Research Article
BibTex RIS Cite

Fabrication and Characterisation of YIG Doped Hydroxyapatite Composites

Year 2025, Volume: 27 Issue: 80, 284 - 289, 23.05.2025
https://doi.org/10.21205/deufmd.2025278015

Abstract

In this study, the fabrication and characterization of Yttrium Iron Garnet (YIG) doped hydroxyapatite (HAp) composites were carried out. HAp is a bioceramic material known for its biocompatibility and osteogenic properties and is widely used in bone tissue engineering. However, the low mechanical strength and brittleness of HAp limit the use of this material in load-bearing applications. In order to overcome these deficiencies, it is aimed to improve both mechanical properties and magnetic properties of the material by adding YIG to HAp material. In the study, YIG powders were synthesized with the help of citric acid by sol-gel method using yttrium (Y) and iron (Fe) salts. Then, commercial HAp powders and YIG powders were mixed with 1, 2 and 3 wt. % of commercial HAp powders to obtain pellets and these pellets were sintered at 1200 °C for 3 hours. The produced composites were characterized by thermalgravimetric analysis (TG/DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, magnetic and wettability tests. In addition, the mechanical properties of the composites were analyzed by hardness measurements. Significant improvements in both the magnetic and mechanical properties of the obtained composites were observed with increasing YIG content. These new composites show potential for biomedical applications, especially for bone regeneration and cancer treatment.

References

  • [1] Sarath, C.V., Da, R.K., Jongjun, K., Honglae, S., Sung, Y.Y. 2019. Controlled nanoparticle synthesis of Ag/Fe co-doped hydroxyapatite system for cancer cell treatment, Materials Science & Engineering C, Cilt. 98, s. 311-323. DOI: 10.1016/j.msec.2018.12.148
  • [2] Idil, U., Bengi, Y., Zafer E. 2021. Zn-doped hydroxyapatite in biomedical applications, Journal of the Australian Ceramic Society, Cilt. 57, s. 869-897. DOI: 10.1007/s41779-021-00583-4
  • [3] Erdem, U., Dogan, D., Bozer, B. M., Turkoz, M. B., Yıldırım, G., Metin, A. U. 2022. Fabrication of mechanically advanced polydopamine decorated hydroxyapatite/polyvinyl alcohol bio-composite for biomedical applications: In-vitro physicochemical and biological evaluation. Journal of the Mechanical Behavior of Biomedical Materials, Cilt. 136, s. 105517. DOI: 10.1016/j.jmbbm.2022.105517
  • [4] Stasys, T., Kunio, I., Rimantas, R., Aivaras, K. 2020. Zinc and chromium co-doped calcium hydroxyapatite: Sol-gel synthesis, characterization, behaviour in simulated body fluid and phase transformations, Journal of Solid State Chemistry, Cilt. 284, s. 121202. DOI: 10.1016/j.jssc.2020.121202.
  • [5] Rushikesh, F., Varun, S., Papori, S., Borah, J.P., Lalit, M.P. 2020. Yttrium iron garnet for hyperthermia applications: Synthesis, characterization and in-vitro analysis, Materials Science and Engineering: C, Cilt. 116, s. 111163. DOI: 10.1016/j.msec.2020.111163
  • [6] Ying, L., Haibo, Y., Jianfeng, Z., Fen, W. 2010. Magnetic and Dielectric Properties of YIG/HDPE Composites for High-Frequency Applications, International Journal of Polymeric Materials and Polymeric Biomaterials, Cilt. 59, s. 570-576. DOI: 10.1080/00914031003760675
  • [7] Liming, D., Dongling, Y., Zujian, W., Rongbing, S., Xifa, L., Xiaoming, Y., Chao, H. 2024. Effect of Gadolinium Addition on Magnetic and Magneto-Optical Properties of Yttrium Iron Garnet Crystal, Crystal Growth& Design, Cilt. 24, s. 4437-4442. DOI: 10.1021/acs.cgd.4c00098
  • [8] Chia, Y.O., Mohd, H., Singh, R. 2007. Properties of hydroxyapatite produced by annealing of bovine bone, Ceramics International, Cilt. 33, s. 1171-1177. DOI: 10.1016/j.ceramint.2006.04.001
  • [9] Aymen, A., Jamel, B. 2022. Preparation and Microstructural Characterization of Natural Hydroxyapatite Extracted from Animal Bones, JOM, Cilt. 74, s. 3119–3132. DOI: 10.1007/s11837-022-05364-3
  • [10] Hassan, N., Rasoul, S.M., Mohammad, H.K., Maria, C.P., Mahdieh, S., Reza, Z.E., Reza, F. 2020. Characterization of hydroxyapatite-reduced graphene oxide nanocompositesconsolidated via high frequency induction heat sintering method, Journal of Asian Ceramic Societies, Cilt. 8, s. 1296–1309. DOI:10.1080/21870764.2020.1842119
  • [11] Tamás, U. 2004. Microstructural parameters from X-ray diffraction peak broadening, Scripta Materialia, Cilt. 51, s. 777-781. DOI: 10.1016/j.scriptamat.2004.05.007
  • [12] Miriam, M. Ramón, T., Adolfo I. F. 2020. Reactivity of Ca and P precursors to form hydroxyapatite and its influence on the properties of the obtained powders, Ceramics International, Cilt. 46, s. 27860-27865. DOI: 10.1016/j.ceramint.2020.07.284
  • [13] Aiyah, S.N., Mustafa, F.K., Shather, A.H., Haider, A. A., Mustafa, M. 2024. Silver and magnesium co-doped β-TCP nanoparticles as potential materials for bone tissue engineering, Applied Physics A, Cilt. 130, s.242. DOI: 10.1007/s00339-024-07395-w
  • [14] Chee, H.L, Andanastuti, M., Chou, Y.T., Masfueh, R., Noor, F. A. 2014. Sintering of Hydroxyapatite/Yttria Stabilized Zirconia Nanocomposites under Nitrogen Gas for Dental Materials, Advances in Materials Science and Engineering, Cilt. 2014. DOI:10.1155/2014/367267
  • [15] Songlin, D., Pei, F., Chengde, G., Tao, X., Kun, Y., Cijun, S., Shuping, P. 2015. Microstructure Evolution and Mechanical Properties Improvement in Liquid-Phase-Sintered Hydroxyapatite by Laser Sintering, Materials, Cilt. 8, s. 1162-1175. DOI: 10.3390/ma8031162
  • [16] Sandra, M.L.R., Cristian, F.R.G., Alicia, R., Efrain, R.R., Mario, E. R. G. 2016. Study of bovine hydroxyapatite obtained by calcination at low heating rates and cooled in furnace air, Journal of Materials Science, Cilt. 51, s. 4431–4441. DOI: 10.1007/s10853-016-9755-4
  • [17] Sandra, M.L.R., Luis, F.Z.O., Rodrigo, J.C., Maria, A.M., Mario, E.R.G. 2019. Effect of the crystal size on the infrared and Raman spectra of bio hydroxyapatite of human, bovine, and porcine bones, The Journal of Raman Spectroscopy, Cilt. 50, s. 1120-1129. DOI: 10.1002/jbm.b.35118
  • [18] Govindan, S.K., Gopalu, K., Easwaradas, K.G., Evgeny, K., Nguyen, V.M., Mikhail, V.G., Denis, K. 2018. Size and morphology-controlled synthesis of mesoporous hydroxyapatite nanocrystals by microwave-assisted hydrothermal method, Ceramics International, Cilt. 44, s. 11257-11264. DOI: 10.1016/j.ceramint.2018.03.170
  • [19] Susneha, T., Someshwar, P. & Prasad, N.V. 2024. Electrical, magnetic, and Raman spectroscopic studies on Bi-modified YIG ceramics. J Mater Sci: Mater Electron, Cilt. 35, s. 968. DOI: 10.1007/s10854-024-12655-9
  • [20] Noam, E., Sharon, S., Irena, S., Dafna, B., Daniel, A., Gil, R. 2009. The effect of surface treatment on the surface texture and contact angle of electrochemically deposited hydroxyapatite coating and on its interaction with bone-forming cells, Acta Biomaterialia, Cilt. 5, s. 3178-3191. DOI: 10.1016/j.actbio.2009.04.005
  • [21] Cosmin, M.C., Alina, V., Mihaela, D., Diana, M.V. 2018. Influence of deposition temperature on the properties of hydroxyapatite obtained by electrochemical assisted deposition, Ceramics International, Cilt. 44, s. 669-677. DOI: 10.1016/j.ceramint.2017.09.227
  • [22] Zheng, P.Y., Xue, Y.G., Chun, J.Z. 2010. Recyclable Fe3O4/hydroxyapatite composite nanoparticles for photocatalytic applications, Chemical Engineering Journal, Cilt. 165, s.117-121. DOI:10.1016/j.cej.2010.09.001
  • [23] Subha, B., Varun, P.P., Ravichandran, K., Sankara, N.N., Suresh, S., Suriati, P., Faruq, M., Hamad, A. A., Prasanna, K.O., Won, C.O. 2021. Influence of iron doping towards the physicochemical and biological characteristics of hydroxyapatite, Ceramics International, Cilt. 47, s. 5061-5070. DOI:10.1016/j.ceramint.2020.10.084
  • [24] Junfeng, N., Jian, Z., Xiaoguang, H., Lin, W., Guizhen, L., Jiping, C. 2019. Effect of TiO2 doping on densification and mechanical properties of hydroxyapatite by microwave sintering, Ceramics International, Cilt. 45, s. 13647-13655. DOI: 10.1016/j.ceramint.2019.04.007

YIG Katkılanmış Hidroksiapatit Kompozitlerinin Üretimi ve Karakterizasyonu

Year 2025, Volume: 27 Issue: 80, 284 - 289, 23.05.2025
https://doi.org/10.21205/deufmd.2025278015

Abstract

Bu çalışmada, itriyum demir garnet (YIG) katkılı hidroksiapatit (HAp) kompozitlerinin üretimi ve karakterizasyonu gerçekleştirilmiştir. HAp, biyouyumluluğu ve osteojenik özellikleri ile bilinen bir biyoseramik malzeme olup, kemik doku mühendisliğinde yaygın olarak kullanılmaktadır. Ancak HAp'in düşük mekanik mukavemeti, bu malzemenin yük taşıyan uygulamalarda kullanımını kısıtlamaktadır. Bu eksiklikleri gidermek amacıyla HAp malzemesine YIG eklenerek, hem mekanik özelliklerin iyileştirilmesi hemde malzemeye manyetik özelliklerin kazandırılması hedeflenmiştir. Çalışmada, YIG tozları itriyum (Y) ve demir (Fe) tuzları kullanılarak sitrik asit yardımıyla sol-jel yöntemiyle sentezlenmiştir. Daha sonra, ticari HAp tozlarıyla elde edilen YIG tozları ağırlıkça % 1, 2 ve 3 oranlarda olacak şekilde karıştırılarak peletler elde edilmiştir ve bu peletler 1200°C'de 3 saat süreyle sinterlenmişlerdir. Üretilen kompozitler, termalgravimetrik analiz (TG/DTA), X ışını kırınımı (XRD), taramalı elektron mikroskobu (SEM), Raman spektroskopisi, manyetik ve ıslatılabilirlik testleri ile karakterize edilmişlerdir. Ayrıca üretilen kompozitlerin mekanik özellikleri sertlik ölçümleriyle incelenmiştir. Elde edilen kompozitlerin hem manyetik özelliklerinde hem de mekanik özelliklerinde YIG miktarının artmasıyla belirgin iyileşmeler olduğu gözlenmiştir. Bu yeni kompozitler, biyomedikal uygulamalarda, özellikle kemik rejenerasyonu ve kanser tedavisinde kullanılmak üzere potansiyel vadetmektedir.

References

  • [1] Sarath, C.V., Da, R.K., Jongjun, K., Honglae, S., Sung, Y.Y. 2019. Controlled nanoparticle synthesis of Ag/Fe co-doped hydroxyapatite system for cancer cell treatment, Materials Science & Engineering C, Cilt. 98, s. 311-323. DOI: 10.1016/j.msec.2018.12.148
  • [2] Idil, U., Bengi, Y., Zafer E. 2021. Zn-doped hydroxyapatite in biomedical applications, Journal of the Australian Ceramic Society, Cilt. 57, s. 869-897. DOI: 10.1007/s41779-021-00583-4
  • [3] Erdem, U., Dogan, D., Bozer, B. M., Turkoz, M. B., Yıldırım, G., Metin, A. U. 2022. Fabrication of mechanically advanced polydopamine decorated hydroxyapatite/polyvinyl alcohol bio-composite for biomedical applications: In-vitro physicochemical and biological evaluation. Journal of the Mechanical Behavior of Biomedical Materials, Cilt. 136, s. 105517. DOI: 10.1016/j.jmbbm.2022.105517
  • [4] Stasys, T., Kunio, I., Rimantas, R., Aivaras, K. 2020. Zinc and chromium co-doped calcium hydroxyapatite: Sol-gel synthesis, characterization, behaviour in simulated body fluid and phase transformations, Journal of Solid State Chemistry, Cilt. 284, s. 121202. DOI: 10.1016/j.jssc.2020.121202.
  • [5] Rushikesh, F., Varun, S., Papori, S., Borah, J.P., Lalit, M.P. 2020. Yttrium iron garnet for hyperthermia applications: Synthesis, characterization and in-vitro analysis, Materials Science and Engineering: C, Cilt. 116, s. 111163. DOI: 10.1016/j.msec.2020.111163
  • [6] Ying, L., Haibo, Y., Jianfeng, Z., Fen, W. 2010. Magnetic and Dielectric Properties of YIG/HDPE Composites for High-Frequency Applications, International Journal of Polymeric Materials and Polymeric Biomaterials, Cilt. 59, s. 570-576. DOI: 10.1080/00914031003760675
  • [7] Liming, D., Dongling, Y., Zujian, W., Rongbing, S., Xifa, L., Xiaoming, Y., Chao, H. 2024. Effect of Gadolinium Addition on Magnetic and Magneto-Optical Properties of Yttrium Iron Garnet Crystal, Crystal Growth& Design, Cilt. 24, s. 4437-4442. DOI: 10.1021/acs.cgd.4c00098
  • [8] Chia, Y.O., Mohd, H., Singh, R. 2007. Properties of hydroxyapatite produced by annealing of bovine bone, Ceramics International, Cilt. 33, s. 1171-1177. DOI: 10.1016/j.ceramint.2006.04.001
  • [9] Aymen, A., Jamel, B. 2022. Preparation and Microstructural Characterization of Natural Hydroxyapatite Extracted from Animal Bones, JOM, Cilt. 74, s. 3119–3132. DOI: 10.1007/s11837-022-05364-3
  • [10] Hassan, N., Rasoul, S.M., Mohammad, H.K., Maria, C.P., Mahdieh, S., Reza, Z.E., Reza, F. 2020. Characterization of hydroxyapatite-reduced graphene oxide nanocompositesconsolidated via high frequency induction heat sintering method, Journal of Asian Ceramic Societies, Cilt. 8, s. 1296–1309. DOI:10.1080/21870764.2020.1842119
  • [11] Tamás, U. 2004. Microstructural parameters from X-ray diffraction peak broadening, Scripta Materialia, Cilt. 51, s. 777-781. DOI: 10.1016/j.scriptamat.2004.05.007
  • [12] Miriam, M. Ramón, T., Adolfo I. F. 2020. Reactivity of Ca and P precursors to form hydroxyapatite and its influence on the properties of the obtained powders, Ceramics International, Cilt. 46, s. 27860-27865. DOI: 10.1016/j.ceramint.2020.07.284
  • [13] Aiyah, S.N., Mustafa, F.K., Shather, A.H., Haider, A. A., Mustafa, M. 2024. Silver and magnesium co-doped β-TCP nanoparticles as potential materials for bone tissue engineering, Applied Physics A, Cilt. 130, s.242. DOI: 10.1007/s00339-024-07395-w
  • [14] Chee, H.L, Andanastuti, M., Chou, Y.T., Masfueh, R., Noor, F. A. 2014. Sintering of Hydroxyapatite/Yttria Stabilized Zirconia Nanocomposites under Nitrogen Gas for Dental Materials, Advances in Materials Science and Engineering, Cilt. 2014. DOI:10.1155/2014/367267
  • [15] Songlin, D., Pei, F., Chengde, G., Tao, X., Kun, Y., Cijun, S., Shuping, P. 2015. Microstructure Evolution and Mechanical Properties Improvement in Liquid-Phase-Sintered Hydroxyapatite by Laser Sintering, Materials, Cilt. 8, s. 1162-1175. DOI: 10.3390/ma8031162
  • [16] Sandra, M.L.R., Cristian, F.R.G., Alicia, R., Efrain, R.R., Mario, E. R. G. 2016. Study of bovine hydroxyapatite obtained by calcination at low heating rates and cooled in furnace air, Journal of Materials Science, Cilt. 51, s. 4431–4441. DOI: 10.1007/s10853-016-9755-4
  • [17] Sandra, M.L.R., Luis, F.Z.O., Rodrigo, J.C., Maria, A.M., Mario, E.R.G. 2019. Effect of the crystal size on the infrared and Raman spectra of bio hydroxyapatite of human, bovine, and porcine bones, The Journal of Raman Spectroscopy, Cilt. 50, s. 1120-1129. DOI: 10.1002/jbm.b.35118
  • [18] Govindan, S.K., Gopalu, K., Easwaradas, K.G., Evgeny, K., Nguyen, V.M., Mikhail, V.G., Denis, K. 2018. Size and morphology-controlled synthesis of mesoporous hydroxyapatite nanocrystals by microwave-assisted hydrothermal method, Ceramics International, Cilt. 44, s. 11257-11264. DOI: 10.1016/j.ceramint.2018.03.170
  • [19] Susneha, T., Someshwar, P. & Prasad, N.V. 2024. Electrical, magnetic, and Raman spectroscopic studies on Bi-modified YIG ceramics. J Mater Sci: Mater Electron, Cilt. 35, s. 968. DOI: 10.1007/s10854-024-12655-9
  • [20] Noam, E., Sharon, S., Irena, S., Dafna, B., Daniel, A., Gil, R. 2009. The effect of surface treatment on the surface texture and contact angle of electrochemically deposited hydroxyapatite coating and on its interaction with bone-forming cells, Acta Biomaterialia, Cilt. 5, s. 3178-3191. DOI: 10.1016/j.actbio.2009.04.005
  • [21] Cosmin, M.C., Alina, V., Mihaela, D., Diana, M.V. 2018. Influence of deposition temperature on the properties of hydroxyapatite obtained by electrochemical assisted deposition, Ceramics International, Cilt. 44, s. 669-677. DOI: 10.1016/j.ceramint.2017.09.227
  • [22] Zheng, P.Y., Xue, Y.G., Chun, J.Z. 2010. Recyclable Fe3O4/hydroxyapatite composite nanoparticles for photocatalytic applications, Chemical Engineering Journal, Cilt. 165, s.117-121. DOI:10.1016/j.cej.2010.09.001
  • [23] Subha, B., Varun, P.P., Ravichandran, K., Sankara, N.N., Suresh, S., Suriati, P., Faruq, M., Hamad, A. A., Prasanna, K.O., Won, C.O. 2021. Influence of iron doping towards the physicochemical and biological characteristics of hydroxyapatite, Ceramics International, Cilt. 47, s. 5061-5070. DOI:10.1016/j.ceramint.2020.10.084
  • [24] Junfeng, N., Jian, Z., Xiaoguang, H., Lin, W., Guizhen, L., Jiping, C. 2019. Effect of TiO2 doping on densification and mechanical properties of hydroxyapatite by microwave sintering, Ceramics International, Cilt. 45, s. 13647-13655. DOI: 10.1016/j.ceramint.2019.04.007
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Manufacturing Metallurgy
Journal Section Research Article
Authors

Selim Demirci 0000-0003-3482-7957

Early Pub Date May 12, 2025
Publication Date May 23, 2025
Submission Date August 14, 2024
Acceptance Date October 28, 2024
Published in Issue Year 2025 Volume: 27 Issue: 80

Cite

APA Demirci, S. (2025). YIG Katkılanmış Hidroksiapatit Kompozitlerinin Üretimi ve Karakterizasyonu. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 27(80), 284-289. https://doi.org/10.21205/deufmd.2025278015
AMA Demirci S. YIG Katkılanmış Hidroksiapatit Kompozitlerinin Üretimi ve Karakterizasyonu. DEUFMD. May 2025;27(80):284-289. doi:10.21205/deufmd.2025278015
Chicago Demirci, Selim. “YIG Katkılanmış Hidroksiapatit Kompozitlerinin Üretimi Ve Karakterizasyonu”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 27, no. 80 (May 2025): 284-89. https://doi.org/10.21205/deufmd.2025278015.
EndNote Demirci S (May 1, 2025) YIG Katkılanmış Hidroksiapatit Kompozitlerinin Üretimi ve Karakterizasyonu. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 27 80 284–289.
IEEE S. Demirci, “YIG Katkılanmış Hidroksiapatit Kompozitlerinin Üretimi ve Karakterizasyonu”, DEUFMD, vol. 27, no. 80, pp. 284–289, 2025, doi: 10.21205/deufmd.2025278015.
ISNAD Demirci, Selim. “YIG Katkılanmış Hidroksiapatit Kompozitlerinin Üretimi Ve Karakterizasyonu”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 27/80 (May2025), 284-289. https://doi.org/10.21205/deufmd.2025278015.
JAMA Demirci S. YIG Katkılanmış Hidroksiapatit Kompozitlerinin Üretimi ve Karakterizasyonu. DEUFMD. 2025;27:284–289.
MLA Demirci, Selim. “YIG Katkılanmış Hidroksiapatit Kompozitlerinin Üretimi Ve Karakterizasyonu”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 27, no. 80, 2025, pp. 284-9, doi:10.21205/deufmd.2025278015.
Vancouver Demirci S. YIG Katkılanmış Hidroksiapatit Kompozitlerinin Üretimi ve Karakterizasyonu. DEUFMD. 2025;27(80):284-9.