Research Article
BibTex RIS Cite

Metilen Mavisi Boyasının Etkili Tespiti için Polidopamin-Nikel Manyetik Mikromotorlar

Year 2025, Volume: 27 Issue: 81, 400 - 405, 29.09.2025
https://doi.org/10.21205/deufmd.2025278108

Abstract

Hızlı sanayileşme, endüstriyel atıklardan kaynaklanan sentetik boyaların su kütlelerini kirletmesi gibi ciddi çevresel sorunlara neden olmuştur. Bu boyalar, kanserojen ve mutajenik etkiler gibi sağlık riskleri taşır ve ekolojik sorunlara yol açmaktadır. Metilen mavisi (MB) gibi yaygın boyalar, çok toksik olmasa da uzun süreli maruz kalma durumunda zararlı olabilir. Bu çalışma, MB'nin hassas tespiti için Polidopamin-Nikel (PDA-Ni) manyetik mikromotorların geliştirilmesine odaklanmaktadır. Elektrokimyasal şablon yöntemiyle üretilen bu mikromotorlar, kendi kendine hareket ederek sulu çözeltilerde yüksek MB konsantrasyonlarını etkili bir şekilde tespit edebilir. Mikromotorların tübüler yapısı, daha fazla adsorpsiyon kapasitesi için geniş bir yüzey alanı sunar. Döngüsel voltametri ile yapılan analizler, mikromotorların geniş bir MB konsantrasyon aralığında yüksek hassasiyet ve kararlılık gösterdiğini ve 0.1 µM tespit sınırına sahip olduğunu göstermektedir. Bu çalışma, PDA-Ni mikromotorların çevresel izleme ve kirletici gideriminde potansiyelini vurgulamakta ve su kirliliğinin yönetimi için umut verici bir çözüm sunmaktadır.

References

  • Li, X., Zhao, Y., Wang, D., Du, X. 2023. Dual-propelled PDA@MnO2 nanomotors with NIR light and H2O2 for effective removal of heavy metal and organic dye, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 658, p.130712. DOI: 10.1016/j.colsurfa.2022.130712
  • Hu, X., Yang, Y., Wang, W., Wang, Y., Gong, X., Geng, C., Tang, J. 2023. Hollow Fe3+-Doped Anatase Titanium Dioxide Nanosphere for Photocatalytic Degradation of Organic Dyes, ACS Applied Nano Materials, Vol. 6, pp.18999–19009. DOI: 10.1021/acsanm.3c03452
  • Fadillah, G., Saleh, T.A., Wahyuningsih, S., Ninda Karlina Putri, E., Febrianastuti, S. 2019. Electrochemical removal of methylene blue using alginate-modified graphene adsorbents, Chemical Engineering Journal, Vol. 378, p.122140. DOI: 10.1016/j.cej.2019.122140
  • Ibupoto, A.S., Qureshi, U.A., Ahmed, F., Khatri, Z., Khatri, M., Maqsood, M., Brohi, R.Z., Kim, I.S. 2018. Reusable carbon nanofibers for efficient removal of methylene blue from aqueous solution, Chemical Engineering Research and Design, Vol. 136, pp.744–752. DOI: 10.1016/j.cherd.2018.06.035
  • Hayat, M., Shah, A., Nisar, J., Shah, I., Haleem, A., Ashiq, M.N. 2022. A Novel Electrochemical Sensing Platform for the Sensitive Detection and Degradation Monitoring of Methylene Blue, Catalysts, Vol. 12, p.306. DOI: 10.3390/catal12030306
  • Obayomi, K.S., Lau, S.Y., Zahir, A., Meunier, L., Jianhua, Z., Dada, A.O., Rahman, M.M. 2023. Removing methylene blue from water: A study of sorption effectiveness onto nanoparticles-doped activated carbon, Chemosphere, Vol. 313, p.137533. DOI: 10.1016/j.chemosphere.2022.137533
  • Zhao, Y., Wang, D., Luan, Y., Du, X. 2022. NIR-light propelled bowl-like mesoporous polydopamine@UiO-66 metal−organic framework nanomotors for enhanced removal of organic contaminant, Materials Today Sustainability, Vol. 18, p.100129. DOI: 10.1016/j.mtsust.2022.100129
  • Tang, B., Xi, C., Zou, Y., Wang, G., Li, X., Zhang, L., Chen, D., Zhang, J. 2014. Simultaneous determination of 16 synthetic colorants in hotpot condiment by high performance liquid chromatography, Journal of Chromatography B, Vol. 960, pp.87–91. DOI: 10.1016/j.jchromb.2014.04.026
  • Alesso, M., Bondioli, G., Talío, M.C., Luconi, M.O., Fernández, L.P. 2012. Micelles mediated separation fluorimetric methodology for Rhodamine B determination in condiments, snacks and candies, Food Chemistry, Vol. 134, pp.513–517. DOI: 10.1016/j.foodchem.2012.02.110
  • Zhu, X., Liu, J., Zhang, Z., Lu, N., Yuan, X., Wu, D. 2015. Green synthesis of a bromocresol purple/graphene composite and its application in electrochemical determination of 2,4,6-trichlorophenol, Analytical Methods, Vol. 7, pp.3178–3184. DOI: 10.1039/C5AY00177C
  • Terbouche, A., Lameche, S., Ait-Ramdane-Terbouche, C., Guerniche, D., Lerari, D., Bachari, K., Hauchard, D. 2016. A new electrochemical sensor based on carbon paste electrode/Ru(III) complex for determination of nitrite: Electrochemical impedance and cyclic voltammetry measurements, Measurement, Vol. 92, pp.524–533. DOI: 10.1016/j.measurement.2016.06.034
  • Yadav, S., Carrascosa, L.G., Sina, A.A.I., Shiddiky, M.J.A., Hill, M.M., Trau, M. 2016. Electrochemical detection of protein glycosylation using lectin and protein–gold affinity interactions, Analyst, Vol. 141, pp.2356–2361. DOI: 10.1039/C6AN00528D
  • Zhang, Y., Yuan, K., Zhang, L. 2019. Micro/Nanomachines: from Functionalization to Sensing and Removal, Advanced Materials Technologies, Vol. 4, p.1800636. DOI: 10.1002/admt.201800636
  • Kim, K., Guo, J., Liang, Z., Fan, D. 2018. Artificial Micro/Nanomachines for Bioapplications: Biochemical Delivery and Diagnostic Sensing, Advanced Functional Materials, Vol. 28, p.1705867. DOI: 10.1002/adfm.201705867
  • Zhang, X., Chen, C., Wu, J., Ju, H. 2019. Bubble-Propelled Jellyfish-like Micromotors for DNA Sensing, ACS Applied Materials & Interfaces, Vol. 11, pp.13581–13588. DOI: 10.1021/acsami.9b00605
  • Esteban-Fernández de Ávila, B., Martín, A., Soto, F., Lopez-Ramirez, M.A., Campuzano, S., Vásquez-Machado, G.M., Gao, W., Zhang, L., Wang, J. 2015. Single Cell Real-Time miRNAs Sensing Based on Nanomotors, ACS Nano, Vol. 9, pp.6756–6764. DOI: 10.1021/acsnano.5b02807
  • Celik Cogal, G., Das, P.K., Yurdabak Karaca, G., Bhethanabotla, V.R., Uygun Oksuz, A. 2021. Fluorescence Detection of miRNA-21 Using Au/Pt Bimetallic Tubular Micromotors Driven by Chemical and Surface Acoustic Wave Forces, ACS Applied Bio Materials, Vol. 4, pp.7932–7941. DOI: 10.1021/acsabm.1c00854
  • Gao, C., Wang, Y., Ye, Z., Lin, Z., Ma, X., He, Q. 2021. Biomedical Micro-/Nanomotors: From Overcoming Biological Barriers to In Vivo Imaging, Advanced Materials, Vol. 33, p.2000512. DOI: 10.1002/adma.202000512
  • Mena-Giraldo, P., Orozco, J. 2021. Polymeric micro/nanocarriers and motors for cargo transport and phototriggered delivery, Polymers, Vol. 13, p.3920. DOI: 10.3390/polym13223920
  • Gao, W., Kagan, D., Pak, O.S., Clawson, C., Campuzano, S., Chuluun-Erdene, E., Shipton, E., Fullerton, E.E., Zhang, L., Lauga, E., Wang, J. 2012. Cargo-towing fuel-free magnetic nanoswimmers for targeted drug delivery, Small, Vol. 8, pp.460–467. DOI: 10.1002/smll.201101909
  • Liu, L., Chen, B., Liu, K., Gao, J., Ye, Y., Wang, Z., Qin, N., Wilson, D.A., Tu, Y., Peng, F. 2020. Wireless Manipulation of Magnetic/Piezoelectric Micromotors for Precise Neural Stem-Like Cell Stimulation, Advanced Functional Materials, Vol. 30, p.1910108. DOI: 10.1002/adfm.201910108
  • Burdick, J., Laocharoensuk, R., Wheat, P.M., Posner, J.D., Wang, J. 2008. Synthetic nanomotors in microchannel networks: Directional microchip motion and controlled manipulation of cargo, Journal of the American Chemical Society, Vol. 130, pp.8164–8165. DOI: 10.1021/ja803529u
  • Jurado-Sánchez, B., Wang, J. 2018. Micromotors for environmental applications: a review, Environmental Science: Nano, Vol. 5, pp.1530–1544. DOI: 10.1039/c8en00299a
  • Chen, R., Lin, B., Luo, R. 2022. Recent progress in polydopamine-based composites for the adsorption and degradation of industrial wastewater treatment, Heliyon, Vol. 8, p.e12105. DOI: 10.1016/j.heliyon.2022.e12105
  • Zeng, Q., Lin, H., Qu, Y., Huang, Z., Kong, N., Han, L., Chen, C., Li, B., Teng, J., Xu, Y., Shen, L. 2023. Breaking the cost barrier: polydopamine@NixCo100-x nanotubes as efficient photocatalysts for organic pollutant degradation, Journal of Cleaner Production, Vol. 415, p.137910. DOI: 10.1016/j.jclepro.2023.137910
  • Kesornsit, S., Jitjankarn, P., Sajomsang, W., Gonil, P., Bremner, J.B., Chairat, M. 2019. Polydopamine-coated silk yarn for improving the light fastness of natural dyes, Coloration Technology, Vol. 135, pp.143–151. DOI: 10.1111/cote.12390
  • Li, H., Yin, D., Li, W., Tang, Q., Zou, L., Peng, Q. 2021. Polydopamine-based nanomaterials and their potentials in advanced drug delivery and therapy, Colloids and Surfaces B: Biointerfaces, Vol. 199, p.111502. DOI: 10.1016/j.colsurfb.2020.111502
  • Turker, A., Yurdabak Karaca, G. 2024. Dual motion principal Au-Ni-PDA-CuS micromotors with NIR light and magnetic effect for detection of organic dye, Microchemical Journal, Vol. 207, p.111701. DOI: 10.1016/j.microc.2024.111701
  • Kara, U., Kilicoglu, O., Turker, A., Yurdabak Karaca, G. 2025. Multifunctional nano/micromotors: design, characterization, and potential applications in radiation attenuation, Radiation Effects and Defects in Solids, Vol. 2025, pp.1–16. DOI: 10.1080/10420150.2025.2467364
  • Jiang, W., Ye, G., Chen, B., Liu, H. 2021. A dual-driven biomimetic microrobot based on optical and magnetic propulsion, Journal of Micromechanics and Microengineering, Vol. 31, p.035003. DOI: 10.1088/1361-6439/abd8de
  • Pu, X., Zhao, D., Fu, C., Chen, Z., Cao, S., Wang, C., Cao, Y. 2021. Understanding and Calibration of Charge Storage Mechanism in Cyclic Voltammetry Curves, Angewandte Chemie International Edition, Vol. 60, pp.21310–21318. DOI: 10.1002/anie.202104167
  • Randviir, E.P. 2018. A cross examination of electron transfer rate constants for carbon screen-printed electrodes using Electrochemical Impedance Spectroscopy and cyclic voltammetry, Electrochimica Acta, Vol. 286, pp.179–186. DOI: 10.1016/j.electacta.2018.08.021

Polydopamine-Nickel Magnetic Micromotors for Efficient Detection of Methylene Blue Dye

Year 2025, Volume: 27 Issue: 81, 400 - 405, 29.09.2025
https://doi.org/10.21205/deufmd.2025278108

Abstract

Rapid industrialization has led to significant environmental challenges, such as the pollution of water bodies by synthetic dyes from industrial waste. These dyes pose health risks, including carcinogenic and mutagenic effects, and contribute to ecological problems. Common dyes like methylene blue (MB), while not highly toxic, can be harmful with prolonged exposure. This study focuses on developing polydopamine-nickel (PDA-Ni) magnetic micromotors for the sensitive detection of MB. These micromotors, produced using an electrochemical template method, can autonomously move and effectively detect high concentrations of MB in aqueous solutions. The tubular structure of the micromotors provides a large surface area for increased adsorption capacity. Electrochemical analyses using cyclic voltammetry show that the micromotors exhibit high sensitivity and stability across a wide range of MB concentrations, with a detection limit of 0.1 µM. This study highlights the potential of PDA-Ni micromotors in environmental monitoring and pollutant removal, offering a promising solution for managing water pollution.

References

  • Li, X., Zhao, Y., Wang, D., Du, X. 2023. Dual-propelled PDA@MnO2 nanomotors with NIR light and H2O2 for effective removal of heavy metal and organic dye, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 658, p.130712. DOI: 10.1016/j.colsurfa.2022.130712
  • Hu, X., Yang, Y., Wang, W., Wang, Y., Gong, X., Geng, C., Tang, J. 2023. Hollow Fe3+-Doped Anatase Titanium Dioxide Nanosphere for Photocatalytic Degradation of Organic Dyes, ACS Applied Nano Materials, Vol. 6, pp.18999–19009. DOI: 10.1021/acsanm.3c03452
  • Fadillah, G., Saleh, T.A., Wahyuningsih, S., Ninda Karlina Putri, E., Febrianastuti, S. 2019. Electrochemical removal of methylene blue using alginate-modified graphene adsorbents, Chemical Engineering Journal, Vol. 378, p.122140. DOI: 10.1016/j.cej.2019.122140
  • Ibupoto, A.S., Qureshi, U.A., Ahmed, F., Khatri, Z., Khatri, M., Maqsood, M., Brohi, R.Z., Kim, I.S. 2018. Reusable carbon nanofibers for efficient removal of methylene blue from aqueous solution, Chemical Engineering Research and Design, Vol. 136, pp.744–752. DOI: 10.1016/j.cherd.2018.06.035
  • Hayat, M., Shah, A., Nisar, J., Shah, I., Haleem, A., Ashiq, M.N. 2022. A Novel Electrochemical Sensing Platform for the Sensitive Detection and Degradation Monitoring of Methylene Blue, Catalysts, Vol. 12, p.306. DOI: 10.3390/catal12030306
  • Obayomi, K.S., Lau, S.Y., Zahir, A., Meunier, L., Jianhua, Z., Dada, A.O., Rahman, M.M. 2023. Removing methylene blue from water: A study of sorption effectiveness onto nanoparticles-doped activated carbon, Chemosphere, Vol. 313, p.137533. DOI: 10.1016/j.chemosphere.2022.137533
  • Zhao, Y., Wang, D., Luan, Y., Du, X. 2022. NIR-light propelled bowl-like mesoporous polydopamine@UiO-66 metal−organic framework nanomotors for enhanced removal of organic contaminant, Materials Today Sustainability, Vol. 18, p.100129. DOI: 10.1016/j.mtsust.2022.100129
  • Tang, B., Xi, C., Zou, Y., Wang, G., Li, X., Zhang, L., Chen, D., Zhang, J. 2014. Simultaneous determination of 16 synthetic colorants in hotpot condiment by high performance liquid chromatography, Journal of Chromatography B, Vol. 960, pp.87–91. DOI: 10.1016/j.jchromb.2014.04.026
  • Alesso, M., Bondioli, G., Talío, M.C., Luconi, M.O., Fernández, L.P. 2012. Micelles mediated separation fluorimetric methodology for Rhodamine B determination in condiments, snacks and candies, Food Chemistry, Vol. 134, pp.513–517. DOI: 10.1016/j.foodchem.2012.02.110
  • Zhu, X., Liu, J., Zhang, Z., Lu, N., Yuan, X., Wu, D. 2015. Green synthesis of a bromocresol purple/graphene composite and its application in electrochemical determination of 2,4,6-trichlorophenol, Analytical Methods, Vol. 7, pp.3178–3184. DOI: 10.1039/C5AY00177C
  • Terbouche, A., Lameche, S., Ait-Ramdane-Terbouche, C., Guerniche, D., Lerari, D., Bachari, K., Hauchard, D. 2016. A new electrochemical sensor based on carbon paste electrode/Ru(III) complex for determination of nitrite: Electrochemical impedance and cyclic voltammetry measurements, Measurement, Vol. 92, pp.524–533. DOI: 10.1016/j.measurement.2016.06.034
  • Yadav, S., Carrascosa, L.G., Sina, A.A.I., Shiddiky, M.J.A., Hill, M.M., Trau, M. 2016. Electrochemical detection of protein glycosylation using lectin and protein–gold affinity interactions, Analyst, Vol. 141, pp.2356–2361. DOI: 10.1039/C6AN00528D
  • Zhang, Y., Yuan, K., Zhang, L. 2019. Micro/Nanomachines: from Functionalization to Sensing and Removal, Advanced Materials Technologies, Vol. 4, p.1800636. DOI: 10.1002/admt.201800636
  • Kim, K., Guo, J., Liang, Z., Fan, D. 2018. Artificial Micro/Nanomachines for Bioapplications: Biochemical Delivery and Diagnostic Sensing, Advanced Functional Materials, Vol. 28, p.1705867. DOI: 10.1002/adfm.201705867
  • Zhang, X., Chen, C., Wu, J., Ju, H. 2019. Bubble-Propelled Jellyfish-like Micromotors for DNA Sensing, ACS Applied Materials & Interfaces, Vol. 11, pp.13581–13588. DOI: 10.1021/acsami.9b00605
  • Esteban-Fernández de Ávila, B., Martín, A., Soto, F., Lopez-Ramirez, M.A., Campuzano, S., Vásquez-Machado, G.M., Gao, W., Zhang, L., Wang, J. 2015. Single Cell Real-Time miRNAs Sensing Based on Nanomotors, ACS Nano, Vol. 9, pp.6756–6764. DOI: 10.1021/acsnano.5b02807
  • Celik Cogal, G., Das, P.K., Yurdabak Karaca, G., Bhethanabotla, V.R., Uygun Oksuz, A. 2021. Fluorescence Detection of miRNA-21 Using Au/Pt Bimetallic Tubular Micromotors Driven by Chemical and Surface Acoustic Wave Forces, ACS Applied Bio Materials, Vol. 4, pp.7932–7941. DOI: 10.1021/acsabm.1c00854
  • Gao, C., Wang, Y., Ye, Z., Lin, Z., Ma, X., He, Q. 2021. Biomedical Micro-/Nanomotors: From Overcoming Biological Barriers to In Vivo Imaging, Advanced Materials, Vol. 33, p.2000512. DOI: 10.1002/adma.202000512
  • Mena-Giraldo, P., Orozco, J. 2021. Polymeric micro/nanocarriers and motors for cargo transport and phototriggered delivery, Polymers, Vol. 13, p.3920. DOI: 10.3390/polym13223920
  • Gao, W., Kagan, D., Pak, O.S., Clawson, C., Campuzano, S., Chuluun-Erdene, E., Shipton, E., Fullerton, E.E., Zhang, L., Lauga, E., Wang, J. 2012. Cargo-towing fuel-free magnetic nanoswimmers for targeted drug delivery, Small, Vol. 8, pp.460–467. DOI: 10.1002/smll.201101909
  • Liu, L., Chen, B., Liu, K., Gao, J., Ye, Y., Wang, Z., Qin, N., Wilson, D.A., Tu, Y., Peng, F. 2020. Wireless Manipulation of Magnetic/Piezoelectric Micromotors for Precise Neural Stem-Like Cell Stimulation, Advanced Functional Materials, Vol. 30, p.1910108. DOI: 10.1002/adfm.201910108
  • Burdick, J., Laocharoensuk, R., Wheat, P.M., Posner, J.D., Wang, J. 2008. Synthetic nanomotors in microchannel networks: Directional microchip motion and controlled manipulation of cargo, Journal of the American Chemical Society, Vol. 130, pp.8164–8165. DOI: 10.1021/ja803529u
  • Jurado-Sánchez, B., Wang, J. 2018. Micromotors for environmental applications: a review, Environmental Science: Nano, Vol. 5, pp.1530–1544. DOI: 10.1039/c8en00299a
  • Chen, R., Lin, B., Luo, R. 2022. Recent progress in polydopamine-based composites for the adsorption and degradation of industrial wastewater treatment, Heliyon, Vol. 8, p.e12105. DOI: 10.1016/j.heliyon.2022.e12105
  • Zeng, Q., Lin, H., Qu, Y., Huang, Z., Kong, N., Han, L., Chen, C., Li, B., Teng, J., Xu, Y., Shen, L. 2023. Breaking the cost barrier: polydopamine@NixCo100-x nanotubes as efficient photocatalysts for organic pollutant degradation, Journal of Cleaner Production, Vol. 415, p.137910. DOI: 10.1016/j.jclepro.2023.137910
  • Kesornsit, S., Jitjankarn, P., Sajomsang, W., Gonil, P., Bremner, J.B., Chairat, M. 2019. Polydopamine-coated silk yarn for improving the light fastness of natural dyes, Coloration Technology, Vol. 135, pp.143–151. DOI: 10.1111/cote.12390
  • Li, H., Yin, D., Li, W., Tang, Q., Zou, L., Peng, Q. 2021. Polydopamine-based nanomaterials and their potentials in advanced drug delivery and therapy, Colloids and Surfaces B: Biointerfaces, Vol. 199, p.111502. DOI: 10.1016/j.colsurfb.2020.111502
  • Turker, A., Yurdabak Karaca, G. 2024. Dual motion principal Au-Ni-PDA-CuS micromotors with NIR light and magnetic effect for detection of organic dye, Microchemical Journal, Vol. 207, p.111701. DOI: 10.1016/j.microc.2024.111701
  • Kara, U., Kilicoglu, O., Turker, A., Yurdabak Karaca, G. 2025. Multifunctional nano/micromotors: design, characterization, and potential applications in radiation attenuation, Radiation Effects and Defects in Solids, Vol. 2025, pp.1–16. DOI: 10.1080/10420150.2025.2467364
  • Jiang, W., Ye, G., Chen, B., Liu, H. 2021. A dual-driven biomimetic microrobot based on optical and magnetic propulsion, Journal of Micromechanics and Microengineering, Vol. 31, p.035003. DOI: 10.1088/1361-6439/abd8de
  • Pu, X., Zhao, D., Fu, C., Chen, Z., Cao, S., Wang, C., Cao, Y. 2021. Understanding and Calibration of Charge Storage Mechanism in Cyclic Voltammetry Curves, Angewandte Chemie International Edition, Vol. 60, pp.21310–21318. DOI: 10.1002/anie.202104167
  • Randviir, E.P. 2018. A cross examination of electron transfer rate constants for carbon screen-printed electrodes using Electrochemical Impedance Spectroscopy and cyclic voltammetry, Electrochimica Acta, Vol. 286, pp.179–186. DOI: 10.1016/j.electacta.2018.08.021
There are 32 citations in total.

Details

Primary Language English
Subjects Sensor Technology, Nanomaterials
Journal Section Research Article
Authors

Gözde Yurdabak Karaca 0000-0002-5371-2613

Early Pub Date September 25, 2025
Publication Date September 29, 2025
Submission Date September 10, 2024
Acceptance Date December 2, 2024
Published in Issue Year 2025 Volume: 27 Issue: 81

Cite

APA Yurdabak Karaca, G. (2025). Polydopamine-Nickel Magnetic Micromotors for Efficient Detection of Methylene Blue Dye. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 27(81), 400-405. https://doi.org/10.21205/deufmd.2025278108
AMA Yurdabak Karaca G. Polydopamine-Nickel Magnetic Micromotors for Efficient Detection of Methylene Blue Dye. DEUFMD. September 2025;27(81):400-405. doi:10.21205/deufmd.2025278108
Chicago Yurdabak Karaca, Gözde. “Polydopamine-Nickel Magnetic Micromotors for Efficient Detection of Methylene Blue Dye”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 27, no. 81 (September 2025): 400-405. https://doi.org/10.21205/deufmd.2025278108.
EndNote Yurdabak Karaca G (September 1, 2025) Polydopamine-Nickel Magnetic Micromotors for Efficient Detection of Methylene Blue Dye. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 27 81 400–405.
IEEE G. Yurdabak Karaca, “Polydopamine-Nickel Magnetic Micromotors for Efficient Detection of Methylene Blue Dye”, DEUFMD, vol. 27, no. 81, pp. 400–405, 2025, doi: 10.21205/deufmd.2025278108.
ISNAD Yurdabak Karaca, Gözde. “Polydopamine-Nickel Magnetic Micromotors for Efficient Detection of Methylene Blue Dye”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 27/81 (September2025), 400-405. https://doi.org/10.21205/deufmd.2025278108.
JAMA Yurdabak Karaca G. Polydopamine-Nickel Magnetic Micromotors for Efficient Detection of Methylene Blue Dye. DEUFMD. 2025;27:400–405.
MLA Yurdabak Karaca, Gözde. “Polydopamine-Nickel Magnetic Micromotors for Efficient Detection of Methylene Blue Dye”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 27, no. 81, 2025, pp. 400-5, doi:10.21205/deufmd.2025278108.
Vancouver Yurdabak Karaca G. Polydopamine-Nickel Magnetic Micromotors for Efficient Detection of Methylene Blue Dye. DEUFMD. 2025;27(81):400-5.