Research Article
BibTex RIS Cite

Physical Feedback Exercise System Design and Implementation For Virtual and Enhanced Reality Applications

Year 2025, Volume: 27 Issue: 81, 337 - 342, 29.09.2025
https://doi.org/10.21205/deufmd.2025278101

Abstract

In this study, an exercise system that provides physical movement feedback for people who cannot exercise outdoors due to reasons such as old age, health problems or weather conditions and is suitable for future virtual reality and augmented reality applications has been designed and implemented. This system consists of rearranging an exercise bike structure to receive feedback, a two-degree-of-freedom mechanical system that can perform body roll and forward-backward pitch movements according to the given slope information, and an electronic circuit that processes the necessary sensor inputs and generates control signals. In this way, the user can obtain a real feeling, such as pedal strain while climbing a slope and leaning forward while descending, similar to real environmental conditions. Scenarios can be produced on this system in which various environmental conditions.

Project Number

FBA-2023-3112

References

  • [1] Tacgin, Z. 2020. Virtual and Augmented Reality: An Educational Handbook, ISBN (13): 978-1-5275-4813-8, Cambridge Scholars Publishing, 225s.
  • [2] Lee, K. 2012. Augmented reality in education and training. TechTrends, Cilt.56(2), s.13-21.
  • [3] Klein, A., De Assis, G.A. 2013. A markeless augmented reality tracking for enhancing the user interaction during virtual rehabilitation. 2013 XV Symposium on Virtual and Augmented Reality, 117-124.
  • [4] Wang, H.S., Hsu, C., Chiu, D., Tsai, S.N. 2010. Using augmented reality gaming system to enhance hand rehabilitation. 2010 2nd International Conference on Education Technology and Computer, Cilt.3, s.V3-243.
  • [5] Hacıoğlu, A., Özdemir, Ö.F., Şahin, A.K., Akgül, Y.S. 2016. Artırılmış Gerçeklik Tabanlı El Bileği Rehabilitasyon Sistemi. Signal Processing and Communication Application Conference.
  • [6] Heinrich, C., Langlotz, T., Regenbrecht, H. 2019. Heading Home–Adapting a Clinical Mixed-Reality Rehabilitation System for Patients’ Home Use. 2019 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), s.426-430.
  • [7] Wang, Y.W., Chen, C.H., Lin, Y.C. 2020. Balance Rehabilitation System for Parkinson's Disease Patients based on Augmented Reality. 2020 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE), s.191-194.
  • [8] Maculewicz, J., Serafin, S., Kofoed, L. 2015. A Stationary Bike in Virtual Reality: Rhythmic Exercise and Rehabilitation. DCBIOSTEC 2015–Doctoral Consortium on Biomedical Engineering Systems and Technologies, s.3-8. SCITEPRESS Digital Library.
  • [9] Hori, T., Furukawa, T., Fukumoto, H., Ohchi, M., Nakashima, Y. 2009. Improvement of reality on input device for virtual walk system. ICCAS-SICE, s.1100-1104.
  • [10] Laera, F., Foglia, M.M., Evangelista, A., Boccaccio, A., Gattullo, M., Vito, M., Fiorentino, M. 2020. Towards sailing supported by augmented reality: Motivation, methodology and perspectives. IEEE ISMAR-Adjunct, s.269-274. [11] Shoman, M.M., Imine, H. 2021. Bicycle Simulator Improvement and Validation. IEEE Access, Cilt.9, s.55063-55076.
  • [12] Liao, J., Huang, Y., Lin, C., Wang, H., Zhang, Y. 2020. A Virtual Reality Cycling System Based On Multi-Sensor Fusion. 2020 ICVRV, s.374-378.
  • [13] Schramka, F., Arisona, S., Joos, M., Erath, A. 2017. Development of virtual reality cycling simulator. Arbeitsberichte Verkehrs-und Raumplanung, No.1244.
  • [14] Leblanc, M.A., Sicard, P. 2010. EMR and inversion-based control of a virtual reality bicycle trainer. 2010 IEEE VPPC, s.1-7.
  • [15] Matviienko, A., Müller, F., Zickler, M., Gasche, L.A., Abels, J., Steinert, T., Mühlhäuser, M. 2022. Reducing virtual reality sickness for cyclists in VR bicycle simulators. CHI Conf. on Human Factors in Computing Systems, s.1-14.
  • [16] Ortet, C.P., Veloso, A.I., Vale Costa, L. 2022. Cycling through 360 Virtual Reality Tourism for Senior Citizens: Empirical Analysis of an Assistive Technology. Sensors, Cilt.22(16), s.6169.
  • [17] Nor’a, M.N.A., Fadzli, F.E., Ismail, A.W., Vicubelab, Z.S.O., Aladin, M.Y.F., Hanif, W.A.A.W. 2020. Fingertips interaction method in handheld augmented reality for 3D manipulation. 2020 IEEE 5th ICCCA, s.161-166.
  • [18] Ergün, O., Akın, Ş., Dino, İ.G., Surer, E. 2019. Architectural design in virtual reality and mixed reality environments: A comparative analysis. 2019 IEEE Conf. on VR and 3D User Interfaces, s.914-915.
  • [19] Morales, C.C. 2015. The impact of augmented reality in society. Rehabilitation processes. 2015 IEEE CONCAPAN XXXV, s.1-6.
  • [20] Ishigaki, S.A.K., Ismail, A.W., Kamruldzaman, M.Q. 2022. MR-MEET: Mixed Reality Collaborative Interface for HMD and Handheld Users. 2022 IEEE GlobConPT, s.1-7.
  • [21] Arif, S.M.U., Carli, M., Battisti, F. 2021. A study on human reaction time in a mixed reality environment. 2021 ISSCS, s.1-4.
  • [22] Babu, S., Grechkin, T., Chihak, B., Ziemer, C., Kearney, J., Cremer, J., Plumert, J. 2009. A virtual peer for investigating social influences on children's bicycling. 2009 IEEE Virtual Reality Conference, s.91-98.
  • [23] Ullmann, D., Kreimeier, J., Götzelmann, T., Kipke, H. 2020. BikeVR: a virtual reality bicycle simulator towards sustainable urban space and traffic planning. Mensch und Computer 2020, s.511-514.

Sanal Gerçeklik ve Geliştirilmiş Gerçeklik Uygulamaları için Fiziksel Geribeslemeli Egzersiz Sistemi Tasarımı ve Uygulaması

Year 2025, Volume: 27 Issue: 81, 337 - 342, 29.09.2025
https://doi.org/10.21205/deufmd.2025278101

Abstract

Bu çalışmada yaşlılık, sağlık sorunları veya hava şartları gibi nedenlerle bina dışı ortamda egzersiz yapamayan kişiler için fiziksel hareket geri beslemesi sağlayan ve ilerideki sanal gerçeklik ve geliştirilmiş gerçeklik uygulamalarına uygun bir egzersiz sistemi tasarlanmış ve uygulanmıştır. Bu sistem bir egzersiz bisikleti yapısının geri besleme alınacak şekilde yeniden düzenlenmesi, verilen eğim bilgisine göre gövde yana yatma (yatış) ve öne arkaya yatma (yunuslama) hareketlerini yapabilen iki serbestlik dereceli bir mekanik sistemden ve gerekli sensör girişlerini işleyerek kontrol sinyallerini üreten bir elektronik devreden oluşmaktadır. Bu sayede kullanıcı gerçek ortam koşullarına benzer şekilde eğim çıkarken pedal zorlanması, inişlerde öne doğru eğilme gibi gerçek bir his elde edebilmektedir. Bu sistem üzerinde çeşitli ortam koşulların üretilebileceği senaryolar üretilebilmektedir.

Supporting Institution

Dokuz Eylül Üniversitesi

Project Number

FBA-2023-3112

Thanks

Dokuz Eylül Üniversitesi, BAP FBA-2023-3112 nolu proje ile desteklenmektedir.

References

  • [1] Tacgin, Z. 2020. Virtual and Augmented Reality: An Educational Handbook, ISBN (13): 978-1-5275-4813-8, Cambridge Scholars Publishing, 225s.
  • [2] Lee, K. 2012. Augmented reality in education and training. TechTrends, Cilt.56(2), s.13-21.
  • [3] Klein, A., De Assis, G.A. 2013. A markeless augmented reality tracking for enhancing the user interaction during virtual rehabilitation. 2013 XV Symposium on Virtual and Augmented Reality, 117-124.
  • [4] Wang, H.S., Hsu, C., Chiu, D., Tsai, S.N. 2010. Using augmented reality gaming system to enhance hand rehabilitation. 2010 2nd International Conference on Education Technology and Computer, Cilt.3, s.V3-243.
  • [5] Hacıoğlu, A., Özdemir, Ö.F., Şahin, A.K., Akgül, Y.S. 2016. Artırılmış Gerçeklik Tabanlı El Bileği Rehabilitasyon Sistemi. Signal Processing and Communication Application Conference.
  • [6] Heinrich, C., Langlotz, T., Regenbrecht, H. 2019. Heading Home–Adapting a Clinical Mixed-Reality Rehabilitation System for Patients’ Home Use. 2019 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), s.426-430.
  • [7] Wang, Y.W., Chen, C.H., Lin, Y.C. 2020. Balance Rehabilitation System for Parkinson's Disease Patients based on Augmented Reality. 2020 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE), s.191-194.
  • [8] Maculewicz, J., Serafin, S., Kofoed, L. 2015. A Stationary Bike in Virtual Reality: Rhythmic Exercise and Rehabilitation. DCBIOSTEC 2015–Doctoral Consortium on Biomedical Engineering Systems and Technologies, s.3-8. SCITEPRESS Digital Library.
  • [9] Hori, T., Furukawa, T., Fukumoto, H., Ohchi, M., Nakashima, Y. 2009. Improvement of reality on input device for virtual walk system. ICCAS-SICE, s.1100-1104.
  • [10] Laera, F., Foglia, M.M., Evangelista, A., Boccaccio, A., Gattullo, M., Vito, M., Fiorentino, M. 2020. Towards sailing supported by augmented reality: Motivation, methodology and perspectives. IEEE ISMAR-Adjunct, s.269-274. [11] Shoman, M.M., Imine, H. 2021. Bicycle Simulator Improvement and Validation. IEEE Access, Cilt.9, s.55063-55076.
  • [12] Liao, J., Huang, Y., Lin, C., Wang, H., Zhang, Y. 2020. A Virtual Reality Cycling System Based On Multi-Sensor Fusion. 2020 ICVRV, s.374-378.
  • [13] Schramka, F., Arisona, S., Joos, M., Erath, A. 2017. Development of virtual reality cycling simulator. Arbeitsberichte Verkehrs-und Raumplanung, No.1244.
  • [14] Leblanc, M.A., Sicard, P. 2010. EMR and inversion-based control of a virtual reality bicycle trainer. 2010 IEEE VPPC, s.1-7.
  • [15] Matviienko, A., Müller, F., Zickler, M., Gasche, L.A., Abels, J., Steinert, T., Mühlhäuser, M. 2022. Reducing virtual reality sickness for cyclists in VR bicycle simulators. CHI Conf. on Human Factors in Computing Systems, s.1-14.
  • [16] Ortet, C.P., Veloso, A.I., Vale Costa, L. 2022. Cycling through 360 Virtual Reality Tourism for Senior Citizens: Empirical Analysis of an Assistive Technology. Sensors, Cilt.22(16), s.6169.
  • [17] Nor’a, M.N.A., Fadzli, F.E., Ismail, A.W., Vicubelab, Z.S.O., Aladin, M.Y.F., Hanif, W.A.A.W. 2020. Fingertips interaction method in handheld augmented reality for 3D manipulation. 2020 IEEE 5th ICCCA, s.161-166.
  • [18] Ergün, O., Akın, Ş., Dino, İ.G., Surer, E. 2019. Architectural design in virtual reality and mixed reality environments: A comparative analysis. 2019 IEEE Conf. on VR and 3D User Interfaces, s.914-915.
  • [19] Morales, C.C. 2015. The impact of augmented reality in society. Rehabilitation processes. 2015 IEEE CONCAPAN XXXV, s.1-6.
  • [20] Ishigaki, S.A.K., Ismail, A.W., Kamruldzaman, M.Q. 2022. MR-MEET: Mixed Reality Collaborative Interface for HMD and Handheld Users. 2022 IEEE GlobConPT, s.1-7.
  • [21] Arif, S.M.U., Carli, M., Battisti, F. 2021. A study on human reaction time in a mixed reality environment. 2021 ISSCS, s.1-4.
  • [22] Babu, S., Grechkin, T., Chihak, B., Ziemer, C., Kearney, J., Cremer, J., Plumert, J. 2009. A virtual peer for investigating social influences on children's bicycling. 2009 IEEE Virtual Reality Conference, s.91-98.
  • [23] Ullmann, D., Kreimeier, J., Götzelmann, T., Kipke, H. 2020. BikeVR: a virtual reality bicycle simulator towards sustainable urban space and traffic planning. Mensch und Computer 2020, s.511-514.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering (Other)
Journal Section Research Article
Authors

Ahmet Özkurt 0000-0001-6404-7244

Ersoy Onur Solakoğlu 0009-0005-8967-7986

Tolga Olcay 0000-0002-2975-3415

Taner Akkan 0000-0003-4352-7841

Project Number FBA-2023-3112
Early Pub Date September 25, 2025
Publication Date September 29, 2025
Submission Date August 7, 2024
Acceptance Date September 1, 2024
Published in Issue Year 2025 Volume: 27 Issue: 81

Cite

APA Özkurt, A., Solakoğlu, E. O., Olcay, T., Akkan, T. (2025). Sanal Gerçeklik ve Geliştirilmiş Gerçeklik Uygulamaları için Fiziksel Geribeslemeli Egzersiz Sistemi Tasarımı ve Uygulaması. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 27(81), 337-342. https://doi.org/10.21205/deufmd.2025278101
AMA Özkurt A, Solakoğlu EO, Olcay T, Akkan T. Sanal Gerçeklik ve Geliştirilmiş Gerçeklik Uygulamaları için Fiziksel Geribeslemeli Egzersiz Sistemi Tasarımı ve Uygulaması. DEUFMD. September 2025;27(81):337-342. doi:10.21205/deufmd.2025278101
Chicago Özkurt, Ahmet, Ersoy Onur Solakoğlu, Tolga Olcay, and Taner Akkan. “Sanal Gerçeklik Ve Geliştirilmiş Gerçeklik Uygulamaları Için Fiziksel Geribeslemeli Egzersiz Sistemi Tasarımı Ve Uygulaması”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 27, no. 81 (September 2025): 337-42. https://doi.org/10.21205/deufmd.2025278101.
EndNote Özkurt A, Solakoğlu EO, Olcay T, Akkan T (September 1, 2025) Sanal Gerçeklik ve Geliştirilmiş Gerçeklik Uygulamaları için Fiziksel Geribeslemeli Egzersiz Sistemi Tasarımı ve Uygulaması. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 27 81 337–342.
IEEE A. Özkurt, E. O. Solakoğlu, T. Olcay, and T. Akkan, “Sanal Gerçeklik ve Geliştirilmiş Gerçeklik Uygulamaları için Fiziksel Geribeslemeli Egzersiz Sistemi Tasarımı ve Uygulaması”, DEUFMD, vol. 27, no. 81, pp. 337–342, 2025, doi: 10.21205/deufmd.2025278101.
ISNAD Özkurt, Ahmet et al. “Sanal Gerçeklik Ve Geliştirilmiş Gerçeklik Uygulamaları Için Fiziksel Geribeslemeli Egzersiz Sistemi Tasarımı Ve Uygulaması”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 27/81 (September2025), 337-342. https://doi.org/10.21205/deufmd.2025278101.
JAMA Özkurt A, Solakoğlu EO, Olcay T, Akkan T. Sanal Gerçeklik ve Geliştirilmiş Gerçeklik Uygulamaları için Fiziksel Geribeslemeli Egzersiz Sistemi Tasarımı ve Uygulaması. DEUFMD. 2025;27:337–342.
MLA Özkurt, Ahmet et al. “Sanal Gerçeklik Ve Geliştirilmiş Gerçeklik Uygulamaları Için Fiziksel Geribeslemeli Egzersiz Sistemi Tasarımı Ve Uygulaması”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 27, no. 81, 2025, pp. 337-42, doi:10.21205/deufmd.2025278101.
Vancouver Özkurt A, Solakoğlu EO, Olcay T, Akkan T. Sanal Gerçeklik ve Geliştirilmiş Gerçeklik Uygulamaları için Fiziksel Geribeslemeli Egzersiz Sistemi Tasarımı ve Uygulaması. DEUFMD. 2025;27(81):337-42.