Research Article
BibTex RIS Cite

Development of an Automatic Liquid Dosing System in Microliter Scale

Year 2024, Volume: 26 Issue: 78, 512 - 518, 27.09.2024
https://doi.org/10.21205/deufmd.2024267819

Abstract

The goal of this study is to design a novel automatic liquid dosing system for liquid sampling at the microliter level. For this purpose, a mechatronics system is designed to position a syringe at the desired position in the workspace and then drive its piston to inject the liquid to be sampled. Then, an application-specific algorithm is developed to be able to prepare samples in 3x3, 4x4, and 5x5 sample container arrays with a desired volume. The performance tests are conducted for preparing samples with up to three different liquids. The repetitive experiments are performed for 50 and 100 µL sampling volumes. The results indicated that it is possible to dose a single liquid with the highest average deviation of 3.9%. Moreover, it is found that it is possible to prepare a sample with a mixture of three liquids by the highest average deviation from the reference value of around 3.4% when the targeting sampling volume is 250 µL for each liquid.

Supporting Institution

Scientific and Technological Research Council of Turkey

Project Number

1919B012217833

Thanks

This work was supported by the Scientific and Technological Research Council of Turkey in the scope of 2209A Research Project Support for Undergraduate Students Commission (grant number: 1919B012217833).

References

  • [1] Councill, E., Axtell, N.B., Truong, T., et al. 2021. Adapting a Low-Cost and Open-Source Commercial Pipetting Robot for Nanoliter Liquid Handling, SLAS Technology, Vol. 26, p. 311-319. DOI:10.1177/2472630320973591
  • [2] Wu, Y.Q., Chen, H., Wang, W., He, N.Y., Liu B. 2016. Development and Validation of an Automated Liquid Handling System for Sample Preparation Based on Multichannel Air Displacement Pipetting Technology, Journal of Nanoscience and Nanotechnology, Vol. 16, p. 6867-6871. DOI:10.1166/jnn.2016.12597
  • [3] Behrens, M.R., Fuller, H.C., Swist, E.R., Wu, J.W., Islam, M.M., Long, Z.C., Ruder, W.C., Steward, R. 2020. Open-source, 3D-printed Peristaltic Pumps for Small Volume Point-of-Care Liquid Handling, Scientific Reports, Vol. 10, p. 1543. DOI:10.1038/s41598-020-58246-6
  • [4] Darling, C., Smith, D.A. 2021. Syringe Pump Extruder and Curing System for 3D Printing of Photopolymers, HardwareX, Vol. 9, p. e00175. DOI:10.1016/j.ohx.2021.e00175
  • [5] Roth, E.A., Xu, T., Das, M., Gregory, C., Hickman, J.J., Boland, T. 2004. Inkjet Printing for High-throughput Cell Patterning, Biomaterials, Vol. 25, p. 3707-3715. DOI:10.1016/j.biomaterials.2003.10.052
  • [6] Boppana, N.P.D., Snow, R.A., Simone, P.S., Emmert, G.L., Brown, M.A. 2023. Low-cost Automated Pipetting System Using a Single Board Computer and 3D-printing, Instrumentation Science & Technology, Vol. 51, p. 355-370. DOI:10.1080/10739149.2022.2129677
  • [7] Kong, F.W., Yuan, L., Zheng, Y.F., Chen, W.D. 2012. Automatic Liquid Handling for Life Science: A Critical Review of the Current State of the Art, JALA: Journal of the Association for Laboratory Automation, Vol. 17, p. 169-185. DOI:10.1177/2211068211435302
  • [8] Tsai N.C., Sue C.Y. 2007. Review of MEMS-based drug delivery and dosing systems, Sensors and Actuators A-Physical, Vol. 134, p. 555-564. DOI:10.1016/j.sna.2006.06.014
  • [9] Tashman, J.W., Shiwarski, D.J., Feinberg, A.W. 2021. A High Performance Open-source Syringe Extruder Optimized for Extrusion and Retraction During FRESH 3D Bioprinting, HardwareX, Vol. 9, p. e00170. DOI:10.1016/j.ohx.2020.e00170
  • [10] Englmann, M., Fekete, A., Gebefugi, I., Schmitt-Kopplin, P. 2007. The Dosage of Small Volumes for Chromatographic Quantifications Using a Drop-on-demand Dispenser System, Analytical and Bioanalytical Chemistry, Vol. 388, p. 1109-1116. DOI:10.1007/s00216-007-1335-7
  • [11] Cheng, S., Chandra, S. 2003. A Pneumatic Droplet-on-demand Generator, Experiments in Fluids, Vol. 34, p. 755-762. DOI:10.1007/s00348-003-0629-6
  • [12] Achim, W. 2006. Acoustically driven programmable microfluidics for biological and chemical applications. JALA: Journal of the Association for Laboratory Automation, Vol. 11, p. 399-405. DOI:10.1016/j.jala.2006.08.001
  • [13] Lammerink, T.S.J., Elwenspoek, M., Fluitman, J.H.J. 1993. Integrated Micro-Liquid Dosing System. IEEE International Conference on Micro Electro Mechanical Systems, February 10, Fort Lauderdale, 254-259. DOI:10.1109/MEMSYS.1993.296913
  • [14] Wolfgang, S. 2004. PipeJet: A Simple Disposable Dispenser for the Nano-and Microliter Range, SLAS Technology, Vol. 9, p. 300-306. DOI:10.1016/j.jala.2004.08.008
  • [15] Lake, J.R., Heyde, K.C., Ruder, W.C. 2017. Low-cost Feedback-controlled Syringe Pressure Pumps for Microfluidics Applications, PLoS One, Vol. 12, p. e0175089. DOI:10.1371/journal.pone.0175089
  • [16] Carvalho, M.C., Murray, R.H. 2018. Osmar, the Open-source Microsyringe Autosampler, HardwareX, Vol. 3, p. 10-38. DOI:10.1016/j.ohx.2018.01.001
  • [17] Samokhin, A.S. 2020. Syringe Pump Created Using 3D Printing Technology and Arduino Platform, Journal of Analytical Chemistry, Vol. 75, p. 416-421. DOI:10.1134/s1061934820030156
  • [18] Florian, D.C., Odziomek, M., Ock, C.L., Chen, H.N., Guelcher, S.A. 2020. Principles of Computer-controlled Linear Motion Applied to an Open-source Affordable Liquid Handler for Automated Micropipetting, Scientific Reports, Vol. 10, p. 13663. DOI:10.1038/s41598-020-70465-5
  • [19] Barthels, F., Barthels, U., Schwickert, M., Schirmeister, T. 2020. FINDUS: An Open-Source 3D Printable Liquid-Handling Workstation for Laboratory Automation in Life Sciences, SLAS Technology, Vol. 25, p. 190-199. DOI:10.1177/2472630319877374
  • [20] Torres-Acosta, M.A., Lye, G.J., Dikicioglu, D. 2022. Automated Liquid-handling Operations for Robust, Resilient, and Efficient Bio-based Laboratory Practices, Biochemical Engineering Journal, Vol. 188, p. 108713. DOI:10.1016/j.bej.2022.108713
  • [21] Tweed, J.A., Gu, Z.H., Xu, H., Zhang, G.D., Nouri, P., Li, M., Steenwyk, R. 2010. Automated Sample Preparation for Regulated Bioanalysis: An Integrated Multiple Assay Extraction Platform Using Robotic Liquid Handling, Bioanalysis, Vol. 2, p. 1023-1040. DOI:10.4155/bio.10.55
  • [22] Karimaghaee, P., Hosseinzadeh, A., Amidi, A., Roshandel, E. 2017. Adaptive Control Application on Syringe Pump Pressure Control Systems in Oil and Gas Industries. 5th International Conference on Control, Instrumentation, and Automation (ICCIA), November 21-23, Shiraz, 259-264. DOI:10.1109/ICCIAutom.2017.8258689
  • [23] Cengel, Y., Cimbala, J. 2013. Fluid mechanics fundamentals and applications (SI units). McGraw Hill, 1000s.
  • [24] Panton, R.L. 2024. Incompressible flow. John Wiley & Sons, 867s.

Mikrolitre Ölçeğinde Otomatik Sıvı Dozajlama Sistemi Geliştirilmesi

Year 2024, Volume: 26 Issue: 78, 512 - 518, 27.09.2024
https://doi.org/10.21205/deufmd.2024267819

Abstract

Bu çalışmanın amacı, mikrolitre seviyesindeki hacimlerde sıvı numunelerin hazırlanabilmesi için özgün bir otomatik bir sıvı dozajlama sistemi tasarımıdır. Bu kapsamda, belirlenen çalışma alanı içerisinde bir şırınganın pozisyonlandırılması ve içerisindeki sıvının boşaltılması için bir mekatronik sistem tasarımı yapılmıştır. Daha sonra, istenilen hacimlerdeki numunenin 3x3, 4x4 ve 5x5’lik numune kabı dizilimlerinde hazırlanabilmesi için uygulamaya özel bir algoritma geliştirilmiştir. Sistemin performansı, numune hazırlanması sırasında üç adete kadar farklı sıvılar kullanılabilecek şekilde test edilmiştir. 50 ve 100 µL numune hacimleri için tekrarlı deneyler gerçekleştirilmiştir. Elde edilen sonuçlar bir adet sıvının, en fazla %3.9’luk bir ortalama sapma ile dozajlanabileceğini göstermiştir. Ayrıca, testler üç farklı sıvı kullanılarak numune elde etmenin mümkün olduğunu göstermiştir. Bu durumda, her bir sıvıdan 250 µL’lik bir hacim alınarak oluşturulan numunenin, referans olarak verilen hacimden en fazla %3.4’lük bir ortalama sapmaya sahip olduğu gözlemlenmiştir.

Project Number

1919B012217833

References

  • [1] Councill, E., Axtell, N.B., Truong, T., et al. 2021. Adapting a Low-Cost and Open-Source Commercial Pipetting Robot for Nanoliter Liquid Handling, SLAS Technology, Vol. 26, p. 311-319. DOI:10.1177/2472630320973591
  • [2] Wu, Y.Q., Chen, H., Wang, W., He, N.Y., Liu B. 2016. Development and Validation of an Automated Liquid Handling System for Sample Preparation Based on Multichannel Air Displacement Pipetting Technology, Journal of Nanoscience and Nanotechnology, Vol. 16, p. 6867-6871. DOI:10.1166/jnn.2016.12597
  • [3] Behrens, M.R., Fuller, H.C., Swist, E.R., Wu, J.W., Islam, M.M., Long, Z.C., Ruder, W.C., Steward, R. 2020. Open-source, 3D-printed Peristaltic Pumps for Small Volume Point-of-Care Liquid Handling, Scientific Reports, Vol. 10, p. 1543. DOI:10.1038/s41598-020-58246-6
  • [4] Darling, C., Smith, D.A. 2021. Syringe Pump Extruder and Curing System for 3D Printing of Photopolymers, HardwareX, Vol. 9, p. e00175. DOI:10.1016/j.ohx.2021.e00175
  • [5] Roth, E.A., Xu, T., Das, M., Gregory, C., Hickman, J.J., Boland, T. 2004. Inkjet Printing for High-throughput Cell Patterning, Biomaterials, Vol. 25, p. 3707-3715. DOI:10.1016/j.biomaterials.2003.10.052
  • [6] Boppana, N.P.D., Snow, R.A., Simone, P.S., Emmert, G.L., Brown, M.A. 2023. Low-cost Automated Pipetting System Using a Single Board Computer and 3D-printing, Instrumentation Science & Technology, Vol. 51, p. 355-370. DOI:10.1080/10739149.2022.2129677
  • [7] Kong, F.W., Yuan, L., Zheng, Y.F., Chen, W.D. 2012. Automatic Liquid Handling for Life Science: A Critical Review of the Current State of the Art, JALA: Journal of the Association for Laboratory Automation, Vol. 17, p. 169-185. DOI:10.1177/2211068211435302
  • [8] Tsai N.C., Sue C.Y. 2007. Review of MEMS-based drug delivery and dosing systems, Sensors and Actuators A-Physical, Vol. 134, p. 555-564. DOI:10.1016/j.sna.2006.06.014
  • [9] Tashman, J.W., Shiwarski, D.J., Feinberg, A.W. 2021. A High Performance Open-source Syringe Extruder Optimized for Extrusion and Retraction During FRESH 3D Bioprinting, HardwareX, Vol. 9, p. e00170. DOI:10.1016/j.ohx.2020.e00170
  • [10] Englmann, M., Fekete, A., Gebefugi, I., Schmitt-Kopplin, P. 2007. The Dosage of Small Volumes for Chromatographic Quantifications Using a Drop-on-demand Dispenser System, Analytical and Bioanalytical Chemistry, Vol. 388, p. 1109-1116. DOI:10.1007/s00216-007-1335-7
  • [11] Cheng, S., Chandra, S. 2003. A Pneumatic Droplet-on-demand Generator, Experiments in Fluids, Vol. 34, p. 755-762. DOI:10.1007/s00348-003-0629-6
  • [12] Achim, W. 2006. Acoustically driven programmable microfluidics for biological and chemical applications. JALA: Journal of the Association for Laboratory Automation, Vol. 11, p. 399-405. DOI:10.1016/j.jala.2006.08.001
  • [13] Lammerink, T.S.J., Elwenspoek, M., Fluitman, J.H.J. 1993. Integrated Micro-Liquid Dosing System. IEEE International Conference on Micro Electro Mechanical Systems, February 10, Fort Lauderdale, 254-259. DOI:10.1109/MEMSYS.1993.296913
  • [14] Wolfgang, S. 2004. PipeJet: A Simple Disposable Dispenser for the Nano-and Microliter Range, SLAS Technology, Vol. 9, p. 300-306. DOI:10.1016/j.jala.2004.08.008
  • [15] Lake, J.R., Heyde, K.C., Ruder, W.C. 2017. Low-cost Feedback-controlled Syringe Pressure Pumps for Microfluidics Applications, PLoS One, Vol. 12, p. e0175089. DOI:10.1371/journal.pone.0175089
  • [16] Carvalho, M.C., Murray, R.H. 2018. Osmar, the Open-source Microsyringe Autosampler, HardwareX, Vol. 3, p. 10-38. DOI:10.1016/j.ohx.2018.01.001
  • [17] Samokhin, A.S. 2020. Syringe Pump Created Using 3D Printing Technology and Arduino Platform, Journal of Analytical Chemistry, Vol. 75, p. 416-421. DOI:10.1134/s1061934820030156
  • [18] Florian, D.C., Odziomek, M., Ock, C.L., Chen, H.N., Guelcher, S.A. 2020. Principles of Computer-controlled Linear Motion Applied to an Open-source Affordable Liquid Handler for Automated Micropipetting, Scientific Reports, Vol. 10, p. 13663. DOI:10.1038/s41598-020-70465-5
  • [19] Barthels, F., Barthels, U., Schwickert, M., Schirmeister, T. 2020. FINDUS: An Open-Source 3D Printable Liquid-Handling Workstation for Laboratory Automation in Life Sciences, SLAS Technology, Vol. 25, p. 190-199. DOI:10.1177/2472630319877374
  • [20] Torres-Acosta, M.A., Lye, G.J., Dikicioglu, D. 2022. Automated Liquid-handling Operations for Robust, Resilient, and Efficient Bio-based Laboratory Practices, Biochemical Engineering Journal, Vol. 188, p. 108713. DOI:10.1016/j.bej.2022.108713
  • [21] Tweed, J.A., Gu, Z.H., Xu, H., Zhang, G.D., Nouri, P., Li, M., Steenwyk, R. 2010. Automated Sample Preparation for Regulated Bioanalysis: An Integrated Multiple Assay Extraction Platform Using Robotic Liquid Handling, Bioanalysis, Vol. 2, p. 1023-1040. DOI:10.4155/bio.10.55
  • [22] Karimaghaee, P., Hosseinzadeh, A., Amidi, A., Roshandel, E. 2017. Adaptive Control Application on Syringe Pump Pressure Control Systems in Oil and Gas Industries. 5th International Conference on Control, Instrumentation, and Automation (ICCIA), November 21-23, Shiraz, 259-264. DOI:10.1109/ICCIAutom.2017.8258689
  • [23] Cengel, Y., Cimbala, J. 2013. Fluid mechanics fundamentals and applications (SI units). McGraw Hill, 1000s.
  • [24] Panton, R.L. 2024. Incompressible flow. John Wiley & Sons, 867s.
There are 24 citations in total.

Details

Primary Language English
Subjects Mechatronic System Design
Journal Section Research Article
Authors

Serkan Doğanay 0000-0002-3237-693X

Kadri Emre Orgun This is me 0009-0006-9473-9317

Ömer Yüce This is me 0009-0005-2196-1067

Haydar Barış Öcal This is me 0009-0006-2030-4089

Ayberk Kıllı 0009-0000-5279-7494

Project Number 1919B012217833
Early Pub Date September 17, 2024
Publication Date September 27, 2024
Submission Date January 17, 2024
Acceptance Date March 6, 2024
Published in Issue Year 2024 Volume: 26 Issue: 78

Cite

APA Doğanay, S., Orgun, K. E., Yüce, Ö., Öcal, H. B., et al. (2024). Development of an Automatic Liquid Dosing System in Microliter Scale. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 26(78), 512-518. https://doi.org/10.21205/deufmd.2024267819
AMA Doğanay S, Orgun KE, Yüce Ö, Öcal HB, Kıllı A. Development of an Automatic Liquid Dosing System in Microliter Scale. DEUFMD. September 2024;26(78):512-518. doi:10.21205/deufmd.2024267819
Chicago Doğanay, Serkan, Kadri Emre Orgun, Ömer Yüce, Haydar Barış Öcal, and Ayberk Kıllı. “Development of an Automatic Liquid Dosing System in Microliter Scale”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 26, no. 78 (September 2024): 512-18. https://doi.org/10.21205/deufmd.2024267819.
EndNote Doğanay S, Orgun KE, Yüce Ö, Öcal HB, Kıllı A (September 1, 2024) Development of an Automatic Liquid Dosing System in Microliter Scale. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 26 78 512–518.
IEEE S. Doğanay, K. E. Orgun, Ö. Yüce, H. B. Öcal, and A. Kıllı, “Development of an Automatic Liquid Dosing System in Microliter Scale”, DEUFMD, vol. 26, no. 78, pp. 512–518, 2024, doi: 10.21205/deufmd.2024267819.
ISNAD Doğanay, Serkan et al. “Development of an Automatic Liquid Dosing System in Microliter Scale”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 26/78 (September 2024), 512-518. https://doi.org/10.21205/deufmd.2024267819.
JAMA Doğanay S, Orgun KE, Yüce Ö, Öcal HB, Kıllı A. Development of an Automatic Liquid Dosing System in Microliter Scale. DEUFMD. 2024;26:512–518.
MLA Doğanay, Serkan et al. “Development of an Automatic Liquid Dosing System in Microliter Scale”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 26, no. 78, 2024, pp. 512-8, doi:10.21205/deufmd.2024267819.
Vancouver Doğanay S, Orgun KE, Yüce Ö, Öcal HB, Kıllı A. Development of an Automatic Liquid Dosing System in Microliter Scale. DEUFMD. 2024;26(78):512-8.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.