Research Article
BibTex RIS Cite

Uzaktan Algılama Verileri ve Hücresel Otomata Yaklaşımı Kullanılarak 2000-2030 Dönemi Arazi Kullanımı ve Örtü Değişikliğinin İzlenmesi ve Tahmin Edilmesi

Year 2025, Volume: 27 Issue: 81, 442 - 456, 29.09.2025
https://doi.org/10.21205/deufmd.2025278112

Abstract

Ormancılık, tarım, endüstriyel gelişim, şehir planlama, kırsal ve kentsel yönetim ve doğal kaynak yönetimi gibi çeşitli yönetim disiplinlerinde bilinçli karar alma için arazi kullanımı ve arazi örtüsü değişikliklerini anlamak ve karakterize etmek çok önemlidir. Bu çalışmada, hızlı bir sanayileşme süreci geçiren İzmit ili ve çevresindeki alanlardaki arazi kullanımı ve arazi örtüsü (AKAÖ) değişiklikleri, Uzaktan Algılama (UA) ve Yapay Sinir Ağı (YSA) metodolojileri kullanılarak 2000-2010 ve 2020 dönemleri için analiz edilmiştir. Ayrıca, 2030 yılı için bir AKAÖ projeksiyonu oluşturularak haritalanmıştır. Bu çalışma kapsamında, uydu görüntülerinden elde edilen yükseklik ve eğim değişkenleri kullanılarak dört kategorideki (orman, su, tarım ve yapılaşmış alanlar) arazi kullanım değişiklikleri simüle edilmiştir. Landsat 5 Tematik Haritalayıcı, Landsat 7 Geliştirilmiş Tematik Haritalayıcı Plus ve Landsat 8 Operasyonel Arazi Görüntüleyici uydu görüntüleri simülasyon için veri kaynağı olarak kullanılmıştır. Sınıflandırılmış görüntüler sonucunda Kappa değerleri 2000 yılı için %91, 2010 yılı için %87 ve 2020 yılı için %94 olarak hesaplanmıştır. 2030 simülasyonunun doğrulama değeri %89,2 olarak belirlenmiştir. 2030 simülasyonunun doğrulama değeri %89,2 olarak belirlenmiştir. Yapılan çalışma sonucunda sanayi kenti İzmit'te 2020-2030 yılları arasında orman alanlarının % 0,41, tarım alanlarının % 4,38, su alanlarının ise % 0,04 oranında azalacağı, yapılaşmış alanların ise % 37,06 oranında artacağı öngörülmektedir. Orman ve sucul ekosistemlerin kademeli olarak mekansal ve zamansal bir düşüş yaşadığı, tarım alanlarının ise daha hızlı bir azalma oranına maruz kaldığı ve bu eğilimin devam edeceği öngörülmektedir.

Project Number

Not applicable

References

  • United Nations, 2015. Population 2030: Demographic challenges and opportunities for sustainable development planning. https://www.un.org/en/development/desa/population/publications/pdf/trends/Population2030.pdf (Accessed: Sep. 19, 2025).
  • TUIK, 2023. The Results of Address Based Population Registration System 2022 in Türkiye. https://data.tuik.gov.tr/Bulten/Index?p=Nufus-Projeksiyonlari-2023-2100-53699 (Accessed: Sep. 19, 2025).
  • Satya, B.A., Shashi, M., Deva, P. 2020. Future land use land cover scenario simulation using open source GIS for the city of Warangal, Telangana, India, Applied Geomatics, Vol. 12, no. 3, pp. 281-290, DOI: 10.1007/s12518-020-00298-4.
  • Kwak, Y., Deal, B., Heavisides, T. 2021. A large scale multi criteria suitability analysis for identifying solar development potential: A decision support approach for the state of Illinois, USA, Renewable Energy, Vol. 177, pp. 554-567, DOI: 10.1016/j.renene.2021.05.165.
  • Guan, D., Li, H., Inohae, T., Su, W., Nagaie, T., Hokao, K. 2011. Modeling urban land use change by the integration of cellular automaton and Markov model, Ecological Modelling, Vol. 222, no. 20-22, pp. 3761-3772, DOI: 10.1016/j.ecolmodel.2011.09.009.
  • Almeida, C.M., Gleriani, J.M., Castejon, E.F., Soares-Filho, B.S. 2008. Using neural networks and cellular automata for modelling intra-urban land-use dynamics, International Journal of Geographical Information Science, Vol. 22, no. 9, pp. 943-963, DOI: 10.1080/13658810701731168.
  • Uysal, C., Maktav, D. 2015. Landsat verileri ve lineer spektral ayriştirma (unmixing) yöntemi kullanilarak izmit körfezi çevresinde kentsel değişim alanlarinin belirlenmesi, Journal of Aeronautics and Space Technologies (Havacilik ve Uzay Teknolojileri Dergisi), Vol. 8, no. 1, p. 6, DOI: 10.7603/s40690-015-0006-8.
  • Buğday, E., Erkan Buğday, S. 2019. Modeling and Simulating Land Use/Cover Change Using Artificial Neural Network From Remotely Sensing Data, CERNE, Vol. 25, no. 2, pp. 246-254, DOI: 10.1590/01047760201925022634.
  • Elliott, M., Day, J.W., Ramachandran, R., Wolanski, E. 2019. A Synthesis: What Is the Future for Coasts, Estuaries, Deltas and Other Transitional Habitats in 2050 and Beyond?, in Coasts and Estuaries, Elsevier, pp. 1-28, DOI: 10.1016/B978-0-12-814003-1.00001-0.
  • Rimal, B., Zhang, L., Keshtkar, H., Wang, N., Lin, Y. 2017. Monitoring and Modeling of Spatiotemporal Urban Expansion and Land-Use/Land-Cover Change Using Integrated Markov Chain Cellular Automata Model, ISPRS International Journal of Geo-Information, Vol. 6, no. 9, p. 288, DOI: 10.3390/ijgi6090288.
  • Xu, Q., Li, K. 2024. Land Use Carbon Emission Estimation and Simulation of Carbon-Neutral Scenarios Based on System Dynamics in Coastal City: A Case Study of Nantong, China, Land, Vol. 13, no. 7, p. 1083, DOI: 10.3390/land13071083.
  • Kaloudis, S., Glykou, M., Galanopoulou, S., Fotiadis, G., Yialouris, C., Raptis, D. 2023. Land Cover Changes in Evrytania Prefecture (Greece), Forests, Vol. 14, no. 7, p. 1462, DOI: 10.3390/f14071462.
  • Alam, A., Bhat, M.S., Maheen, M. 2020. Using Landsat satellite data for assessing the land use and land cover change in Kashmir valley, GeoJournal, Vol. 85, no. 6, pp. 1529-1543, DOI: 10.1007/s10708-019-10037-x.
  • Mallupattu, P.K., Sreenivasula Reddy, J.R. 2013. Analysis of Land Use/Land Cover Changes Using Remote Sensing Data and GIS at an Urban Area, Tirupati, India, The Scientific World Journal, Vol. 2013, p. 268623, DOI: 10.1155/2013/268623.
  • Yıldız, S. 2016. İzmit Şehrinin Mekansal Gelişim Süreci. Master's Thesis, Sakarya University, Sakarya. https://www.proquest.com/openview/97f1dc9c925fd6fdadea9b44746c8b24/1?pq-origsite=gscholar&cbl=2026366&diss=y (Accessed: Sep. 19, 2025).
  • Singh, R.K., Singh, P., Drews, M., Kumar, P., Singh, H., Gupta, A.K., Kumar, M. 2021. A machine learning-based classification of LANDSAT images to map land use and land cover of India, Remote Sensing Applications: Society and Environment, Vol. 24, p. 100624, DOI: 10.1016/j.rsase.2021.100624.
  • Kim, C. 2016. Land use classification and land use change analysis using satellite images in Lombok Island, Indonesia, Forest Science and Technology, Vol. 12, no. 4, pp. 183-191, DOI: 10.1080/21580103.2016.1147498.
  • Wang, J., Maduako, I.N. 2018. Spatio-temporal urban growth dynamics of Lagos Metropolitan Region of Nigeria based on Hybrid methods for LULC modeling and prediction, European Journal of Remote Sensing, Vol. 51, no. 1, pp. 251-265, DOI: 10.1080/22797254.2017.1419831.
  • Yazıcı, A.D., Öztürk, D., Ayazılı, İ.E. 2019. Kentsel Büyümenin Modellenmesi ve Simülasyon Modelleri, International Journal of Multidisciplinary Studies and Innovative Technologies, Vol. 3, no. 1, pp. 44-47.
  • Muhammad, R., Zhang, W., Abbas, Z., Guo, F., Gwiazdzinski, L. 2022. Spatiotemporal Change Analysis and Prediction of Future Land Use and Land Cover Changes Using QGIS MOLUSCE Plugin and Remote Sensing Big Data: A Case Study of Linyi, China, Land, Vol. 11, no. 3, p. 419, DOI: 10.3390/land11030419.
  • Thodda, G., Madhavan, V.R., Thangavelu, L. 2023. Predictive Modelling and Optimization of Performance and Emissions of Acetylene Fuelled CI Engine Using ANN and RSM, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Vol. 45, no. 2, pp. 3544-3562, DOI: 10.1080/15567036.2020.1829191.
  • Kocaeli Valiliği, 2022. İzmit tanıtımı. http://www.kocaeli.gov.tr/izmit (Accessed: Sep. 19, 2025).
  • Yıldız, S., Döker, M. 2016. İzmit Şehrinin Nüfus Gelişimi (The Population Changes of the City of İzmit), Coğrafya Dergisi, no. 32, pp. 33-37.
  • Başoğlu, M.E., Kazdaloğlu, A., Erfidan, T., Bilgin, M.Z., Çakır, B. 2015. Performance analyzes of different photovoltaic module technologies under İzmit, Kocaeli climatic conditions, Renewable and Sustainable Energy Reviews, Vol. 52, pp. 357-365, DOI: 10.1016/j.rser.2015.07.108.
  • Srivastava, P.K., Han, D., Rico-Ramirez, M.A., Bray, M., Islam, T. 2012. Selection of classification techniques for land use/land cover change investigation, Advances in Space Research, Vol. 50, no. 9, pp. 1250-1265, DOI: 10.1016/j.asr.2012.06.032.
  • Bolat, S., Doğan, M. 2022. Uzun Dönemli (1984-2020) Arazi Kullanımı Değişiminin Tespiti ve Modellemesi (2035): Gölcük İlçesi’nin Analizi, Coğrafya Dergisi / Journal of Geography, no. 44, pp. 169-181, DOI: 10.26650/JGEOG2022-997334.
  • Gao, C., Cheng, D., Iqbal, J., Yao, S. 2023. Spatiotemporal Change Analysis and Prediction of the Great Yellow River Region (GYRR) Land Cover and the Relationship Analysis with Mountain Hazards, Land, Vol. 12, no. 2, p. 340, DOI: 10.3390/land12020340.
  • Cohen, J. 1960. A Coefficient of Agreement for Nominal Scales, Educational and Psychological Measurement, Vol. 20, no. 1, pp. 37-46, DOI: 10.1177/001316446002000104.
  • Bishop, C.M. 1995. Neural networks for pattern recognition. Oxford University Press.
  • Tong, X., Feng, Y. 2020. A review of assessment methods for cellular automata models of land-use change and urban growth, International Journal of Geographical Information Science, Vol. 34, no. 5, pp. 866-898, DOI: 10.1080/13658816.2019.1684499.
  • Canpolat, F.A., Dağli, D. 2020. Elaziğ Ili’nde Arazi Kullanimi Değişimi (2006-2018) Ve Simülasyonu (2030), lnternational Journal of Geography and Geography Education, no. 42, pp. 702-723, DOI: 10.32003/igge.746668.
  • Subedi, P., Subedi, K., Thapa, B. 2013. Application of a Hybrid Cellular Automaton - Markov (CA-Markov) Model in Land-Use Change Prediction: A Case Study of Saddle Creek Drainage Basin, Florida, Applied Ecology and Environmental Sciences, Vol. 1, no. 6, pp. 126-132, DOI: 10.12691/aees-l-6-5.
  • Chopard, B., Droz, M. 1991. Cellular automata model for the diffusion equation, Journal of Statistical Physics, Vol. 64, no. 3-4, pp. 859-892, DOI: 10.1007/BF01048321.
  • Behera, M.D., Borate, S.N., Panda, S.N., Behera, P.R., Roy, P.S. 2012. Modelling and analyzing the watershed dynamics using Cellular Automata (CA)–Markov model – A geo-information based approach, Journal of Earth System Science, Vol. 121, no. 4, pp. 1011-1024, DOI: 10.1007/s12040-012-0207-5.
  • Kerner, B.S., Klenov, S.L., Wolf, D.E. 2002. Cellular automata approach to three-phase traffic theory, Journal of Physics A: Mathematical and General, Vol. 35, no. 47, pp. 9971-10013, DOI: 10.1088/0305-4470/35/47/303.
  • Kamusoko, C., Aniya, M., Adi, B., Manjoro, M. 2009. Rural sustainability under threat in Zimbabwe – Simulation of future land use/cover changes in the Bindura district based on the Markov-cellular automata model, Applied Geography, Vol. 29, no. 3, pp. 435-447, DOI: 10.1016/j.apgeog.2008.10.002.
  • Leulmi, L., Lazri, Y., Abdelkebir, B., Bensehla, S. 2023. Assessment of the effect of land use and land cover (LULC) change on depth runoff: Case study of Skikda floods event, Glasnik Srpskog geografskog drustva, Vol. 103, no. 2, pp. 145-160, DOI: 10.2298/GSGD2302145L.
  • Sharma, S., Hussain, S., Singh, A.N. 2023. Impact of land use and land cover on urban ecosystem service value in Chandigarh, India: a GIS-based analysis, Journal of Urban Ecology, Vol. 9, no. 1, p. juac030, DOI: 10.1093/jue/juac030.
  • Blakime, T.-H., Adjonou, K., Komi, K., Hlovor, A.K.D., Gbafa, K.S., Zoungrana, J.-B.B., Kokou, K. 2024. Dynamics of Built-Up Areas and Challenges of Planning and Development of Urban Zone of Greater Lomé in Togo, West Africa, Land, Vol. 13, no. 1, p. 84, DOI: 10.3390/land13010084.
  • Naikoo, M.W., Rihan, M., Ishtiaque, M., Shahfahad. 2020. Analyses of land use land cover (LULC) change and built-up expansion in the suburb of a metropolitan city: Spatio-temporal analysis of Delhi NCR using landsat datasets, Journal of Urban Management, Vol. 9, no. 3, pp. 347-359, DOI: 10.1016/j.jum.2020.05.004.
  • Nasir, S.B., Ang, M.L.E., Nath, T.K., Owen, J., Tritto, A., Lechner, A.M. 2023. Modelling past and future land‐use changes from mining, agriculture, industry and biodiversity in a rapidly developing Southeast Asian region, Integrative Conservation, Vol. 2, no. 1, pp. 43-61, DOI: 10.1002/inc3.17.
  • Rachman, F., Huang, J., Xue, X., Marfai, M.A. 2024. Insights from 30 Years of Land Use/Land Cover Transitions in Jakarta, Indonesia, via Intensity Analysis, Land, Vol. 13, no. 4, p. 545, DOI: 10.3390/land13040545.
  • Kullo, E.D., Forkuo, E.K., Biney, E., Harris, E., Quaye-Ballard, J.A. 2021. The impact of land use and land cover changes on socioeconomic factors and livelihood in the Atwima Nwabiagya district of the Ashanti region, Ghana, Environmental Challenges, Vol. 5, p. 100226, DOI: 10.1016/j.envc.2021.100226.
  • Pande, C.B., Moharir, K.N., Varade, A.M., Abdo, H.G., Mulla, S., Yaseen, Z.M. 2023. Intertwined impacts of urbanization and land cover change on urban climate and agriculture in Aurangabad city (MS), India using google earth engine platform, Journal of Cleaner Production, Vol. 422, p. 138541, DOI: 10.1016/j.jclepro.2023.138541.
  • Anand, V., Oinam, B. 2020. Future land use land cover prediction with special emphasis on urbanization and wetlands, Remote Sensing Letters, Vol. 11, no. 3, pp. 225-234, DOI: 10.1080/2150704X.2019.1704304.
  • Benavidez-Silva, C., Jensen, M., Pliscoff, P. 2021. Future Scenarios for Land Use in Chile: Identifying Drivers of Change and Impacts over Protected Area System, Land, Vol. 10, no. 4, p. 408, DOI: 10.3390/land10040408.
  • Muchelo, R.O., Bishop, T.F.A., Ugbaje, S.U., Akpa, S.I.C. 2024. Patterns of Urban Sprawl and Agricultural Land Loss in Sub-Saharan Africa: The Cases of the Ugandan Cities of Kampala and Mbarara, Land, Vol. 13, no. 7, p. 1056, DOI: 10.3390/land13071056.
  • Mohibul, S., Sarif, M.N., Parveen, N., Mondal, M., Ali, M.I., Karikar, B.A., Siddiqui, L. 2024. Assessing Land Use/Land Cover Transformation and Wetland Decline in Birbhum District, West Bengal: A Time-Series Analysis, in Water Resource Management in Climate Change Scenario, Springer Nature Switzerland, pp. 265-281, DOI: 10.1007/978-3-031-61121-6_16.
  • Patel, A., Vyas, D., Chaudhari, N., Patel, R., Patel, K., Mehta, D. 2024. Novel approach for the LULC change detection using GIS & Google Earth Engine through spatiotemporal analysis to evaluate the urbanization growth of Ahmedabad city, Results in Engineering, Vol. 21, p. 101788, DOI: 10.1016/j.rineng.2024.101788.
  • Ahialey, E.K., Kabo–bah, A.T., Gyamfi, S. 2024. LULC changes in the region of the proposed Pwalugu hydropower project using GIS and remote sensing technique, Journal of Geography and Cartography, Vol. 7, no. 2, p. 8282, DOI: 10.24294/jgc.v7i2.8282.
  • Zafar, Z., Mehmood, M.S., Ahamad, M.I., Chudhary, A., Abbas, N., Khan, A.R., Abdal, S. 2021. Trend analysis of the decadal variations of water bodies and land use/land cover through MODIS imagery: an in-depth study from Gilgit-Baltistan, Pakistan, Water Supply, Vol. 21, no. 2, pp. 927-940, DOI: 10.2166/ws.2020.355.
  • Liu, J., Shao, Q., Yan, X., Fan, J., Zhan, J., Deng, X., Huang, L. 2016. The climatic impacts of land use and land cover change compared among countries, Journal of Geographical Sciences, Vol. 26, no. 7, pp. 889-903, DOI: 10.1007/s11442-016-1305-0.
  • Petit, C.C., Lambin, E.F. 2002. Impact of data integration technique on historical land-use/land-cover change: Comparing historical maps with remote sensing data in the Belgian Ardennes, Landscape Ecology, Vol. 17, no. 2, pp. 117-132, DOI: 10.1023/A:1016599627798.
  • Bukoye, J.A., Oluwajuwon, T.V., Alo, A.A., Offiah, C., Israel, R., Ogunmodede, M.E. 2023. Land Use Land Cover Dynamics of Oba Hills Forest Reserve, Nigeria, Employing Multispectral Imagery and GIS, Advances in Remote Sensing, Vol. 12, no. 4, pp. 123-144, DOI: 10.4236/ars.2023.124007.
  • Shiferaw, M., Kebebew, Z., Gemeda, D.O. 2023. Effect of forest cover change on ecosystem services in central highlands of Ethiopia: A case of Wof-Washa forest, Heliyon, Vol. 9, no. 7, p. e18173, DOI: 10.1016/j.heliyon.2023.e18173.
  • Zhu, Z., Zhu, X. 2021. Study on Spatiotemporal Characteristic and Mechanism of Forest Loss in Urban Agglomeration in the Middle Reaches of the Yangtze River, Forests, Vol. 12, no. 9, p. 1242, DOI: 10.3390/f12091242.
  • Van Vliet, J. 2019. Direct and indirect loss of natural area from urban expansion, Nature Sustainability, Vol. 2, no. 8, pp. 755-763, DOI: 10.1038/s41893-019-0340-0.
  • Van Der Laan, C., Wicke, B., Verweij, P.A., Faaij, A.P.C. 2017. Mitigation of unwanted direct and indirect land-use change – an integrated approach illustrated for palm oil, pulpwood, rubber and rice production in North and East Kalimantan, Indonesia, GCB Bioenergy, Vol. 9, no. 2, pp. 429-444, DOI: 10.1111/gcbb.12353.
  • Molinario, G., Hansen, M., Potapov, P., Tyukavina, A., Stehman, S. 2020. Contextualizing Landscape-Scale Forest Cover Loss in the Democratic Republic of Congo (DRC) between 2000 and 2015, Land, Vol. 9, no. 1, p. 23, DOI: 10.3390/land9010023.
  • Haas, J., Furberg, D., Ban, Y. 2015. Satellite monitoring of urbanization and environmental impacts—A comparison of Stockholm and Shanghai, International Journal of Applied Earth Observation and Geoinformation, Vol. 38, pp. 138-149, DOI: 10.1016/j.jag.2014.12.008.
  • Rohatyn, S., Rotenberg, E., Ramati, E., Tatarinov, F., Tas, E., Yakir, D. 2018. Differential Impacts of Land Use and Precipitation on “Ecosystem Water Yield.”, Water Resources Research, Vol. 54, no. 8, pp. 5457-5470, DOI: 10.1029/2017WR022267.
  • Moutinho, P., Guerra, R., Azevedo-Ramos, C. 2016. Achieving zero deforestation in the Brazilian Amazon: What is missing?, Elementa: Science of the Anthropocene, Vol. 4, p. 000125, DOI: 10.12952/journal.elementa.000125.

Monitoring and Predicting of Land Use and Cover Change for the period 2000-2030 Using Remote Sensing Data and Cellular Automata Approach

Year 2025, Volume: 27 Issue: 81, 442 - 456, 29.09.2025
https://doi.org/10.21205/deufmd.2025278112

Abstract

Understanding and characterize land use and land cover changes are crucial for informed decision-making in various management disciplines, including forestry, agriculture, industrial development, urban planning, rural and urban administration, and natural resource management. In this study, the land use and land cover (LULC) changes in İzmit province and its adjacent areas, undergoing rapid industrialization, were analyzed for the periods 2000-2010 and 2020 using Remote Sensing (RS) and Artificial Neural Network (ANN) methodologies. Additionally, a LULC projection for the year 2030 was generated and mapped. Within the scope of this study, land use changes across four categories (forest, water, agricultural, and built-up areas) were simulated utilizing elevation and slope variables derived from satellite imagery. Landsat 5 Thematic Mapper, Landsat 7 Enhanced Thematic Mapper Plus, and Landsat 8 Operational Land Imager satellite imagery were employed as data sources for the simulation. As a result of classified images Kappa values were calculated as 91% for 2000, 87% for 2010 and 94% for 2020. The validation value of the 2030 simulation was determined as 89.2%. This study project that, forest areas will decrease by 0.41%, agricultural areas by 4.38%, and water areas by 0.04%, while built-up areas in the industrial city of İzmit are expected to increase by 37.06% from 2020 to 2030. It is projected that forest and aquatic ecosystems are experiencing gradual spatiotemporal decline, whereas agricultural lands are undergoing a more rapid rate of reduction, a trend anticipated to persist.

Supporting Institution

No funding support was received for this study.

Project Number

Not applicable

Thanks

This research, titled “Modeling of Land Use and Land Cover Change with Remote Sensing Data and Artificial Neural Networks (İzmit Sample)” by Gülşen KEÇELİ, was carried out in the Department of Forest Engineering, Graduate School of Natural and Applied Sciences at Çankırı Karatekin University, is derived from master’s thesis completed in 2022.

References

  • United Nations, 2015. Population 2030: Demographic challenges and opportunities for sustainable development planning. https://www.un.org/en/development/desa/population/publications/pdf/trends/Population2030.pdf (Accessed: Sep. 19, 2025).
  • TUIK, 2023. The Results of Address Based Population Registration System 2022 in Türkiye. https://data.tuik.gov.tr/Bulten/Index?p=Nufus-Projeksiyonlari-2023-2100-53699 (Accessed: Sep. 19, 2025).
  • Satya, B.A., Shashi, M., Deva, P. 2020. Future land use land cover scenario simulation using open source GIS for the city of Warangal, Telangana, India, Applied Geomatics, Vol. 12, no. 3, pp. 281-290, DOI: 10.1007/s12518-020-00298-4.
  • Kwak, Y., Deal, B., Heavisides, T. 2021. A large scale multi criteria suitability analysis for identifying solar development potential: A decision support approach for the state of Illinois, USA, Renewable Energy, Vol. 177, pp. 554-567, DOI: 10.1016/j.renene.2021.05.165.
  • Guan, D., Li, H., Inohae, T., Su, W., Nagaie, T., Hokao, K. 2011. Modeling urban land use change by the integration of cellular automaton and Markov model, Ecological Modelling, Vol. 222, no. 20-22, pp. 3761-3772, DOI: 10.1016/j.ecolmodel.2011.09.009.
  • Almeida, C.M., Gleriani, J.M., Castejon, E.F., Soares-Filho, B.S. 2008. Using neural networks and cellular automata for modelling intra-urban land-use dynamics, International Journal of Geographical Information Science, Vol. 22, no. 9, pp. 943-963, DOI: 10.1080/13658810701731168.
  • Uysal, C., Maktav, D. 2015. Landsat verileri ve lineer spektral ayriştirma (unmixing) yöntemi kullanilarak izmit körfezi çevresinde kentsel değişim alanlarinin belirlenmesi, Journal of Aeronautics and Space Technologies (Havacilik ve Uzay Teknolojileri Dergisi), Vol. 8, no. 1, p. 6, DOI: 10.7603/s40690-015-0006-8.
  • Buğday, E., Erkan Buğday, S. 2019. Modeling and Simulating Land Use/Cover Change Using Artificial Neural Network From Remotely Sensing Data, CERNE, Vol. 25, no. 2, pp. 246-254, DOI: 10.1590/01047760201925022634.
  • Elliott, M., Day, J.W., Ramachandran, R., Wolanski, E. 2019. A Synthesis: What Is the Future for Coasts, Estuaries, Deltas and Other Transitional Habitats in 2050 and Beyond?, in Coasts and Estuaries, Elsevier, pp. 1-28, DOI: 10.1016/B978-0-12-814003-1.00001-0.
  • Rimal, B., Zhang, L., Keshtkar, H., Wang, N., Lin, Y. 2017. Monitoring and Modeling of Spatiotemporal Urban Expansion and Land-Use/Land-Cover Change Using Integrated Markov Chain Cellular Automata Model, ISPRS International Journal of Geo-Information, Vol. 6, no. 9, p. 288, DOI: 10.3390/ijgi6090288.
  • Xu, Q., Li, K. 2024. Land Use Carbon Emission Estimation and Simulation of Carbon-Neutral Scenarios Based on System Dynamics in Coastal City: A Case Study of Nantong, China, Land, Vol. 13, no. 7, p. 1083, DOI: 10.3390/land13071083.
  • Kaloudis, S., Glykou, M., Galanopoulou, S., Fotiadis, G., Yialouris, C., Raptis, D. 2023. Land Cover Changes in Evrytania Prefecture (Greece), Forests, Vol. 14, no. 7, p. 1462, DOI: 10.3390/f14071462.
  • Alam, A., Bhat, M.S., Maheen, M. 2020. Using Landsat satellite data for assessing the land use and land cover change in Kashmir valley, GeoJournal, Vol. 85, no. 6, pp. 1529-1543, DOI: 10.1007/s10708-019-10037-x.
  • Mallupattu, P.K., Sreenivasula Reddy, J.R. 2013. Analysis of Land Use/Land Cover Changes Using Remote Sensing Data and GIS at an Urban Area, Tirupati, India, The Scientific World Journal, Vol. 2013, p. 268623, DOI: 10.1155/2013/268623.
  • Yıldız, S. 2016. İzmit Şehrinin Mekansal Gelişim Süreci. Master's Thesis, Sakarya University, Sakarya. https://www.proquest.com/openview/97f1dc9c925fd6fdadea9b44746c8b24/1?pq-origsite=gscholar&cbl=2026366&diss=y (Accessed: Sep. 19, 2025).
  • Singh, R.K., Singh, P., Drews, M., Kumar, P., Singh, H., Gupta, A.K., Kumar, M. 2021. A machine learning-based classification of LANDSAT images to map land use and land cover of India, Remote Sensing Applications: Society and Environment, Vol. 24, p. 100624, DOI: 10.1016/j.rsase.2021.100624.
  • Kim, C. 2016. Land use classification and land use change analysis using satellite images in Lombok Island, Indonesia, Forest Science and Technology, Vol. 12, no. 4, pp. 183-191, DOI: 10.1080/21580103.2016.1147498.
  • Wang, J., Maduako, I.N. 2018. Spatio-temporal urban growth dynamics of Lagos Metropolitan Region of Nigeria based on Hybrid methods for LULC modeling and prediction, European Journal of Remote Sensing, Vol. 51, no. 1, pp. 251-265, DOI: 10.1080/22797254.2017.1419831.
  • Yazıcı, A.D., Öztürk, D., Ayazılı, İ.E. 2019. Kentsel Büyümenin Modellenmesi ve Simülasyon Modelleri, International Journal of Multidisciplinary Studies and Innovative Technologies, Vol. 3, no. 1, pp. 44-47.
  • Muhammad, R., Zhang, W., Abbas, Z., Guo, F., Gwiazdzinski, L. 2022. Spatiotemporal Change Analysis and Prediction of Future Land Use and Land Cover Changes Using QGIS MOLUSCE Plugin and Remote Sensing Big Data: A Case Study of Linyi, China, Land, Vol. 11, no. 3, p. 419, DOI: 10.3390/land11030419.
  • Thodda, G., Madhavan, V.R., Thangavelu, L. 2023. Predictive Modelling and Optimization of Performance and Emissions of Acetylene Fuelled CI Engine Using ANN and RSM, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Vol. 45, no. 2, pp. 3544-3562, DOI: 10.1080/15567036.2020.1829191.
  • Kocaeli Valiliği, 2022. İzmit tanıtımı. http://www.kocaeli.gov.tr/izmit (Accessed: Sep. 19, 2025).
  • Yıldız, S., Döker, M. 2016. İzmit Şehrinin Nüfus Gelişimi (The Population Changes of the City of İzmit), Coğrafya Dergisi, no. 32, pp. 33-37.
  • Başoğlu, M.E., Kazdaloğlu, A., Erfidan, T., Bilgin, M.Z., Çakır, B. 2015. Performance analyzes of different photovoltaic module technologies under İzmit, Kocaeli climatic conditions, Renewable and Sustainable Energy Reviews, Vol. 52, pp. 357-365, DOI: 10.1016/j.rser.2015.07.108.
  • Srivastava, P.K., Han, D., Rico-Ramirez, M.A., Bray, M., Islam, T. 2012. Selection of classification techniques for land use/land cover change investigation, Advances in Space Research, Vol. 50, no. 9, pp. 1250-1265, DOI: 10.1016/j.asr.2012.06.032.
  • Bolat, S., Doğan, M. 2022. Uzun Dönemli (1984-2020) Arazi Kullanımı Değişiminin Tespiti ve Modellemesi (2035): Gölcük İlçesi’nin Analizi, Coğrafya Dergisi / Journal of Geography, no. 44, pp. 169-181, DOI: 10.26650/JGEOG2022-997334.
  • Gao, C., Cheng, D., Iqbal, J., Yao, S. 2023. Spatiotemporal Change Analysis and Prediction of the Great Yellow River Region (GYRR) Land Cover and the Relationship Analysis with Mountain Hazards, Land, Vol. 12, no. 2, p. 340, DOI: 10.3390/land12020340.
  • Cohen, J. 1960. A Coefficient of Agreement for Nominal Scales, Educational and Psychological Measurement, Vol. 20, no. 1, pp. 37-46, DOI: 10.1177/001316446002000104.
  • Bishop, C.M. 1995. Neural networks for pattern recognition. Oxford University Press.
  • Tong, X., Feng, Y. 2020. A review of assessment methods for cellular automata models of land-use change and urban growth, International Journal of Geographical Information Science, Vol. 34, no. 5, pp. 866-898, DOI: 10.1080/13658816.2019.1684499.
  • Canpolat, F.A., Dağli, D. 2020. Elaziğ Ili’nde Arazi Kullanimi Değişimi (2006-2018) Ve Simülasyonu (2030), lnternational Journal of Geography and Geography Education, no. 42, pp. 702-723, DOI: 10.32003/igge.746668.
  • Subedi, P., Subedi, K., Thapa, B. 2013. Application of a Hybrid Cellular Automaton - Markov (CA-Markov) Model in Land-Use Change Prediction: A Case Study of Saddle Creek Drainage Basin, Florida, Applied Ecology and Environmental Sciences, Vol. 1, no. 6, pp. 126-132, DOI: 10.12691/aees-l-6-5.
  • Chopard, B., Droz, M. 1991. Cellular automata model for the diffusion equation, Journal of Statistical Physics, Vol. 64, no. 3-4, pp. 859-892, DOI: 10.1007/BF01048321.
  • Behera, M.D., Borate, S.N., Panda, S.N., Behera, P.R., Roy, P.S. 2012. Modelling and analyzing the watershed dynamics using Cellular Automata (CA)–Markov model – A geo-information based approach, Journal of Earth System Science, Vol. 121, no. 4, pp. 1011-1024, DOI: 10.1007/s12040-012-0207-5.
  • Kerner, B.S., Klenov, S.L., Wolf, D.E. 2002. Cellular automata approach to three-phase traffic theory, Journal of Physics A: Mathematical and General, Vol. 35, no. 47, pp. 9971-10013, DOI: 10.1088/0305-4470/35/47/303.
  • Kamusoko, C., Aniya, M., Adi, B., Manjoro, M. 2009. Rural sustainability under threat in Zimbabwe – Simulation of future land use/cover changes in the Bindura district based on the Markov-cellular automata model, Applied Geography, Vol. 29, no. 3, pp. 435-447, DOI: 10.1016/j.apgeog.2008.10.002.
  • Leulmi, L., Lazri, Y., Abdelkebir, B., Bensehla, S. 2023. Assessment of the effect of land use and land cover (LULC) change on depth runoff: Case study of Skikda floods event, Glasnik Srpskog geografskog drustva, Vol. 103, no. 2, pp. 145-160, DOI: 10.2298/GSGD2302145L.
  • Sharma, S., Hussain, S., Singh, A.N. 2023. Impact of land use and land cover on urban ecosystem service value in Chandigarh, India: a GIS-based analysis, Journal of Urban Ecology, Vol. 9, no. 1, p. juac030, DOI: 10.1093/jue/juac030.
  • Blakime, T.-H., Adjonou, K., Komi, K., Hlovor, A.K.D., Gbafa, K.S., Zoungrana, J.-B.B., Kokou, K. 2024. Dynamics of Built-Up Areas and Challenges of Planning and Development of Urban Zone of Greater Lomé in Togo, West Africa, Land, Vol. 13, no. 1, p. 84, DOI: 10.3390/land13010084.
  • Naikoo, M.W., Rihan, M., Ishtiaque, M., Shahfahad. 2020. Analyses of land use land cover (LULC) change and built-up expansion in the suburb of a metropolitan city: Spatio-temporal analysis of Delhi NCR using landsat datasets, Journal of Urban Management, Vol. 9, no. 3, pp. 347-359, DOI: 10.1016/j.jum.2020.05.004.
  • Nasir, S.B., Ang, M.L.E., Nath, T.K., Owen, J., Tritto, A., Lechner, A.M. 2023. Modelling past and future land‐use changes from mining, agriculture, industry and biodiversity in a rapidly developing Southeast Asian region, Integrative Conservation, Vol. 2, no. 1, pp. 43-61, DOI: 10.1002/inc3.17.
  • Rachman, F., Huang, J., Xue, X., Marfai, M.A. 2024. Insights from 30 Years of Land Use/Land Cover Transitions in Jakarta, Indonesia, via Intensity Analysis, Land, Vol. 13, no. 4, p. 545, DOI: 10.3390/land13040545.
  • Kullo, E.D., Forkuo, E.K., Biney, E., Harris, E., Quaye-Ballard, J.A. 2021. The impact of land use and land cover changes on socioeconomic factors and livelihood in the Atwima Nwabiagya district of the Ashanti region, Ghana, Environmental Challenges, Vol. 5, p. 100226, DOI: 10.1016/j.envc.2021.100226.
  • Pande, C.B., Moharir, K.N., Varade, A.M., Abdo, H.G., Mulla, S., Yaseen, Z.M. 2023. Intertwined impacts of urbanization and land cover change on urban climate and agriculture in Aurangabad city (MS), India using google earth engine platform, Journal of Cleaner Production, Vol. 422, p. 138541, DOI: 10.1016/j.jclepro.2023.138541.
  • Anand, V., Oinam, B. 2020. Future land use land cover prediction with special emphasis on urbanization and wetlands, Remote Sensing Letters, Vol. 11, no. 3, pp. 225-234, DOI: 10.1080/2150704X.2019.1704304.
  • Benavidez-Silva, C., Jensen, M., Pliscoff, P. 2021. Future Scenarios for Land Use in Chile: Identifying Drivers of Change and Impacts over Protected Area System, Land, Vol. 10, no. 4, p. 408, DOI: 10.3390/land10040408.
  • Muchelo, R.O., Bishop, T.F.A., Ugbaje, S.U., Akpa, S.I.C. 2024. Patterns of Urban Sprawl and Agricultural Land Loss in Sub-Saharan Africa: The Cases of the Ugandan Cities of Kampala and Mbarara, Land, Vol. 13, no. 7, p. 1056, DOI: 10.3390/land13071056.
  • Mohibul, S., Sarif, M.N., Parveen, N., Mondal, M., Ali, M.I., Karikar, B.A., Siddiqui, L. 2024. Assessing Land Use/Land Cover Transformation and Wetland Decline in Birbhum District, West Bengal: A Time-Series Analysis, in Water Resource Management in Climate Change Scenario, Springer Nature Switzerland, pp. 265-281, DOI: 10.1007/978-3-031-61121-6_16.
  • Patel, A., Vyas, D., Chaudhari, N., Patel, R., Patel, K., Mehta, D. 2024. Novel approach for the LULC change detection using GIS & Google Earth Engine through spatiotemporal analysis to evaluate the urbanization growth of Ahmedabad city, Results in Engineering, Vol. 21, p. 101788, DOI: 10.1016/j.rineng.2024.101788.
  • Ahialey, E.K., Kabo–bah, A.T., Gyamfi, S. 2024. LULC changes in the region of the proposed Pwalugu hydropower project using GIS and remote sensing technique, Journal of Geography and Cartography, Vol. 7, no. 2, p. 8282, DOI: 10.24294/jgc.v7i2.8282.
  • Zafar, Z., Mehmood, M.S., Ahamad, M.I., Chudhary, A., Abbas, N., Khan, A.R., Abdal, S. 2021. Trend analysis of the decadal variations of water bodies and land use/land cover through MODIS imagery: an in-depth study from Gilgit-Baltistan, Pakistan, Water Supply, Vol. 21, no. 2, pp. 927-940, DOI: 10.2166/ws.2020.355.
  • Liu, J., Shao, Q., Yan, X., Fan, J., Zhan, J., Deng, X., Huang, L. 2016. The climatic impacts of land use and land cover change compared among countries, Journal of Geographical Sciences, Vol. 26, no. 7, pp. 889-903, DOI: 10.1007/s11442-016-1305-0.
  • Petit, C.C., Lambin, E.F. 2002. Impact of data integration technique on historical land-use/land-cover change: Comparing historical maps with remote sensing data in the Belgian Ardennes, Landscape Ecology, Vol. 17, no. 2, pp. 117-132, DOI: 10.1023/A:1016599627798.
  • Bukoye, J.A., Oluwajuwon, T.V., Alo, A.A., Offiah, C., Israel, R., Ogunmodede, M.E. 2023. Land Use Land Cover Dynamics of Oba Hills Forest Reserve, Nigeria, Employing Multispectral Imagery and GIS, Advances in Remote Sensing, Vol. 12, no. 4, pp. 123-144, DOI: 10.4236/ars.2023.124007.
  • Shiferaw, M., Kebebew, Z., Gemeda, D.O. 2023. Effect of forest cover change on ecosystem services in central highlands of Ethiopia: A case of Wof-Washa forest, Heliyon, Vol. 9, no. 7, p. e18173, DOI: 10.1016/j.heliyon.2023.e18173.
  • Zhu, Z., Zhu, X. 2021. Study on Spatiotemporal Characteristic and Mechanism of Forest Loss in Urban Agglomeration in the Middle Reaches of the Yangtze River, Forests, Vol. 12, no. 9, p. 1242, DOI: 10.3390/f12091242.
  • Van Vliet, J. 2019. Direct and indirect loss of natural area from urban expansion, Nature Sustainability, Vol. 2, no. 8, pp. 755-763, DOI: 10.1038/s41893-019-0340-0.
  • Van Der Laan, C., Wicke, B., Verweij, P.A., Faaij, A.P.C. 2017. Mitigation of unwanted direct and indirect land-use change – an integrated approach illustrated for palm oil, pulpwood, rubber and rice production in North and East Kalimantan, Indonesia, GCB Bioenergy, Vol. 9, no. 2, pp. 429-444, DOI: 10.1111/gcbb.12353.
  • Molinario, G., Hansen, M., Potapov, P., Tyukavina, A., Stehman, S. 2020. Contextualizing Landscape-Scale Forest Cover Loss in the Democratic Republic of Congo (DRC) between 2000 and 2015, Land, Vol. 9, no. 1, p. 23, DOI: 10.3390/land9010023.
  • Haas, J., Furberg, D., Ban, Y. 2015. Satellite monitoring of urbanization and environmental impacts—A comparison of Stockholm and Shanghai, International Journal of Applied Earth Observation and Geoinformation, Vol. 38, pp. 138-149, DOI: 10.1016/j.jag.2014.12.008.
  • Rohatyn, S., Rotenberg, E., Ramati, E., Tatarinov, F., Tas, E., Yakir, D. 2018. Differential Impacts of Land Use and Precipitation on “Ecosystem Water Yield.”, Water Resources Research, Vol. 54, no. 8, pp. 5457-5470, DOI: 10.1029/2017WR022267.
  • Moutinho, P., Guerra, R., Azevedo-Ramos, C. 2016. Achieving zero deforestation in the Brazilian Amazon: What is missing?, Elementa: Science of the Anthropocene, Vol. 4, p. 000125, DOI: 10.12952/journal.elementa.000125.
There are 62 citations in total.

Details

Primary Language English
Subjects Environmentally Sustainable Engineering, Environmental Engineering (Other)
Journal Section Research Article
Authors

Gülşen Keçeli 0000-0001-8655-7552

Ender Buğday 0000-0002-3054-1516

Project Number Not applicable
Early Pub Date September 25, 2025
Publication Date September 29, 2025
Submission Date October 5, 2024
Acceptance Date December 29, 2024
Published in Issue Year 2025 Volume: 27 Issue: 81

Cite

APA Keçeli, G., & Buğday, E. (2025). Monitoring and Predicting of Land Use and Cover Change for the period 2000-2030 Using Remote Sensing Data and Cellular Automata Approach. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 27(81), 442-456. https://doi.org/10.21205/deufmd.2025278112
AMA Keçeli G, Buğday E. Monitoring and Predicting of Land Use and Cover Change for the period 2000-2030 Using Remote Sensing Data and Cellular Automata Approach. DEUFMD. September 2025;27(81):442-456. doi:10.21205/deufmd.2025278112
Chicago Keçeli, Gülşen, and Ender Buğday. “Monitoring and Predicting of Land Use and Cover Change for the Period 2000-2030 Using Remote Sensing Data and Cellular Automata Approach”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 27, no. 81 (September 2025): 442-56. https://doi.org/10.21205/deufmd.2025278112.
EndNote Keçeli G, Buğday E (September 1, 2025) Monitoring and Predicting of Land Use and Cover Change for the period 2000-2030 Using Remote Sensing Data and Cellular Automata Approach. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 27 81 442–456.
IEEE G. Keçeli and E. Buğday, “Monitoring and Predicting of Land Use and Cover Change for the period 2000-2030 Using Remote Sensing Data and Cellular Automata Approach”, DEUFMD, vol. 27, no. 81, pp. 442–456, 2025, doi: 10.21205/deufmd.2025278112.
ISNAD Keçeli, Gülşen - Buğday, Ender. “Monitoring and Predicting of Land Use and Cover Change for the Period 2000-2030 Using Remote Sensing Data and Cellular Automata Approach”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 27/81 (September2025), 442-456. https://doi.org/10.21205/deufmd.2025278112.
JAMA Keçeli G, Buğday E. Monitoring and Predicting of Land Use and Cover Change for the period 2000-2030 Using Remote Sensing Data and Cellular Automata Approach. DEUFMD. 2025;27:442–456.
MLA Keçeli, Gülşen and Ender Buğday. “Monitoring and Predicting of Land Use and Cover Change for the Period 2000-2030 Using Remote Sensing Data and Cellular Automata Approach”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 27, no. 81, 2025, pp. 442-56, doi:10.21205/deufmd.2025278112.
Vancouver Keçeli G, Buğday E. Monitoring and Predicting of Land Use and Cover Change for the period 2000-2030 Using Remote Sensing Data and Cellular Automata Approach. DEUFMD. 2025;27(81):442-56.