Research Article
BibTex RIS Cite

Capacity Estimation of Lithium-ion Battery by GA-KF Method

Year 2025, Volume: 27 Issue: 80, 313 - 320, 23.05.2025
https://doi.org/10.21205/deufmd.2025278018

Abstract

In this study, the capacity estimation of the lithium-ion battery was successfully proposed using the genetic algorithm-Kalman filter method. During the design phase of electrical devices, lithium-based batteries have begun to be preferred instead of wired electricity transmission due to flexibility, freedom of movement, and portability problems. In addition, from an environmental perspective, the use of electric vehicles has become more important than the use of internal combustion engine vehicles. In this study, the capacity estimation of the 18650 lithium-ion battery, which is the most preferred in electric vehicles, was made quickly and accurately. The performances of the Standard Kalman Filter and the Kalman Filter, whose parameters are determined by the Genetic Algorithm, were compared by estimating the battery capacity. By giving the results obtained by the Genetic Algorithm during the parameter search process, the most appropriate values and the important parameters of the Kalman Filter have been determined. The success of the proposed method is given by the experimental results. In the performance comparison, the success of the proposed method is given using RMSE, MSE, and R2 metrics. When the average of all experiments was calculated using the R2 metric, the Genetic Algorithm-Kalman Filter approach achieved the best results in estimating the capacity of the 18650 lithium-ion battery, with a value of 0.999874.

References

  • [1] Yurek, Y.T., Ozyoruk, B., Ozcan, E., 2024. Multi-objective optimization of energy system with battery storage—A case study of Turkey. J. Energy Storage, Vol. 93, p. 112101.
  • [2] Zheng, K., Meng, J., Yang, Z., Zhou, F., Yang, K., Song, Z., 2024. Refined lithium-ion battery state of health estimation with charging segment adjustment. Appl. Energy, Vol. 375, p. 124077.
  • [3] Hou, J., Xu, J., Lin, C., Jiang, D., Mei, X., 2024. State of charge estimation for lithium-ion batteries based on battery model and data-driven fusion method. Energy, Vol. 290, p. 130056.
  • [4] Karaburun, N.N., Hatipoglu, S.A., Konar, M., 2024. SOC Estimation of Li-Po Battery Using Machine Learning and Deep Learning Methods. Journal of Aviation, Vol. 8(1), pp. 26–31.
  • [5] Wang, Y., et al., 2024. Progress and challenges in ultrasonic technology for state estimation and defect detection of lithium-ion batteries. Energy Storage Mater., Vol. 69, p. 103430.
  • [6] Zeng, X., et al., 2019. Commercialization of lithium battery technologies for electric vehicles. Adv. Energy Mater., Vol. 9(27), p. 1900161.
  • [7] Chen, M., et al., 2019. Recycling end-of-life electric vehicle lithium-ion batteries. Joule, Vol. 3(11), pp. 2622–2646.
  • [8] Ralls, A.M., et al., 2023. The role of lithium-ion batteries in the growing trend of electric vehicles. Materials, Vol. 16(17), p. 6063.
  • [9] Sun, H., Sun, J., Zhao, K., Wang, L., Wang, K., 2022. Data-driven ICA-Bi-LSTM-combined lithium battery SOH estimation. Math. Probl. Eng., Vol. 2022, p. 9645892.
  • [10] Luo, G., Zhang, Y., Tang, A., 2023. Capacity degradation and aging mechanisms evolution of lithium-ion batteries under different operation conditions. Energies, Vol. 16(10), p. 4232.
  • [11] Cetinkaya, U., Bayindir, R., Avci, E., Ayik, S., 2022. Battery energy storage system sizing, lifetime and techno-economic evaluation for primary frequency control: A data-driven case study for Turkey. Gazi Univ. J. Sci. Part C: Design and Technology, Vol. 10(2), pp. 177–194.
  • [12] Tas, G., Bal, C., Uysal, A., 2023. Performance comparison of lithium polymer battery SOC estimation using GWO-BiLSTM and cutting-edge deep learning methods. Electr. Eng., Vol. 105(5), pp. 3383–3397.
  • [13] Lee, J.H., Lee, I.S., 2021. Lithium battery SOH monitoring and an SOC estimation algorithm based on the SOH result. Energies, Vol. 14(15), p. 4506.
  • [14] Wen, J., Chen, X., Li, X., Li, Y., 2022. SOH prediction of lithium battery based on IC curve feature and BP neural network. Energy, Vol. 261, p. 125234.
  • [15] Guo, Y., Yu, P., Zhu, C., Zhao, K., Wang, L., Wang, K., 2022. A state-of-health estimation method considering capacity recovery of lithium batteries. Int. J. Energy Res., Vol. 46(15), pp. 23730–23745.
  • [16] Yang, P., et al., 2024. Joint evaluation and prediction of SOH and RUL for lithium batteries based on a GBLS booster multi-task model. J. Energy Storage, Vol. 75, p. 109741.
  • [17] Zhang, M., Chen, W., Yin, J., Feng, T., 2022. Lithium battery health factor extraction based on improved Douglas–Peucker algorithm and SOH prediction based on XGBoost. Energies, Vol. 15(16), p. 5981.
  • [18] Saha, B., Kai, G., 2024. Battery data set. NASA AMES Prognostics Data Repository. https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/#battery (Accessed: July 21, 2024).
  • [19] Alvarez-Monteserin, I., Sanz-Bobi, M.A., 2022. An online fade capacity estimation of lithium-ion battery using a new health indicator based only on a short period of the charging voltage profile. IEEE Access, Vol. 10, pp. 11138–11146.
  • [20] Darwish, A., 2024. An attention-based deep learning approach for lithium-ion battery lifespan prediction: analysis and experimental validation. Inf. Sci. Appl., Vol. 2, pp. 58–76.
  • [21] Katoch, S., Chauhan, S.S., Kumar, V., 2021. A review on genetic algorithm: past, present, and future. Multimed. Tools Appl., Vol. 80(5), pp. 8091–8126.
  • [22] Alhijawi, B., Awajan, A., 2024. Genetic algorithms: theory, genetic operators, solutions, and applications. Evol. Intell., Vol. 17(3), pp. 1245–1256.
  • [23] Khodarahmi, M., Maihami, V., 2023. A review on Kalman filter models. Arch. Comput. Methods Eng., Vol. 30(1), pp. 727–747.
  • [24] Qi, W., Qin, W., Yun, Z., 2024. Closed-loop state of charge estimation of Li-ion batteries based on deep learning and robust adaptive Kalman filter. Energy, Vol. 307, p. 132805.

GA-KF Yöntemiyle Lityum-iyon Bataryanın Kapasite Tahmini

Year 2025, Volume: 27 Issue: 80, 313 - 320, 23.05.2025
https://doi.org/10.21205/deufmd.2025278018

Abstract

Bu çalışmada Lityum iyon bataryanın kapasite tahmini genetik algoritma-kalman filtre yöntemiyle başarılı bir şekilde yapılarak önerilmiştir. Elektrikli cihazların tasarım aşamasında esneklik, hareket özgürlüğü ve taşınabilirlik sorunlarından ötürü elektriği kablolu aktarım yerine lityum tabanlı bataryalar tercih edilmeye başlanmıştır. Ayrıca çevresel açıdan içten yanmalı motorlu araçların kullanımında ziyade elektrikli araçların kullanımı önem kazanmıştır. Bu çalışmada elektrikli araçlarda en çok tercih edilen18650 lityum iyon bataryanın kapasite tahmini hızlı, sağlıklı bir şekilde yapılmıştır. Standart Kalman Filtre ve parametrelerinin Genetik Algoritma tarafından belirlendiği Kalman Filtre ile batarya kapasite tahmini yaparak performansları karşılaştırılmıştır. Genetik algoritmanın parametre arama sürecinde elde ettiği sonuçlar verilerek en uygun değerler ile Kalman Filtrenin önemli parametrelerinin belirlenmiştir. Önerilen yöntemin başarısı deney sonuçlarıyla verilmiştir. Performans karşılaştırmasında RMSE, MSE, R2 metrikleri kullanılarak önerilen yöntemin başarısı verilmiştir. Tüm deneylerin ortalaması R2 metriği kullanılarak hesaplandığında, 18650 Lityum-iyon bataryanın kapasitesini tahmin etmede en iyi sonucu 0.999874 değeriyle Genetik Algoritma-Kalman Filtresi yaklaşımı elde etmiştir.

References

  • [1] Yurek, Y.T., Ozyoruk, B., Ozcan, E., 2024. Multi-objective optimization of energy system with battery storage—A case study of Turkey. J. Energy Storage, Vol. 93, p. 112101.
  • [2] Zheng, K., Meng, J., Yang, Z., Zhou, F., Yang, K., Song, Z., 2024. Refined lithium-ion battery state of health estimation with charging segment adjustment. Appl. Energy, Vol. 375, p. 124077.
  • [3] Hou, J., Xu, J., Lin, C., Jiang, D., Mei, X., 2024. State of charge estimation for lithium-ion batteries based on battery model and data-driven fusion method. Energy, Vol. 290, p. 130056.
  • [4] Karaburun, N.N., Hatipoglu, S.A., Konar, M., 2024. SOC Estimation of Li-Po Battery Using Machine Learning and Deep Learning Methods. Journal of Aviation, Vol. 8(1), pp. 26–31.
  • [5] Wang, Y., et al., 2024. Progress and challenges in ultrasonic technology for state estimation and defect detection of lithium-ion batteries. Energy Storage Mater., Vol. 69, p. 103430.
  • [6] Zeng, X., et al., 2019. Commercialization of lithium battery technologies for electric vehicles. Adv. Energy Mater., Vol. 9(27), p. 1900161.
  • [7] Chen, M., et al., 2019. Recycling end-of-life electric vehicle lithium-ion batteries. Joule, Vol. 3(11), pp. 2622–2646.
  • [8] Ralls, A.M., et al., 2023. The role of lithium-ion batteries in the growing trend of electric vehicles. Materials, Vol. 16(17), p. 6063.
  • [9] Sun, H., Sun, J., Zhao, K., Wang, L., Wang, K., 2022. Data-driven ICA-Bi-LSTM-combined lithium battery SOH estimation. Math. Probl. Eng., Vol. 2022, p. 9645892.
  • [10] Luo, G., Zhang, Y., Tang, A., 2023. Capacity degradation and aging mechanisms evolution of lithium-ion batteries under different operation conditions. Energies, Vol. 16(10), p. 4232.
  • [11] Cetinkaya, U., Bayindir, R., Avci, E., Ayik, S., 2022. Battery energy storage system sizing, lifetime and techno-economic evaluation for primary frequency control: A data-driven case study for Turkey. Gazi Univ. J. Sci. Part C: Design and Technology, Vol. 10(2), pp. 177–194.
  • [12] Tas, G., Bal, C., Uysal, A., 2023. Performance comparison of lithium polymer battery SOC estimation using GWO-BiLSTM and cutting-edge deep learning methods. Electr. Eng., Vol. 105(5), pp. 3383–3397.
  • [13] Lee, J.H., Lee, I.S., 2021. Lithium battery SOH monitoring and an SOC estimation algorithm based on the SOH result. Energies, Vol. 14(15), p. 4506.
  • [14] Wen, J., Chen, X., Li, X., Li, Y., 2022. SOH prediction of lithium battery based on IC curve feature and BP neural network. Energy, Vol. 261, p. 125234.
  • [15] Guo, Y., Yu, P., Zhu, C., Zhao, K., Wang, L., Wang, K., 2022. A state-of-health estimation method considering capacity recovery of lithium batteries. Int. J. Energy Res., Vol. 46(15), pp. 23730–23745.
  • [16] Yang, P., et al., 2024. Joint evaluation and prediction of SOH and RUL for lithium batteries based on a GBLS booster multi-task model. J. Energy Storage, Vol. 75, p. 109741.
  • [17] Zhang, M., Chen, W., Yin, J., Feng, T., 2022. Lithium battery health factor extraction based on improved Douglas–Peucker algorithm and SOH prediction based on XGBoost. Energies, Vol. 15(16), p. 5981.
  • [18] Saha, B., Kai, G., 2024. Battery data set. NASA AMES Prognostics Data Repository. https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/#battery (Accessed: July 21, 2024).
  • [19] Alvarez-Monteserin, I., Sanz-Bobi, M.A., 2022. An online fade capacity estimation of lithium-ion battery using a new health indicator based only on a short period of the charging voltage profile. IEEE Access, Vol. 10, pp. 11138–11146.
  • [20] Darwish, A., 2024. An attention-based deep learning approach for lithium-ion battery lifespan prediction: analysis and experimental validation. Inf. Sci. Appl., Vol. 2, pp. 58–76.
  • [21] Katoch, S., Chauhan, S.S., Kumar, V., 2021. A review on genetic algorithm: past, present, and future. Multimed. Tools Appl., Vol. 80(5), pp. 8091–8126.
  • [22] Alhijawi, B., Awajan, A., 2024. Genetic algorithms: theory, genetic operators, solutions, and applications. Evol. Intell., Vol. 17(3), pp. 1245–1256.
  • [23] Khodarahmi, M., Maihami, V., 2023. A review on Kalman filter models. Arch. Comput. Methods Eng., Vol. 30(1), pp. 727–747.
  • [24] Qi, W., Qin, W., Yun, Z., 2024. Closed-loop state of charge estimation of Li-ion batteries based on deep learning and robust adaptive Kalman filter. Energy, Vol. 307, p. 132805.
There are 24 citations in total.

Details

Primary Language English
Subjects Signal Processing, Autonomous Vehicle Systems, Hybrid and Electric Vehicles and Powertrains, Optimization in Manufacturing
Journal Section Research Article
Authors

Göksu Taş 0000-0003-2343-9182

Early Pub Date May 12, 2025
Publication Date May 23, 2025
Submission Date July 23, 2024
Acceptance Date November 4, 2024
Published in Issue Year 2025 Volume: 27 Issue: 80

Cite

APA Taş, G. (2025). Capacity Estimation of Lithium-ion Battery by GA-KF Method. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 27(80), 313-320. https://doi.org/10.21205/deufmd.2025278018
AMA Taş G. Capacity Estimation of Lithium-ion Battery by GA-KF Method. DEUFMD. May 2025;27(80):313-320. doi:10.21205/deufmd.2025278018
Chicago Taş, Göksu. “Capacity Estimation of Lithium-Ion Battery by GA-KF Method”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 27, no. 80 (May 2025): 313-20. https://doi.org/10.21205/deufmd.2025278018.
EndNote Taş G (May 1, 2025) Capacity Estimation of Lithium-ion Battery by GA-KF Method. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 27 80 313–320.
IEEE G. Taş, “Capacity Estimation of Lithium-ion Battery by GA-KF Method”, DEUFMD, vol. 27, no. 80, pp. 313–320, 2025, doi: 10.21205/deufmd.2025278018.
ISNAD Taş, Göksu. “Capacity Estimation of Lithium-Ion Battery by GA-KF Method”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 27/80 (May2025), 313-320. https://doi.org/10.21205/deufmd.2025278018.
JAMA Taş G. Capacity Estimation of Lithium-ion Battery by GA-KF Method. DEUFMD. 2025;27:313–320.
MLA Taş, Göksu. “Capacity Estimation of Lithium-Ion Battery by GA-KF Method”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 27, no. 80, 2025, pp. 313-20, doi:10.21205/deufmd.2025278018.
Vancouver Taş G. Capacity Estimation of Lithium-ion Battery by GA-KF Method. DEUFMD. 2025;27(80):313-20.