Research Article
BibTex RIS Cite

Energy Management Applications in an Industrial Plant in Edirne-Turkey

Year 2025, Volume: 27 Issue: 80, 296 - 312, 23.05.2025
https://doi.org/10.21205/deufmd.2025278017

Abstract

The objective of energy management in industrial facilities is to ensure the economical and efficient use of energy, as well as to eliminate energy waste and losses. This is achieved through a series of interrelated processes, including planning, training, energy audits, measurement, monitoring, and applications. The present study investigates the sources of energy wastage in a facility operating in Edirne, Turkey. The objective of this study is to implement energy management applications in the aforementioned facility and to ascertain the energy savings of each system by analysing the data generated by the applications. In March 2023, an energy audit was conducted at the industrial facility over a period of one month. During this time, the current situation of the industrial facility was examined, measurements were taken in the energy-consuming components, and the measured data were evaluated using the methods specified in the Material and Methods section. Additionally, potential improvements that could be made to increase energy efficiency were discussed. The potential for savings has been calculated in relation to the use of frequency inverters in pumps and fans, heat recovery in the boiler and compressor, and electricity generation with solar energy. This study has enabled the potential for increasing energy efficiency in the aforementioned facility to be determined, as well as the contribution of efficiency-improving applications in the systems installed therein. Furthermore, the economic viability of energy efficiency-improving applications is assessed through the use of the payback method, while the environmental benefits are also considered. The implementation of efficiency-improving applications is projected to result in a total of 194.17 TOE/year in energy savings, an economic gain of 446,338.31 $/year, and a reduction in CO2 emissions of 1,871.42 tCO2/year. The annual net reduction in greenhouse gas emissions achieved by the implementation of efficiency-improving applications is equivalent to 1,871.42 tCO2; this is the same as 342.83 unused cars and pickup trucks.

Supporting Institution

None.

Project Number

-

Thanks

None. Idea generation, experimental design, data collection, analyses, literature review, writing, critical review, etc. were all done by me.

References

  • [1] AEO, Annual Energy Outlook 2018 with projections to 2050, https://www.eia.gov/outlooks/aeo/pdf/AEO2018.pdf(Accessed: July 29, 2018).
  • [2] Republic of Turkey Ministry of Energy and Natural Resources, Energy Management Lecture, 2021.
  • [3] Hirst, E., Brown, M., 1990. Closing the efficiency gap: barriers to the efficient use of energy, Resources, Conservation and Recycling, Vol. 3, No. 4, pp. 267–281. DOI 10.1016/0921-3449(90)90023-W.
  • [4] Bunse, K., Vodicka, M., Schonsleben, P., Brülhart, M., Ernst, F.O., 2011. Integrating energy efficiency performance in production management: gap analysis between industrial needs and scientific literature, Journal of Cleaner Production, Vol. 19, pp. 667–679. https://doi.org/10.1016/j.jclepro.2010.11.011
  • [5] IEA - International Energy Agency, 2012. Energy Management Programmes for Industry, OECD/IEA, Paris, France and The Institute for Industrial Productivity, Washington, USA.
  • [6] IEA - International Energy Agency, 2018. Energy Efficiency 2018: Analysis and Outlooks to 2040, Market Report Series, IEA/OECD.
  • [7] Thollander, P., Palm, J., 2015. Industrial energy management decision making for improved energy efficiency: strategic system perspectives and situated action in combination, Energies, Vol. 8, pp. 5694–5703. https://doi.org/10.3390/en8065694
  • [8] Schulze, M., Nehler, H., Ottosson, M., Thollander, P., 2016. Energy management in industry: a systematic review of previous findings and an integrative conceptual framework, Journal of Cleaner Production, Vol. 112, pp. 3692–3708. https://doi.org/10.1016/j.jclepro.2015.06.060
  • [9] Cagno, E., Worrell, E., Trianni, A., Pugliese, G., 2013. A novel approach for barriers to industrial energy efficiency, Renewable and Sustainable Energy Reviews, Vol. 19, pp. 290–308. https://doi.org/10.1016/j.rser.2012.11.007
  • [10] Lozano, F.J., Lozano, R., Freire, P., Jimenez-Gonzalez, C., Sakao, T., Ortiz, M.G., 2018. New perspectives for green and sustainable chemistry and engineering: approaches from sustainable resource and energy use, management, and transformation, Journal of Cleaner Production, Vol. 172, pp. 227–232.
  • [11] Zhang, S., Worrell, E., Crijns-Graus, W., 2015. Evaluating co-benefits of energy efficiency and air pollution abatement in China’s cement industry, Applied Energy, Vol. 147, pp. 192–213. DOI: 10.1016/j.apenergy.2015.02.081
  • [12] Worrell, E., Martin, N., Price, L., 2000. Potentials for energy efficiency improvement in the US cement industry, Energy, Vol. 25, pp. 1189–1214. DOI:10.1016/S0360-5442(00)00042-6
  • [13] Tesema, G., Worrell, E., 2015. Energy efficiency improvement potentials for the cement industry in Ethiopia, Energy, Vol. 93, pp. 2042–2052. DOI:10.1016/j.energy.2015.10.057
  • [14] Hasanbeigi, A., Menke, C., Therdyothin, A., 2011. Technical and cost assessment of energy efficiency improvement and greenhouse gas emission reduction potentials in Thai cement industry, Energy Efficiency, Vol. 4, pp. 93–113. DOI:10.1007/s12053-010-9079-1
  • [15] Ates, S.A., Durakbasa, N.M., 2012. Evaluation of corporate energy management practices of energy intensive industries in Turkey, Energy, Vol. 45, pp. 81–91. DOI: 10.1016/j.energy.2012.03.032
  • [16] Hasan, A.M., Hoq, M.T., Thollander, P., 2018. Energy management practices in Bangladesh’s iron and steel industries, Energy Strategy Reviews, Vol. 22, pp. 230–236. DOI:10.1016/j.esr.2018.09.002
  • [17] Hasan, A., Rokonuzzaman, M., Tuhin, R.A., Salimullah, S.M., Ullah, M., Sakib, T.H., 2019. Drivers and barriers to industrial energy efficiency in textile industries of Bangladesh, Energies, Vol. 12, p. 1775. DOI:10.3390/en12091775
  • [18] Hossain, S.R., Istiak, A., Ferdous, S., Azad, A.S.M., Monjurul, H., 2020. Empirical investigation of energy management practices in cement industries of Bangladesh, Energy, Vol. 212, p. 118741. https://doi.org/10.1016/j.energy.2020.118741
  • [19] Andersson, E., Thollander, P., 2019. Key performance indicators for energy management in the Swedish pulp and paper industry, Energy Strategy Reviews, Vol. 24, pp. 229–235. https://doi.org/10.1016/j.esr.2019.03.004
  • [20] Backlund, S., Broberg, S., Ottosson, M., Thollander, P., 2012. Energy efficiency potentials and energy management practices in Swedish firms, ECEEE Industrial Summer Study, pp. 669–677.
  • [21] Thollander, P., Ottosson, M., 2010. Energy management practices in Swedish energy intensive industries, Journal of Cleaner Production, Vol. 18, pp. 1125–1133. DOI:10.1016/j.jclepro.2010.04.011
  • [22] Worrell, E., Bernstein, L., Roy, J., Price, L., Harnisch, J., 2009. Industrial energy efficiency and climate change mitigation, Energy Efficiency, Vol. 2, pp. 109–123. DOI:10.1007/s12053-008-9032-8
  • [23] Yin, R.K., 2009. Case study research: design and methods, 4th ed., Thousand Oaks, CA: SAGE Inc.
  • [24] Schulz, V., Stehfest, H., 1984. Regional energy supply optimization with multiple objectives, European Journal of Operational Research, Vol. 17, No. 3, pp. 302–312.
  • [25] Klugman, S., Karlsson, M., Moshfegh, B., 2009. A Swedish integrated pulp and paper mill – energy optimisation and local heat cooperation, Energy Policy, Vol. 37, No. 7, pp. 2514–2524. https://doi.org/10.1016/j.enpol.2008.09.097
  • [26] Karlsson, M., Gebremedhin, A., Klugman, S., Henning, D., Moshfegh, B., 2009. Regional energy system optimization – potential for a regional heat market, Applied Energy, Vol. 86, No. 4, pp. 441–451.
  • [27] Thollander, P., Danestig, M., Rohdin, P., 2007. Energy policies for increased industrial energy efficiency: evaluation of a local energy programme for manufacturing SMEs, Energy Policy, Vol. 35, No. 11, pp. 5774–5783. DOI:10.1016/j.enpol.2007.06.013
  • [28] Marshman, D.J., Chmelyk, T., Sidhu, M.S., Dumont, G.A., 2007. Energy optimization in a pulp and paper mill cogeneration facility, Applied Energy, Vol. 87, pp. 3514–3525. https://doi.org/10.1016/j.apenergy.2010.04.023
  • [29] Martin, R., Rudberg, M., Waldemarsson, M., Lidestam, H., 2013. Strategic perspectives on energy management: a case study in the process industry, Applied Energy, Vol. 104, pp. 487–496. DOI:10.1016/j.apenergy.2012.11.027
  • [30] Andrews, R., Johnson, E., 2016. Energy use, behavioural change, and business organizations: reviewing recent findings and proposing a future research agenda, Energy Research & Social Science, Vol. 11, pp. 195–208. https://doi.org/10.1016/j.erss.2015.09.001
  • [31] Cheng, H., Hu, X., Zhou, R., 2019. How firms select environmental behaviours in China: the framework of environmental motivations and performance, Journal of Cleaner Production, Vol. 208, No. 20, pp. 132–141. https://doi.org/10.1016/j.jclepro.2018.09.096
  • [32] Tiller, S.R., 2012. Organizational structure and management systems, Leadership and Management in Engineering, Vol. 2, No. 1, pp. 20–23.
  • [33] Sola, A.V.H., Mota, C.M.M., 2020. Influencing factors on energy management in industries, Journal of Cleaner Production, Vol. 248, p. 119263. DOI:10.1016/j.jclepro.2019.119263
  • [34] Martin, R., Muûls, M., de Preux, L.B., Wagner, U.J., 2012. Anatomy of a paradox: management practices, organizational structure and energy efficiency, Journal of Environmental Economics and Management, Vol. 63, pp. 208–223. https://doi.org/10.1016/j.jeem.2011.08.003
  • [35] Neves, F.O., Salgado, E.G., Beijo, L.A., 2017. Analysis of the environmental management system based on ISO 14001 on the American continent, Journal of Environmental Management, Vol. 199, pp. 251–262. https://doi.org/10.1016/j.jenvman.2017.05.049
  • [36] Marimon, F., Casadesús, M., 2017. Reasons to adopt ISO 50001 energy management system, Sustainability, Vol. 9, p. 1740. https://doi.org/10.3390/su9101740
  • [37] Schulze, M., Nehler, H., Ottosson, M., Thollander, P., 2016. Energy management in industry: a systematic review of previous findings and an integrative conceptual framework, Journal of Cleaner Production, Vol. 112, pp. 3692–3708. DOI:10.1016/j.jclepro.2015.06.060
  • [38] Natural Resources Canada, RETScreen Modelling Tools, https://natural-resources.canada.ca/maps-tools-and-publications/tools/modelling-tools/retscreen/7465 (Accessed: May 2024).
  • [39] Anadolu University, Faculty of Open Education, Energy Management and Policies Notes, Publication No: 2787, 1745.
  • [40] Super Bright LEDs, Industrial & Commercial Recommended Lighting Levels, https://www.superbrightleds.com/blog/industrial-commercial-recommended-lighting-levels.html (Accessed: May 2024).
  • [41] RETScreen International, Clean Energy Project Analysis Third Edition: Engineering & Cases Textbook, 2005, Clean Energy Decision Support Centre, Canada.

Edirne-Türkiye’deki Bir Endüstriyel Tesiste Enerji Yönetimi Uygulamaları

Year 2025, Volume: 27 Issue: 80, 296 - 312, 23.05.2025
https://doi.org/10.21205/deufmd.2025278017

Abstract

Endüstriyel tesislerde enerji yönetiminin amacı, enerjinin ekonomik ve verimli kullanılmasının yanı sıra enerji israfının ve kayıplarının ortadan kaldırılmasını sağlamaktır. Bu hedefe planlama, eğitim, enerji etütleri, ölçüm, izleme ve uygulamalar gibi birbiriyle ilişkili bir dizi süreçle ulaşılır. Bu çalışma, Edirne'de faaliyet gösteren bir tesisteki enerji israfının kaynaklarını araştırmaktadır. Bu çalışmanın amacı, söz konusu tesiste enerji yönetimi uygulamalarını hayata geçirmek ve uygulamalar tarafından üretilen verileri analiz ederek her bir sistemin enerji tasarrufunu tespit etmektir. Mart 2023'te, endüstriyel tesiste bir aylık bir süre boyunca bir enerji etüdü gerçekleştirilmiştir. Bu süre zarfında endüstriyel tesisin mevcut durumu incelenmiş, enerji tüketen bileşenlerde ölçümler yapılmış ve ölçülen veriler Materyal ve Metot bölümünde belirtilen yöntemler kullanılarak değerlendirilmiştir. Ayrıca, enerji verimliliğini artırmak için yapılabilecek potansiyel iyileştirmeler tartışılmıştır. Pompa ve fanlarda frekans invertörü kullanımı, kazan ve kompresörde ısı geri kazanımı ve güneş enerjisi ile elektrik üretimi ile ilgili tasarruf potansiyeli hesa planmıştır. Bu çalışma, söz konusu tesisteki enerji verimliliğini artırma potansiyelinin ve burada kurulu sistemlerdeki verimlilik artırıcı uygulamaların katkısının belirlenmesini sağlamıştır. Ayrıca, enerji verimliliğini artırıcı uygulamaların ekonomik uygulanabilirliği geri ödeme yöntemi kullanılarak değerlendirilmiş ve çevresel faydaları da göz önünde bulundurulmuştur. Verimlilik artırıcı uygulamaların hayata geçirilmesiyle toplam 194,17 TEP/yıl enerji tasarrufu, 446.338,31 $/yıl ekonomik kazanç ve CO2 emisyonlarında 1.871,42 tCO2/yıl azalma sağlanacağı öngörülmektedir. Verimlilik artırıcı uygulamaların hayata geçirilmesiyle sera gazı emisyonlarında elde edilen yıllık net azalma 1.871,42 tCO2'ye eşdeğerdir; bu da kullanılmayan 342,83 otomobil ve kamyonete eşittir.

Supporting Institution

Yok

Project Number

-

Thanks

Yok. Fikir oluşturma, deney tasarımı, veri toplama, analizlerin gerçekleştirilmesi, literatür taraması, yazım, eleştirel inceleme vb. hepsi tarafımca yapılmıştır.

References

  • [1] AEO, Annual Energy Outlook 2018 with projections to 2050, https://www.eia.gov/outlooks/aeo/pdf/AEO2018.pdf(Accessed: July 29, 2018).
  • [2] Republic of Turkey Ministry of Energy and Natural Resources, Energy Management Lecture, 2021.
  • [3] Hirst, E., Brown, M., 1990. Closing the efficiency gap: barriers to the efficient use of energy, Resources, Conservation and Recycling, Vol. 3, No. 4, pp. 267–281. DOI 10.1016/0921-3449(90)90023-W.
  • [4] Bunse, K., Vodicka, M., Schonsleben, P., Brülhart, M., Ernst, F.O., 2011. Integrating energy efficiency performance in production management: gap analysis between industrial needs and scientific literature, Journal of Cleaner Production, Vol. 19, pp. 667–679. https://doi.org/10.1016/j.jclepro.2010.11.011
  • [5] IEA - International Energy Agency, 2012. Energy Management Programmes for Industry, OECD/IEA, Paris, France and The Institute for Industrial Productivity, Washington, USA.
  • [6] IEA - International Energy Agency, 2018. Energy Efficiency 2018: Analysis and Outlooks to 2040, Market Report Series, IEA/OECD.
  • [7] Thollander, P., Palm, J., 2015. Industrial energy management decision making for improved energy efficiency: strategic system perspectives and situated action in combination, Energies, Vol. 8, pp. 5694–5703. https://doi.org/10.3390/en8065694
  • [8] Schulze, M., Nehler, H., Ottosson, M., Thollander, P., 2016. Energy management in industry: a systematic review of previous findings and an integrative conceptual framework, Journal of Cleaner Production, Vol. 112, pp. 3692–3708. https://doi.org/10.1016/j.jclepro.2015.06.060
  • [9] Cagno, E., Worrell, E., Trianni, A., Pugliese, G., 2013. A novel approach for barriers to industrial energy efficiency, Renewable and Sustainable Energy Reviews, Vol. 19, pp. 290–308. https://doi.org/10.1016/j.rser.2012.11.007
  • [10] Lozano, F.J., Lozano, R., Freire, P., Jimenez-Gonzalez, C., Sakao, T., Ortiz, M.G., 2018. New perspectives for green and sustainable chemistry and engineering: approaches from sustainable resource and energy use, management, and transformation, Journal of Cleaner Production, Vol. 172, pp. 227–232.
  • [11] Zhang, S., Worrell, E., Crijns-Graus, W., 2015. Evaluating co-benefits of energy efficiency and air pollution abatement in China’s cement industry, Applied Energy, Vol. 147, pp. 192–213. DOI: 10.1016/j.apenergy.2015.02.081
  • [12] Worrell, E., Martin, N., Price, L., 2000. Potentials for energy efficiency improvement in the US cement industry, Energy, Vol. 25, pp. 1189–1214. DOI:10.1016/S0360-5442(00)00042-6
  • [13] Tesema, G., Worrell, E., 2015. Energy efficiency improvement potentials for the cement industry in Ethiopia, Energy, Vol. 93, pp. 2042–2052. DOI:10.1016/j.energy.2015.10.057
  • [14] Hasanbeigi, A., Menke, C., Therdyothin, A., 2011. Technical and cost assessment of energy efficiency improvement and greenhouse gas emission reduction potentials in Thai cement industry, Energy Efficiency, Vol. 4, pp. 93–113. DOI:10.1007/s12053-010-9079-1
  • [15] Ates, S.A., Durakbasa, N.M., 2012. Evaluation of corporate energy management practices of energy intensive industries in Turkey, Energy, Vol. 45, pp. 81–91. DOI: 10.1016/j.energy.2012.03.032
  • [16] Hasan, A.M., Hoq, M.T., Thollander, P., 2018. Energy management practices in Bangladesh’s iron and steel industries, Energy Strategy Reviews, Vol. 22, pp. 230–236. DOI:10.1016/j.esr.2018.09.002
  • [17] Hasan, A., Rokonuzzaman, M., Tuhin, R.A., Salimullah, S.M., Ullah, M., Sakib, T.H., 2019. Drivers and barriers to industrial energy efficiency in textile industries of Bangladesh, Energies, Vol. 12, p. 1775. DOI:10.3390/en12091775
  • [18] Hossain, S.R., Istiak, A., Ferdous, S., Azad, A.S.M., Monjurul, H., 2020. Empirical investigation of energy management practices in cement industries of Bangladesh, Energy, Vol. 212, p. 118741. https://doi.org/10.1016/j.energy.2020.118741
  • [19] Andersson, E., Thollander, P., 2019. Key performance indicators for energy management in the Swedish pulp and paper industry, Energy Strategy Reviews, Vol. 24, pp. 229–235. https://doi.org/10.1016/j.esr.2019.03.004
  • [20] Backlund, S., Broberg, S., Ottosson, M., Thollander, P., 2012. Energy efficiency potentials and energy management practices in Swedish firms, ECEEE Industrial Summer Study, pp. 669–677.
  • [21] Thollander, P., Ottosson, M., 2010. Energy management practices in Swedish energy intensive industries, Journal of Cleaner Production, Vol. 18, pp. 1125–1133. DOI:10.1016/j.jclepro.2010.04.011
  • [22] Worrell, E., Bernstein, L., Roy, J., Price, L., Harnisch, J., 2009. Industrial energy efficiency and climate change mitigation, Energy Efficiency, Vol. 2, pp. 109–123. DOI:10.1007/s12053-008-9032-8
  • [23] Yin, R.K., 2009. Case study research: design and methods, 4th ed., Thousand Oaks, CA: SAGE Inc.
  • [24] Schulz, V., Stehfest, H., 1984. Regional energy supply optimization with multiple objectives, European Journal of Operational Research, Vol. 17, No. 3, pp. 302–312.
  • [25] Klugman, S., Karlsson, M., Moshfegh, B., 2009. A Swedish integrated pulp and paper mill – energy optimisation and local heat cooperation, Energy Policy, Vol. 37, No. 7, pp. 2514–2524. https://doi.org/10.1016/j.enpol.2008.09.097
  • [26] Karlsson, M., Gebremedhin, A., Klugman, S., Henning, D., Moshfegh, B., 2009. Regional energy system optimization – potential for a regional heat market, Applied Energy, Vol. 86, No. 4, pp. 441–451.
  • [27] Thollander, P., Danestig, M., Rohdin, P., 2007. Energy policies for increased industrial energy efficiency: evaluation of a local energy programme for manufacturing SMEs, Energy Policy, Vol. 35, No. 11, pp. 5774–5783. DOI:10.1016/j.enpol.2007.06.013
  • [28] Marshman, D.J., Chmelyk, T., Sidhu, M.S., Dumont, G.A., 2007. Energy optimization in a pulp and paper mill cogeneration facility, Applied Energy, Vol. 87, pp. 3514–3525. https://doi.org/10.1016/j.apenergy.2010.04.023
  • [29] Martin, R., Rudberg, M., Waldemarsson, M., Lidestam, H., 2013. Strategic perspectives on energy management: a case study in the process industry, Applied Energy, Vol. 104, pp. 487–496. DOI:10.1016/j.apenergy.2012.11.027
  • [30] Andrews, R., Johnson, E., 2016. Energy use, behavioural change, and business organizations: reviewing recent findings and proposing a future research agenda, Energy Research & Social Science, Vol. 11, pp. 195–208. https://doi.org/10.1016/j.erss.2015.09.001
  • [31] Cheng, H., Hu, X., Zhou, R., 2019. How firms select environmental behaviours in China: the framework of environmental motivations and performance, Journal of Cleaner Production, Vol. 208, No. 20, pp. 132–141. https://doi.org/10.1016/j.jclepro.2018.09.096
  • [32] Tiller, S.R., 2012. Organizational structure and management systems, Leadership and Management in Engineering, Vol. 2, No. 1, pp. 20–23.
  • [33] Sola, A.V.H., Mota, C.M.M., 2020. Influencing factors on energy management in industries, Journal of Cleaner Production, Vol. 248, p. 119263. DOI:10.1016/j.jclepro.2019.119263
  • [34] Martin, R., Muûls, M., de Preux, L.B., Wagner, U.J., 2012. Anatomy of a paradox: management practices, organizational structure and energy efficiency, Journal of Environmental Economics and Management, Vol. 63, pp. 208–223. https://doi.org/10.1016/j.jeem.2011.08.003
  • [35] Neves, F.O., Salgado, E.G., Beijo, L.A., 2017. Analysis of the environmental management system based on ISO 14001 on the American continent, Journal of Environmental Management, Vol. 199, pp. 251–262. https://doi.org/10.1016/j.jenvman.2017.05.049
  • [36] Marimon, F., Casadesús, M., 2017. Reasons to adopt ISO 50001 energy management system, Sustainability, Vol. 9, p. 1740. https://doi.org/10.3390/su9101740
  • [37] Schulze, M., Nehler, H., Ottosson, M., Thollander, P., 2016. Energy management in industry: a systematic review of previous findings and an integrative conceptual framework, Journal of Cleaner Production, Vol. 112, pp. 3692–3708. DOI:10.1016/j.jclepro.2015.06.060
  • [38] Natural Resources Canada, RETScreen Modelling Tools, https://natural-resources.canada.ca/maps-tools-and-publications/tools/modelling-tools/retscreen/7465 (Accessed: May 2024).
  • [39] Anadolu University, Faculty of Open Education, Energy Management and Policies Notes, Publication No: 2787, 1745.
  • [40] Super Bright LEDs, Industrial & Commercial Recommended Lighting Levels, https://www.superbrightleds.com/blog/industrial-commercial-recommended-lighting-levels.html (Accessed: May 2024).
  • [41] RETScreen International, Clean Energy Project Analysis Third Edition: Engineering & Cases Textbook, 2005, Clean Energy Decision Support Centre, Canada.
There are 41 citations in total.

Details

Primary Language English
Subjects Energy
Journal Section Research Article
Authors

Hacer Akhan 0000-0002-7896-6441

Project Number -
Early Pub Date May 12, 2025
Publication Date May 23, 2025
Submission Date February 4, 2024
Acceptance Date October 30, 2024
Published in Issue Year 2025 Volume: 27 Issue: 80

Cite

APA Akhan, H. (2025). Energy Management Applications in an Industrial Plant in Edirne-Turkey. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 27(80), 296-312. https://doi.org/10.21205/deufmd.2025278017
AMA Akhan H. Energy Management Applications in an Industrial Plant in Edirne-Turkey. DEUFMD. May 2025;27(80):296-312. doi:10.21205/deufmd.2025278017
Chicago Akhan, Hacer. “Energy Management Applications in an Industrial Plant in Edirne-Turkey”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 27, no. 80 (May 2025): 296-312. https://doi.org/10.21205/deufmd.2025278017.
EndNote Akhan H (May 1, 2025) Energy Management Applications in an Industrial Plant in Edirne-Turkey. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 27 80 296–312.
IEEE H. Akhan, “Energy Management Applications in an Industrial Plant in Edirne-Turkey”, DEUFMD, vol. 27, no. 80, pp. 296–312, 2025, doi: 10.21205/deufmd.2025278017.
ISNAD Akhan, Hacer. “Energy Management Applications in an Industrial Plant in Edirne-Turkey”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 27/80 (May2025), 296-312. https://doi.org/10.21205/deufmd.2025278017.
JAMA Akhan H. Energy Management Applications in an Industrial Plant in Edirne-Turkey. DEUFMD. 2025;27:296–312.
MLA Akhan, Hacer. “Energy Management Applications in an Industrial Plant in Edirne-Turkey”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 27, no. 80, 2025, pp. 296-12, doi:10.21205/deufmd.2025278017.
Vancouver Akhan H. Energy Management Applications in an Industrial Plant in Edirne-Turkey. DEUFMD. 2025;27(80):296-312.