science, Cilt. 135, s. 521–525. DOI: 10.1016/j.clay.2016.09.025
  • Hong, Z. S., Bian, X., Cui, Y. J., Gao, Y. F., Zeng, L. L. 2013. Effect of Initial Water Content on Undrained Shear Behaviour of Reconstituted Clays, Géotechnique, Cilt. 63(6), s. 441–450. DOI: 10.1680/geot.11.p.114
  • Yavari, N., Tang, A. M., Pereira, J.-M., Hassen, G. 2016. Effect of Temperature on the Shear Strength of Soils and the Soil–Structure Interface, Canadian Geotechnical Journal, Cilt. 53(7), s. 1186-1194. DOI: 10.1139/cgj-2015-0355
  • Tschaufeser, P., Parker, S.C. 1995. Thermal Expansion Behavior of Zeolites and AlPO4s, The Journal of Physical Chemistry, Cilt. 99(26), s. 10609–15. DOI: 10.1021/j100026a026
  • Keren, R., Mezuman, U. 1981. Boron Adsorption by Clay Minerals Using a Phenomenological Equation, Clay and Clays Minerals, Cilt. 29, s. 198-204. DOI: 10.1346/CCMN.1981.0290305
  • Shi, J., Shu, S., Ai, Y., Jiang, Z., Li, Y., Xu, G. 2021. Effect of Elevated Temperature on Solid Waste Shear Strength and Landfill Slope Stability, Waste Management & Research, Cilt. 39(2), s. 351-359. DOI: 10.1177/0734242X20958065

Effect of Thermal Changes on the Shear Strength of Tincal Added SandBentonite and Zeolite-Bentonite Mixtures

Year 2024, Volume: 26 Issue: 77, 211 - 217, 27.05.2024
https://doi.org/10.21205/deufmd.2024267703

Abstract

Bentonite-containing mixtures, which are used as an impermeable engineering barrier in waste disposal facilities and energy geostructures, are exposed to thermal changes over time. It is very important for the performance of energy geo-structures and environment and human health that the soils are maintained for a long time without deterioration of their engineering properties under these thermal changes. In this study, the effects of temperature (20 and 80 °C) and temperature cycles on the shear strength behavior of compacted sand-bentonite and zeolite-bentonite mixtures were investigated. In addition, tincal, which is a boron mineral and has high temperature resistance, was added to these mixtures and its effect on the shear behavior of these mixtures at high temperatures was investigated. The shear strength of the mixtures generally increased between 5% and 15% with increasing temperature. In addition, the addition of tincal was found to be beneficial in terms of shear strength, especially for sand-bentonite mixtures.

Project Number

217M553

References

  • Cho, W.J., Lee, J.O., Chun, K.S., Hahn, D.S. 1999. Basic Physicochemical Properties of Domestic Bentonite for Use as a Buffer Material in a High-Level Radioactive Waste Repository, Journal of the Korean Nuclear Society, Cilt. 31, s. 39-50.
  • Karnland, O., Birgersson, M. 2006. Montmorillonite Stability with Respect to KBS-3 Conditions. Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden. Technical Report, No. SKB-TR-06-11.
  • Villar, M.V., Lloret, A. 2008. Influence of Dry Density and Water Content on the Swelling of a Compacted Bentonite, Applied Clay Science, Cilt. 39(1–2), s. 38-49. DOI: 10.1016/j.clay.2007.04.007
  • Komine, H., Watanabe, Y. 2010. The Past, Present and Future of the Geo-Environment in Japan, Soils and Foundations, Cilt. 50(6), s. 977-982.
  • Nagra. 2008. Effects of Post-Disposal Gas Generation in a Repository for Low- and Intermediate-Level Waste Sited in the Opalinus Clay of Northern Switzerland, Technical Report 08-07. Wettingen, Switzerland: Nagra. Cilt. 41(10), 175s.
  • Mollins, L.H., Stewart, D., Cousens, T.W. 1996. Predicting the Properties of Bentonite-Sand Mixtures, Clay Minerals, Cilt. 31(02), s. 243-252. DOI: 10.1180/claymin.1996.031.2.10
  • Karakaya, M.Ç., Karakaya, N., Yavuz, F. 2015. Geology and Conditions of Formation of the Zeolite-Bearing Deposits Southeast of Ankara (Central Turkey), Clays and Clay Minerals, Cilt. 63(2), s. 85–109. DOI: 10.1346/CCMN.2015.0630202
  • Mumpton, F.A. 1999. La Roca Magica: Uses of Natural Zeolites in Agriculture and Industry, Proceedings of the National Academy of Sciences of the United States of America, Cilt. 96(7), s. 3463-3470. DOI: 10.1073/pnas.96.7.346
  • Kaya, A., Durukan, S., Oren, A.H., Yükselen, Y. 2006. Determining the Engineering Properties of Bentonite-Zeolite Mixtures, Teknik Dergi, Cilt. 17(3), s. 3879-3892.
  • Yukselen-Aksoy, Y. 2010. Characterization of Two Natural Zeolites for Geotechnical and Geoenvironmental Applications, Applied Clay Science, Cilt. 50, s. 130-136. DOI: 10.1016/j.clay.2010.07.015
  • Burghignoli, A., Desideri, A., Miliziano, S. 2000. A Laboratory Study on the Thermomechanical Behaviour of Clayey Soils, Canadian Geotechnical Journal, Cilt. 37, s. 764-780. DOI: 10.1139/cgj-37-4-764
  • Sultan, N., Delage, P., Cui, Y.J. 2002. Temperature Effects on the Volume Change Behaviour of Boom Clay, Engineering Geology, Cilt. 64, s. 135-145. DOI: 10.1016/S0013-7952(01)00143-0
  • Cekerevac, C., Laloui, L. 2004. Experimental Study of Thermal Effects on the Mechanical Behaviour of a Clay, International Journal for Numerical and Analytical Methods in Geomechanics, Cilt. 28, s. 209–28. DOI: 10.1002/nag.332
  • Abuel-Naga, H.M., Bergado, D.T., Ramana, G.V., Grino, L., Rujivipat, P., Thet, Y. 2006. Experimental Evaluation of Engineering Behavior of Soft Bangkok Clay under Elevated Temperature, Journal of Geotechnical and Geoenvironmental Engineering, Cilt. 132(7), s. 902–910. DOI: 10.1061/(ASCE)1090-0241(2006)132:7(902)
  • Maghsoodi, S., Cuisinier, O., Masrouri, F. 2018. Thermal Effects on Mechanical Behaviour of Soil–Structure Interface, Canadian Geotechnical Journal, Cilt, 57(1), s. 32-47. DOI: 10.1139/cgj-2018-0583
  • Lahoori, M., Rosin-Paumier, S., Masrouri, F. 2021. Effect of Monotonic and Cyclic Temperature Variations on the Mechanical Behavior of a Compacted Soil, Engineering Geology, Cilt. 290 s. 106195. DOI: 10.1016/j.enggeo.2021.106195
  • Zheng, L., Rutqvist, J., Birkholzer, J.T., Liu, H.H. 2015. On the Impact of Temperatures up to 200°C in Clay Repositories with Bentonite Engineer Barrier Systems: A Study with Coupled Thermal, Hydrological, Chemical, and Mechanical Modeling, Engineering Geology, Cilt. 197, s. 278–295. DOI: 10.1016/j.enggeo.2015.08.026
  • He, S.H., Shan, H.F., Xia, T.D., Liu Z.J., Ding, Z., Xia, F. 2021. The Effect of Temperature on the Drained Shear Behavior of Calcareous Sand, Acta Geotechnica, Cilt. 16, s. 613–33. DOI: 10.1007/s11440-020-01030-7J
  • De Bruyn, D., Thimus, J.F. 1996. The Influence of Temperature on Mechanical Characteristics of Boom Clay: The Results of an Initial Laboratory Programme, Engineering Geology, Cilt. 41(1-4), s. 117–126. DOI: 10.1016/0013-7952(95)00029-1
  • Lingnau, B.E., Yarechewski, D., Tanaka, N., Gray, M.N. 1996. Effects of Temperature on Strength and Compressibility of Sand-Bentonite Buffer, Engineering Geology, Cilt. 41(1–4), s. 103-115. DOI: 10.1016/0013-7952(95)00028-3
  • Gu, K., Tang, C., Shi, B. 2014. A Study of the Effect of Temperature on the Structural Strength of a Clayey Soil Using a Micropenetrometer, Bulletin of Engineering Geology and the Environment, Cilt. 73(3), s. 747–758. DOI: 10.1007/s10064-013-0543-y
  • Privett, K. 1987. J.E. Gillott Clay in Engineering Geology, 2nd Edition. (Developments in Geotechnical Engineering, 41.) Elsevier Science Publishers, Amsterdam, 474s.
  • ASTM D2487-17. 2017. Standard Practice for Classification of Soils for Engineering Purposes (Unified soil classification system), ASTM International, West Conshohocken, PA, USA, s. 1–10. DOI: 10.1520/D2487-17
  • ASTM D698-12. 2012. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International, West Conshohocken, PA, USA, s. 1–13. DOI: 10.1520/D0698-12E02
  • ASTM D3080/D3080M-18. 2018. Standard Test Method for Direct Shear Test of Soils under Consolidated Drained Conditions, ASTM International, West Conshohocken, PA, USA, s. 1–9. DOI: 10.1520/D3080
  • ASTM D2435/D2435M–11. 2020. Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading, ASTM International, West Conshohocken, PA, USA, s. 1-15. DOI: 10.1520/D2435_D2435M-11
  • Wersin, P., Johnson, L.H., Snellman, M. 2006. Impact of Iron Released from Steel Components on the Performance of the Bentonite Buffer: A Preliminary Assessment within the Framework of the KBS-3H Disposal Concept, Cambridge, MRS Online Proceedings Library, 932, 1171. DOI: 10.1557/proc-932-117.1
  • Wang, S., Zhu, W., Qian, X., Xu, H., Fan, X. 2017. Temperature Effects on Non-Darcy Flow of Compacted Clay, Applied Clay Science, Cilt. 135, s. 521–525. DOI: 10.1016/j.clay.2016.09.025
  • Hong, Z. S., Bian, X., Cui, Y. J., Gao, Y. F., Zeng, L. L. 2013. Effect of Initial Water Content on Undrained Shear Behaviour of Reconstituted Clays, Géotechnique, Cilt. 63(6), s. 441–450. DOI: 10.1680/geot.11.p.114
  • Yavari, N., Tang, A. M., Pereira, J.-M., Hassen, G. 2016. Effect of Temperature on the Shear Strength of Soils and the Soil–Structure Interface, Canadian Geotechnical Journal, Cilt. 53(7), s. 1186-1194. DOI: 10.1139/cgj-2015-0355
  • Tschaufeser, P., Parker, S.C. 1995. Thermal Expansion Behavior of Zeolites and AlPO4s, The Journal of Physical Chemistry, Cilt. 99(26), s. 10609–15. DOI: 10.1021/j100026a026
  • Keren, R., Mezuman, U. 1981. Boron Adsorption by Clay Minerals Using a Phenomenological Equation, Clay and Clays Minerals, Cilt. 29, s. 198-204. DOI: 10.1346/CCMN.1981.0290305
  • Shi, J., Shu, S., Ai, Y., Jiang, Z., Li, Y., Xu, G. 2021. Effect of Elevated Temperature on Solid Waste Shear Strength and Landfill Slope Stability, Waste Management & Research, Cilt. 39(2), s. 351-359. DOI: 10.1177/0734242X20958065
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Sükran Gizem Alpaydın 0000-0002-0784-2361

Yeliz Yükselen Aksoy 0000-0002-9145-765X

Project Number 217M553
Early Pub Date May 14, 2024
Publication Date May 27, 2024
Published in Issue Year 2024 Volume: 26 Issue: 77

Cite

APA Alpaydın, S. G., & Yükselen Aksoy, Y. (2024). Termal Değişimlerin Tinkal Katkılı Kum-Bentonit ve Zeolit-Bentonit Karışımlarının Kayma Dayanımına Etkisi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 26(77), 211-217. https://doi.org/10.21205/deufmd.2024267703
AMA Alpaydın SG, Yükselen Aksoy Y. Termal Değişimlerin Tinkal Katkılı Kum-Bentonit ve Zeolit-Bentonit Karışımlarının Kayma Dayanımına Etkisi. DEUFMD. May 2024;26(77):211-217. doi:10.21205/deufmd.2024267703
Chicago Alpaydın, Sükran Gizem, and Yeliz Yükselen Aksoy. “Termal Değişimlerin Tinkal Katkılı Kum-Bentonit Ve Zeolit-Bentonit Karışımlarının Kayma Dayanımına Etkisi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 26, no. 77 (May 2024): 211-17. https://doi.org/10.21205/deufmd.2024267703.
EndNote Alpaydın SG, Yükselen Aksoy Y (May 1, 2024) Termal Değişimlerin Tinkal Katkılı Kum-Bentonit ve Zeolit-Bentonit Karışımlarının Kayma Dayanımına Etkisi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 26 77 211–217.
IEEE S. G. Alpaydın and Y. Yükselen Aksoy, “Termal Değişimlerin Tinkal Katkılı Kum-Bentonit ve Zeolit-Bentonit Karışımlarının Kayma Dayanımına Etkisi”, DEUFMD, vol. 26, no. 77, pp. 211–217, 2024, doi: 10.21205/deufmd.2024267703.
ISNAD Alpaydın, Sükran Gizem - Yükselen Aksoy, Yeliz. “Termal Değişimlerin Tinkal Katkılı Kum-Bentonit Ve Zeolit-Bentonit Karışımlarının Kayma Dayanımına Etkisi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 26/77 (May 2024), 211-217. https://doi.org/10.21205/deufmd.2024267703.
JAMA Alpaydın SG, Yükselen Aksoy Y. Termal Değişimlerin Tinkal Katkılı Kum-Bentonit ve Zeolit-Bentonit Karışımlarının Kayma Dayanımına Etkisi. DEUFMD. 2024;26:211–217.
MLA Alpaydın, Sükran Gizem and Yeliz Yükselen Aksoy. “Termal Değişimlerin Tinkal Katkılı Kum-Bentonit Ve Zeolit-Bentonit Karışımlarının Kayma Dayanımına Etkisi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 26, no. 77, 2024, pp. 211-7, doi:10.21205/deufmd.2024267703.
Vancouver Alpaydın SG, Yükselen Aksoy Y. Termal Değişimlerin Tinkal Katkılı Kum-Bentonit ve Zeolit-Bentonit Karışımlarının Kayma Dayanımına Etkisi. DEUFMD. 2024;26(77):211-7.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.