Research Article
BibTex RIS Cite

Dielektrik Kaplı İletken Silindirden Saçılan Alanın Minimizasyonu

Year 2024, Volume: 26 Issue: 78, 492 - 497, 27.09.2024
https://doi.org/10.21205/deufmd.2024267816

Abstract

Bu çalışmada, TM polarize düzlem dalga ile aydınlatılan, dielektrik malzeme ile kaplı sonsuz uzun, mükemmel iletken, dairesel bir silindirin RKA (radar kesit alanı)’ nı en aza indirmek için analitik yönteme dayalı bir analiz önerilmektedir. Silindirik yapıdan saçılan alan, farklı bölgelerde Bessel ve Hankel fonksiyonlarının sonsuz seri toplamı cinsinden ifade edilerek analitik olarak belirlenmiştir. Burada temel yaklaşım olarak kalınlık veya permitivite veya frekansın sabit olduğu varsayılarak, iki değişken parametreye bağımlı bir fonksiyonelin parametrik analizi yapılmış ve yapının RKA’nı en aza indirgeyen parametreler belirlenmiştir. Elde edilen sonuçların tutarlılığı, uzak alan ifadeleri gözlemlenerek gösterilmiş ve önerilen yöntemin başarısı çeşitli durumlar için tartışılmıştır.

Ethical Statement

“Hazırlanan makalede etik kurul izni alınmasına gerek yoktur” “Hazırlanan makalede herhangi bir kişi/kurum ile çıkar çatışması bulunmamaktadır”

References

  • [1] Knott, E. F., Schaeffer, J. F., Tulley, M. T. 2004. Radar Cross Section. 2nd Ed., SciTech Publishing, Raleigh, NC, 637s.
  • [2] Skolnik, M.I. 2001. Radar Handbook, 3rd Ed., Mc-Graw-Hill Publishing Company, 772s.
  • [3] Knott, E. F. 1985. A progression of high-frequency RCS prediction techniques. Proceedings of IEEE, Cilt. 73, no. 2, s. 252-264. DOI: 10.1109/proc.1985.13137
  • [4] Jenn, D. C. 2005. Radar and Laser Cross Section Engineering. AIAA Press, USA, 503s.
  • [5] James, G. L. 2007. Geometrical Theory of Diffraction for Electromagnetic Waves. Reprint of 3rd Ed., IET Electromagnetic Waves Series 1, London, United Kingdom, 293s.
  • [6] Leader. C. J. 1982. Modern Methods of Scattering Predictions. SPIE Proceedings, Applications of Mathematics in Modern Optics, SPIE 26th Annual Technical Symposium - San Diego, August. Cilt. 358, s. 17-23. DOI: 10.1117/12.934050
  • [7] Elliott, R. S. 1955. Azimuthal surface waves on circular cylinders, J. Appl. Phys., Cilt. 26, no. 4, s. 368–376. DOI: doi.org/10.1063/1.1722000
  • [8] Wu, T.T. 1956. High frequency scattering. The Physical Review, Cilt. 104, no. 5, s. 1201-1212. DOI: 10.1103/PhysRev.104.1201
  • [9] Tang, C. C. 1957. Back‐scattering from dielectric coated infinite cylindrical obstacles. J. Appl. Phys., Cilt. 28, no. 5, s. 628–633.DOI:10.1063/1.1722815
  • [10] Kim, H., Wang, N . 1987. High Frequency Analysis of EM Scattering from a Circular Conducting Cylinder with Dielectric/Ferrite Coating. The Ohio State University, ElectroScience Laboratory, Technical Report No. 717674-4, 174s.
  • [11] C. A. Valagiannopoulos, Alitalo, P. and Tretyakov,S. 2012. Dielectric-coated PEC Cylinders which do not Scatter Electromagnetic Waves. IEEE Conference Paper, September, s. 90-91. DOI: 10.1109/ICEAA.2012.6328595
  • [12] C. A. Valagiannopoulos, Alitalo, P. and Tretyakov, S.A. 2014. On the Minimal Scattering Response of PEC Cylinders in a Dielectric Cloak. IEEE Ant. and Wireless Prop. Letters, Cilt. 13, s. 403-416. DOI: 10.1109/LAWP.2014.2307015
  • [13] Engheta, N., and Ziolkowski, R. W. 2006. Metamaterials. Physics and Engineering Explorations, Wiley-IEEE Pres, New Jersey, s. 414.
  • [14] Ahmed, S. and Naqvi, Q. A. 2009. Scattering of electromagnetic waves from a nihility circular cylinder coated with a metamaterial. Journal of Infrared, Millimeter and Terahertz Waves, Cilt. 30, s. 1044–1052. DOI 10.1007/s10762-009-9531-5
  • [15] C. Li, Shen, Z. 2003. Electromagnetic scattering by a conducting cylinder coated with metamaterials. Progress in Electromagnetics Research, Cilt. 42, s. 91-105. DOI:10.2528/PIER03012901
  • [16] Yelkenci, T. 2023. 14th International Conference on Electrical and Electronics Engineering (ELECO), IEEE. Determination of the Dielectric Coating Parameters to Reduce the Radar Cross-section of the Perfectly Conducting Cylinder. s. 1-3. DOI: 10.1109/ELECO60389.2023
  • [17] Gradshteyn, I., Ryzhik, I. 2007. 7th Ed. "Table of Integrals, Series and Products", Academic Press & Elsevier Inc., 1171s.
  • [18] Balanis, C.A. 2012. 2nd Ed. "Advanced Engineering Electromagnetics", John Wiley & Sons, Inc., 1046s.

Minimization of the Scattered Field from the Dielectric Coated Conductive Cylinder

Year 2024, Volume: 26 Issue: 78, 492 - 497, 27.09.2024
https://doi.org/10.21205/deufmd.2024267816

Abstract

In this study, an analysis based on the analytical method is proposed to reduce the RCS (radar cross section) of an infinite, perfectly conducting circular cylinder coated with a dielectric material, which is illuminated by a TM polarized plane wave. The scattered field of the cylindrical structure is determined analytically where the fields in different regions are expressed in terms of infinite series summation of cylindrical vector wave functions. Here, as a basic approach, the thickness or permittivity or frequency is assumed to be constant, and parametric analysis of a functional dependent on two variable parameters is performed, conseqently, the relevant parameters minimizing the RCS of the structure are determined. The consistency of the obtained results is demonstrated by observing the far-field expressions, and the success of the proposed method is discussed for various situations.

References

  • [1] Knott, E. F., Schaeffer, J. F., Tulley, M. T. 2004. Radar Cross Section. 2nd Ed., SciTech Publishing, Raleigh, NC, 637s.
  • [2] Skolnik, M.I. 2001. Radar Handbook, 3rd Ed., Mc-Graw-Hill Publishing Company, 772s.
  • [3] Knott, E. F. 1985. A progression of high-frequency RCS prediction techniques. Proceedings of IEEE, Cilt. 73, no. 2, s. 252-264. DOI: 10.1109/proc.1985.13137
  • [4] Jenn, D. C. 2005. Radar and Laser Cross Section Engineering. AIAA Press, USA, 503s.
  • [5] James, G. L. 2007. Geometrical Theory of Diffraction for Electromagnetic Waves. Reprint of 3rd Ed., IET Electromagnetic Waves Series 1, London, United Kingdom, 293s.
  • [6] Leader. C. J. 1982. Modern Methods of Scattering Predictions. SPIE Proceedings, Applications of Mathematics in Modern Optics, SPIE 26th Annual Technical Symposium - San Diego, August. Cilt. 358, s. 17-23. DOI: 10.1117/12.934050
  • [7] Elliott, R. S. 1955. Azimuthal surface waves on circular cylinders, J. Appl. Phys., Cilt. 26, no. 4, s. 368–376. DOI: doi.org/10.1063/1.1722000
  • [8] Wu, T.T. 1956. High frequency scattering. The Physical Review, Cilt. 104, no. 5, s. 1201-1212. DOI: 10.1103/PhysRev.104.1201
  • [9] Tang, C. C. 1957. Back‐scattering from dielectric coated infinite cylindrical obstacles. J. Appl. Phys., Cilt. 28, no. 5, s. 628–633.DOI:10.1063/1.1722815
  • [10] Kim, H., Wang, N . 1987. High Frequency Analysis of EM Scattering from a Circular Conducting Cylinder with Dielectric/Ferrite Coating. The Ohio State University, ElectroScience Laboratory, Technical Report No. 717674-4, 174s.
  • [11] C. A. Valagiannopoulos, Alitalo, P. and Tretyakov,S. 2012. Dielectric-coated PEC Cylinders which do not Scatter Electromagnetic Waves. IEEE Conference Paper, September, s. 90-91. DOI: 10.1109/ICEAA.2012.6328595
  • [12] C. A. Valagiannopoulos, Alitalo, P. and Tretyakov, S.A. 2014. On the Minimal Scattering Response of PEC Cylinders in a Dielectric Cloak. IEEE Ant. and Wireless Prop. Letters, Cilt. 13, s. 403-416. DOI: 10.1109/LAWP.2014.2307015
  • [13] Engheta, N., and Ziolkowski, R. W. 2006. Metamaterials. Physics and Engineering Explorations, Wiley-IEEE Pres, New Jersey, s. 414.
  • [14] Ahmed, S. and Naqvi, Q. A. 2009. Scattering of electromagnetic waves from a nihility circular cylinder coated with a metamaterial. Journal of Infrared, Millimeter and Terahertz Waves, Cilt. 30, s. 1044–1052. DOI 10.1007/s10762-009-9531-5
  • [15] C. Li, Shen, Z. 2003. Electromagnetic scattering by a conducting cylinder coated with metamaterials. Progress in Electromagnetics Research, Cilt. 42, s. 91-105. DOI:10.2528/PIER03012901
  • [16] Yelkenci, T. 2023. 14th International Conference on Electrical and Electronics Engineering (ELECO), IEEE. Determination of the Dielectric Coating Parameters to Reduce the Radar Cross-section of the Perfectly Conducting Cylinder. s. 1-3. DOI: 10.1109/ELECO60389.2023
  • [17] Gradshteyn, I., Ryzhik, I. 2007. 7th Ed. "Table of Integrals, Series and Products", Academic Press & Elsevier Inc., 1171s.
  • [18] Balanis, C.A. 2012. 2nd Ed. "Advanced Engineering Electromagnetics", John Wiley & Sons, Inc., 1046s.
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Engineering Electromagnetics
Journal Section Research Article
Authors

Tanju Yelkenci 0000-0002-3668-7751

Early Pub Date September 17, 2024
Publication Date September 27, 2024
Submission Date October 12, 2023
Acceptance Date February 22, 2024
Published in Issue Year 2024 Volume: 26 Issue: 78

Cite

APA Yelkenci, T. (2024). Dielektrik Kaplı İletken Silindirden Saçılan Alanın Minimizasyonu. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 26(78), 492-497. https://doi.org/10.21205/deufmd.2024267816
AMA Yelkenci T. Dielektrik Kaplı İletken Silindirden Saçılan Alanın Minimizasyonu. DEUFMD. September 2024;26(78):492-497. doi:10.21205/deufmd.2024267816
Chicago Yelkenci, Tanju. “Dielektrik Kaplı İletken Silindirden Saçılan Alanın Minimizasyonu”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 26, no. 78 (September 2024): 492-97. https://doi.org/10.21205/deufmd.2024267816.
EndNote Yelkenci T (September 1, 2024) Dielektrik Kaplı İletken Silindirden Saçılan Alanın Minimizasyonu. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 26 78 492–497.
IEEE T. Yelkenci, “Dielektrik Kaplı İletken Silindirden Saçılan Alanın Minimizasyonu”, DEUFMD, vol. 26, no. 78, pp. 492–497, 2024, doi: 10.21205/deufmd.2024267816.
ISNAD Yelkenci, Tanju. “Dielektrik Kaplı İletken Silindirden Saçılan Alanın Minimizasyonu”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 26/78 (September 2024), 492-497. https://doi.org/10.21205/deufmd.2024267816.
JAMA Yelkenci T. Dielektrik Kaplı İletken Silindirden Saçılan Alanın Minimizasyonu. DEUFMD. 2024;26:492–497.
MLA Yelkenci, Tanju. “Dielektrik Kaplı İletken Silindirden Saçılan Alanın Minimizasyonu”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 26, no. 78, 2024, pp. 492-7, doi:10.21205/deufmd.2024267816.
Vancouver Yelkenci T. Dielektrik Kaplı İletken Silindirden Saçılan Alanın Minimizasyonu. DEUFMD. 2024;26(78):492-7.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.