Research Article
BibTex RIS Cite

Effect of Thickness Reduction in BIW Weight Reduction: Transition from 600DU to 800DU on Splitting Behavior

Year 2025, Volume: 27 Issue: 81, 507 - 516, 29.09.2025
https://doi.org/10.21205/deufmd.2025278119

Abstract

Material selection for creating a rigid and high-energy absorption lightweight BIW is critical in terms of fuel economy and emissions. In this context, material forming limits and mechanical behavior during stamping processes are the most important factors in the creation of lightweight BIW’s. Therefore, enhancing strength and reducing material thickness stand out as the primary ways to comply with industry standards and reduce the body weight. In weight reduction efforts with dual-phase steels, thinning may lead to splitting due to the increased martensitic island structure in regions with the highest Mn and C content in dual-phase materials. In hot- and cold-rolled dual-phase 800DU material with a thickness of 1mm, splitting may occur during forming simulation due to the martensitic structure to distribute inhomogeneously, surpassing the critical threshold of the forming simulation curve when compared to cold-rolled 600DU material with a thickness of 1.2mm. This study addresses the thinning-induced splitting issue encountered in weight reduction applications, determining the optimal choice between different rolling types under a die produced for 600DU material with a thickness of 1.2mm, using both hot and cold-rolled materials. In line with the purpose of the study, trials were conducted with two different 800DU materials under forming dies. Formability simulations and mechanical tests were performed, and analyses were carried out in terms of microstructure, thinning, and edge cracking performance. The characterization of the materials was conducted using a scanning electron microscope (SEM) equipped with an EDX apparatus. Following the characterization, tensile tests were performed in three different rolling directions to determine the mechanical properties of the materials. To evaluate the resistance of the materials to edge cracking, Hole Expansion (HE) tests were conducted. As a result of the improvements and analyses made by replacing the 600DU material with a thickness of 1.2mm with cold-rolled 800DU material with a thickness of 1.0mm, the proposed application appears feasible for the part geometry under consideration.

References

  • Manzie, C., Watson, H., Halgamuge, S. 2007. Fuel Economy Improvements for Urban Driving: Hybrid vs. Intelligent Vehicles, Transportation Research Part C: Emerging Technologies, Vol. 15, no. 1, pp. 1-16, DOI: 10.1016/j.trc.2006.11.003.
  • Tian, G., Zhou, M., Li, P. 2017. Disassembly Sequence Planning Considering Fuzzy Component Quality and Varying Operational Cost, IEEE Transactions on Automation Science and Engineering, Vol. 15, no. 2, pp. 748-760, DOI: 10.1109/TASE.2017.2690802.
  • MacLean, H.L., et al. 2000. A Life-Cycle Comparison of Alternative Automobile Fuels, Journal of the Air & Waste Management Association, Vol. 50, no. 10, pp. 1769-1779, DOI: 10.1080/10473289.2000.10464209.
  • Helms, H., Lambrecht, U. 2007. The Potential Contribution of Light-Weighting to Reduce Transport Energy Consumption, International Journal of Life Cycle Assessment, Vol. 12, no. 1, pp. 58-64, DOI: 10.1065/lca2006.07.258.
  • Han, H.N., Clark, J.P. 1995. Lifetime Costing of the Body-in-White: Steel vs. Aluminum, JOM, Vol. 47, pp. 22-28, DOI: 10.1007/BF03221171.
  • Westhauser, S., Schneider, M., Denks, I.A. 2017. On the Relation of Local Formability and Edge Crack Sensitivity, International Conference on Steels in Cars and Trucks, June 18-22, Nordwijkerhout, Steel Institute VDEh.
  • Nasheralahkami, S., Zhou, W., Golovashchenko, S. 2019. Study of Sheared Edge Formability of Ultra-High Strength DP980 Sheet Metal Blanks, Journal of Manufacturing Science and Engineering, Vol. 141, DOI: 10.1115/1.4044098.
  • Zulqarnain, M., Dayan, F. 2017. Selection Of Best Alternative For An Automotive Company By Intuitionistic Fuzzy TOPSIS Method, International Journal of Scientific & Technology Research, Vol. 6, no. 10.
  • Keeler, S., Kimchi, M., Mooney, P.J. Advanced High-Strength Steels Applications Guidelines Version 6.0. WorldAutoSteel.
  • Kaźmierski, T., Krawczyk, J., Frocisz, Ł. 2023. Characteristic of DP600 steel Produced in Hot Rolling Process, Archives of Metallurgy and Materials, Vol. 68, no. 4, DOI: 10.24425/amm.2023.146234.
  • Uthaisangsuk, V., Prahl, U., Bleck, W. 2011. Modelling of Damage and Failure in Multiphase High Strength DP and TRIP Steels, Engineering Fracture Mechanics, Vol. 78, no. 3, pp. 469-486, DOI: 10.1016/j.engfracmech.2010.08.017.
  • Mukherjee, M., Tiwari, S., Bhattacharya, B. 2018. Evaluation of Factors Affecting the Edge Formability of Two Hot Rolled Multiphase Steels, International Journal of Minerals, Metallurgy, and Materials, Vol. 25, pp. 199-215, DOI: 10.1007/s12613-018-1563-1.
  • Pan, L., Xiong, J., Zuo, Z., Tan, W., Wang, J., Yu, W. 2020. Study of the Stretch-Flangeability Improvement of Dual Phase Steel, Procedia Manufacturing, Vol. 50, pp. 761-764, DOI: 10.1016/j.promfg.2020.08.137.
  • Balisetty, V., Chakkingal, U., Venugopal, S. 2021. Evaluation of Stretch Flangeability of Dual-Phase Steels by Hole Expansion Test, The International Journal of Advanced Manufacturing Technology, Vol. 114, pp. 205-217, DOI: 10.1007/s00170-021-06850-9.
  • Sun, X., et al. 2009. Predicting Failure Modes and Ductility of Dual Phase Steels using Plastic Strain Localization, International Journal of Plasticity, Vol. 25, no. 10, pp. 1888-1909, DOI: 10.1016/j.ijplas.2008.12.012.
  • Nguyen, D.-T., Tong, V.-C. 2021. A Numerical and Experimental Study on the Hold-Edge Conditions and Hole-Expansion Ratio of Hole-Blanking and Hole-Expansion Tests for Ferrite Bainite Steel (FB780) Sheets, Ironmaking & Steelmaking, Vol. 48, no. 8, pp. 986-994, DOI: 10.1080/03019233.2020.1849934.
  • Gu, J., et al. 2020. A Study on Effects of the Press Speed on Sheared Edge Formability, IOP Conference Series: Materials Science and Engineering, Vol. 967, no. 1, p. 012064, DOI: 10.1088/1757-899X/967/1/012064.
  • Lange, K. 1985. Handbook of Metal Forming. Third edition, McGraw-Hill, New York.
  • Giray, D., Sönmez, M.Ş., Yamanoglu, R., Yavuz, H.I., Muratal, O. 2024. Characterization of Corrosion Products Formed in High-Strength Dual-Phase Steels Under an Accelerated Corrosion Test, Engineering Science and Technology, an International Journal, Vol. 57, p. 101796, DOI: 10.1016/j.jestch.2024.101796.
  • Akpan, E.I., Haruna, I.A. 2012. Structural Evolution and Properties of Hot Rolled Steel Alloys, Journal of Minerals & Materials Characterization & Engineering, Vol. 11, no. 4, pp. 417-426.
  • Ebrahimi, F., Saeidi, N., Raeissi, M. 2020. Microstructural Modifications of Dual‐Phase Steels: An Overview of Recent Progress and Challenges, Steel Research International, Vol. 91, no. 10, p. 2000178.
  • Kuang, S., Kang, Y.L., Yu, H., Liu, R.D. 2009. Effect of Continuous Annealing Parameters on the Mechanical Properties and Microstructures of a Cold Rolled Dual Phase Steel, International Journal of Minerals, Metallurgy and Materials, Vol. 16, no. 2, pp. 159-164.
  • ISO 16630. 2009. Metallic Materials Method of Hole Expanding Test. International Organization for Standardization, Berlin: Beuth.
  • Tsoupis, I., Merklein, M. 2016. Edge Crack Sensitivity of Lightweight Materials Under Different Load Conditions, IOP Conference Series: Materials Science and Engineering, Vol. 159, p. 012017, DOI: 10.1088/1757-899X/159/1/012017.
  • Madrid, M., et al. 2018. Effects of Testing Method on Stretch-Flangeability of Dual-Phase 980/1180 Steel Grades, JOM, Vol. 70, pp. 918-923, DOI: 10.1007/s11837-018-2852-x.
  • Cheah, L.W. 2010. Cars on a Diet: The Material and Energy Impacts of Passenger Vehicle Weight Reduction in the U.S. PhD Thesis, The Engineering Systems Division, Massachusetts Institute of Technology.

BIW Ağırlık Azaltmada Kalınlık Azaltımının Etkisi: 600DU'dan 800DU'ya Geçişin Yırtılma Davranışına Etkisi

Year 2025, Volume: 27 Issue: 81, 507 - 516, 29.09.2025
https://doi.org/10.21205/deufmd.2025278119

Abstract

Rijit ve yüksek enerji emilimi sağlayan hafif Beyaz Gövde (BIW) yaratmak için malzeme seçimi, yakıt ekonomisi ve emisyonlar açısından kritik öneme sahiptir. Bu bağlamda, malzeme şekillendirme sınırları ve presleme işlemi sırasında mekanik davranış, hafif BIW oluşturmadaki en önemli faktördür. Bu nedenle, dayanımı yükseltmek ve malzeme kalınlığını azaltmak, endüstri standartlarına uyum sağlamak ve gövde ağırlığını azaltmanın birincil yolu olarak öne çıkmaktadır. Çift fazlı çeliklerde ağırlık azaltımı çalışmalarında incelme, çift fazlı çeliklerin içerdiği Mn ve C nedeniyle artan martensit adacık yapısının en fazla olduğu bölgeden yırtığa neden olabilmektedir. Sıcak ve soğuk haddelenmiş çift fazlı 800DU kalınlığı 1 mm olan malzemelerde, soğuk haddelenmiş 600DU kalınlığı 1,2 mm olan malzeme için yapılmış metal şekillendirme kalıbında martensit yapının homojen dağılamaması sebebiyle şekillendirme simülasyon eğrisinin kritik eşiğini aşarak yırtılma meydana gelebilir. Bu çalışmada, ağırlık azaltımı uygulamalarında karşılaşılan incelme kaynaklı yırtık problemi için sıcak ve soğuk haddelenmiş malzemeler ve 600DU, kalınlığı 1,2 mm olan sac için imal edilmiş kalıp altında farklı hadde türleri arasından optimum seçim belirlenmiştir. Çalışmanın amacı doğrultusunda, iki farklı 800DU sınıfı malzeme ile şekillendirme kalıbı altında deneme yapılmış; formabilite simülasyonları, mekanik testler gerçekleştirilmiş ve mikro yapı, incelme, kenar çatlama performansı açısından analiz edilmiştir. Malzemelerin karakterizasyonu, EDX aparatına sahip bir taramalı elektron mikroskobu (SEM) kullanılarak gerçekleştirilmiştir. Karakterizasyonun ardından, malzemelerin mekanik özelliklerini belirlemek amacıyla üç farklı haddeleme yönünde çekme testleri gerçekleştirilmiştir. Malzemelerin kenar çatlağına olan dirençlerini değerlendirmek amacıyla Delik Genişleme (HE) testleri uygulanmıştır. 600DU kalınlığı 1,2 mm olan malzemenin yerine 800DU soğuk haddelenmiş, kalınlığı 1,0 mm olan malzeme değişikliği yapılan iyileştirmeler ve analizler sonucunda uygulamanın yapıldığı parça geometrisinde mümkün gözükmektedir.

References

  • Manzie, C., Watson, H., Halgamuge, S. 2007. Fuel Economy Improvements for Urban Driving: Hybrid vs. Intelligent Vehicles, Transportation Research Part C: Emerging Technologies, Vol. 15, no. 1, pp. 1-16, DOI: 10.1016/j.trc.2006.11.003.
  • Tian, G., Zhou, M., Li, P. 2017. Disassembly Sequence Planning Considering Fuzzy Component Quality and Varying Operational Cost, IEEE Transactions on Automation Science and Engineering, Vol. 15, no. 2, pp. 748-760, DOI: 10.1109/TASE.2017.2690802.
  • MacLean, H.L., et al. 2000. A Life-Cycle Comparison of Alternative Automobile Fuels, Journal of the Air & Waste Management Association, Vol. 50, no. 10, pp. 1769-1779, DOI: 10.1080/10473289.2000.10464209.
  • Helms, H., Lambrecht, U. 2007. The Potential Contribution of Light-Weighting to Reduce Transport Energy Consumption, International Journal of Life Cycle Assessment, Vol. 12, no. 1, pp. 58-64, DOI: 10.1065/lca2006.07.258.
  • Han, H.N., Clark, J.P. 1995. Lifetime Costing of the Body-in-White: Steel vs. Aluminum, JOM, Vol. 47, pp. 22-28, DOI: 10.1007/BF03221171.
  • Westhauser, S., Schneider, M., Denks, I.A. 2017. On the Relation of Local Formability and Edge Crack Sensitivity, International Conference on Steels in Cars and Trucks, June 18-22, Nordwijkerhout, Steel Institute VDEh.
  • Nasheralahkami, S., Zhou, W., Golovashchenko, S. 2019. Study of Sheared Edge Formability of Ultra-High Strength DP980 Sheet Metal Blanks, Journal of Manufacturing Science and Engineering, Vol. 141, DOI: 10.1115/1.4044098.
  • Zulqarnain, M., Dayan, F. 2017. Selection Of Best Alternative For An Automotive Company By Intuitionistic Fuzzy TOPSIS Method, International Journal of Scientific & Technology Research, Vol. 6, no. 10.
  • Keeler, S., Kimchi, M., Mooney, P.J. Advanced High-Strength Steels Applications Guidelines Version 6.0. WorldAutoSteel.
  • Kaźmierski, T., Krawczyk, J., Frocisz, Ł. 2023. Characteristic of DP600 steel Produced in Hot Rolling Process, Archives of Metallurgy and Materials, Vol. 68, no. 4, DOI: 10.24425/amm.2023.146234.
  • Uthaisangsuk, V., Prahl, U., Bleck, W. 2011. Modelling of Damage and Failure in Multiphase High Strength DP and TRIP Steels, Engineering Fracture Mechanics, Vol. 78, no. 3, pp. 469-486, DOI: 10.1016/j.engfracmech.2010.08.017.
  • Mukherjee, M., Tiwari, S., Bhattacharya, B. 2018. Evaluation of Factors Affecting the Edge Formability of Two Hot Rolled Multiphase Steels, International Journal of Minerals, Metallurgy, and Materials, Vol. 25, pp. 199-215, DOI: 10.1007/s12613-018-1563-1.
  • Pan, L., Xiong, J., Zuo, Z., Tan, W., Wang, J., Yu, W. 2020. Study of the Stretch-Flangeability Improvement of Dual Phase Steel, Procedia Manufacturing, Vol. 50, pp. 761-764, DOI: 10.1016/j.promfg.2020.08.137.
  • Balisetty, V., Chakkingal, U., Venugopal, S. 2021. Evaluation of Stretch Flangeability of Dual-Phase Steels by Hole Expansion Test, The International Journal of Advanced Manufacturing Technology, Vol. 114, pp. 205-217, DOI: 10.1007/s00170-021-06850-9.
  • Sun, X., et al. 2009. Predicting Failure Modes and Ductility of Dual Phase Steels using Plastic Strain Localization, International Journal of Plasticity, Vol. 25, no. 10, pp. 1888-1909, DOI: 10.1016/j.ijplas.2008.12.012.
  • Nguyen, D.-T., Tong, V.-C. 2021. A Numerical and Experimental Study on the Hold-Edge Conditions and Hole-Expansion Ratio of Hole-Blanking and Hole-Expansion Tests for Ferrite Bainite Steel (FB780) Sheets, Ironmaking & Steelmaking, Vol. 48, no. 8, pp. 986-994, DOI: 10.1080/03019233.2020.1849934.
  • Gu, J., et al. 2020. A Study on Effects of the Press Speed on Sheared Edge Formability, IOP Conference Series: Materials Science and Engineering, Vol. 967, no. 1, p. 012064, DOI: 10.1088/1757-899X/967/1/012064.
  • Lange, K. 1985. Handbook of Metal Forming. Third edition, McGraw-Hill, New York.
  • Giray, D., Sönmez, M.Ş., Yamanoglu, R., Yavuz, H.I., Muratal, O. 2024. Characterization of Corrosion Products Formed in High-Strength Dual-Phase Steels Under an Accelerated Corrosion Test, Engineering Science and Technology, an International Journal, Vol. 57, p. 101796, DOI: 10.1016/j.jestch.2024.101796.
  • Akpan, E.I., Haruna, I.A. 2012. Structural Evolution and Properties of Hot Rolled Steel Alloys, Journal of Minerals & Materials Characterization & Engineering, Vol. 11, no. 4, pp. 417-426.
  • Ebrahimi, F., Saeidi, N., Raeissi, M. 2020. Microstructural Modifications of Dual‐Phase Steels: An Overview of Recent Progress and Challenges, Steel Research International, Vol. 91, no. 10, p. 2000178.
  • Kuang, S., Kang, Y.L., Yu, H., Liu, R.D. 2009. Effect of Continuous Annealing Parameters on the Mechanical Properties and Microstructures of a Cold Rolled Dual Phase Steel, International Journal of Minerals, Metallurgy and Materials, Vol. 16, no. 2, pp. 159-164.
  • ISO 16630. 2009. Metallic Materials Method of Hole Expanding Test. International Organization for Standardization, Berlin: Beuth.
  • Tsoupis, I., Merklein, M. 2016. Edge Crack Sensitivity of Lightweight Materials Under Different Load Conditions, IOP Conference Series: Materials Science and Engineering, Vol. 159, p. 012017, DOI: 10.1088/1757-899X/159/1/012017.
  • Madrid, M., et al. 2018. Effects of Testing Method on Stretch-Flangeability of Dual-Phase 980/1180 Steel Grades, JOM, Vol. 70, pp. 918-923, DOI: 10.1007/s11837-018-2852-x.
  • Cheah, L.W. 2010. Cars on a Diet: The Material and Energy Impacts of Passenger Vehicle Weight Reduction in the U.S. PhD Thesis, The Engineering Systems Division, Massachusetts Institute of Technology.
There are 26 citations in total.

Details

Primary Language English
Subjects Automotive Engineering Materials, Automotive Engineering (Other)
Journal Section Research Article
Authors

Teoman Tilki 0009-0003-2357-2060

Yiğit Gönülalan 0000-0002-5403-2361

Onur Muratal 0000-0002-5419-9196

Diğdem Atabek 0009-0001-0155-7164

Early Pub Date September 25, 2025
Publication Date September 29, 2025
Submission Date December 17, 2024
Acceptance Date March 26, 2025
Published in Issue Year 2025 Volume: 27 Issue: 81

Cite

APA Tilki, T., Gönülalan, Y., Muratal, O., Atabek, D. (2025). Effect of Thickness Reduction in BIW Weight Reduction: Transition from 600DU to 800DU on Splitting Behavior. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 27(81), 507-516. https://doi.org/10.21205/deufmd.2025278119
AMA Tilki T, Gönülalan Y, Muratal O, Atabek D. Effect of Thickness Reduction in BIW Weight Reduction: Transition from 600DU to 800DU on Splitting Behavior. DEUFMD. September 2025;27(81):507-516. doi:10.21205/deufmd.2025278119
Chicago Tilki, Teoman, Yiğit Gönülalan, Onur Muratal, and Diğdem Atabek. “Effect of Thickness Reduction in BIW Weight Reduction: Transition from 600DU to 800DU on Splitting Behavior”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 27, no. 81 (September 2025): 507-16. https://doi.org/10.21205/deufmd.2025278119.
EndNote Tilki T, Gönülalan Y, Muratal O, Atabek D (September 1, 2025) Effect of Thickness Reduction in BIW Weight Reduction: Transition from 600DU to 800DU on Splitting Behavior. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 27 81 507–516.
IEEE T. Tilki, Y. Gönülalan, O. Muratal, and D. Atabek, “Effect of Thickness Reduction in BIW Weight Reduction: Transition from 600DU to 800DU on Splitting Behavior”, DEUFMD, vol. 27, no. 81, pp. 507–516, 2025, doi: 10.21205/deufmd.2025278119.
ISNAD Tilki, Teoman et al. “Effect of Thickness Reduction in BIW Weight Reduction: Transition from 600DU to 800DU on Splitting Behavior”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 27/81 (September2025), 507-516. https://doi.org/10.21205/deufmd.2025278119.
JAMA Tilki T, Gönülalan Y, Muratal O, Atabek D. Effect of Thickness Reduction in BIW Weight Reduction: Transition from 600DU to 800DU on Splitting Behavior. DEUFMD. 2025;27:507–516.
MLA Tilki, Teoman et al. “Effect of Thickness Reduction in BIW Weight Reduction: Transition from 600DU to 800DU on Splitting Behavior”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 27, no. 81, 2025, pp. 507-16, doi:10.21205/deufmd.2025278119.
Vancouver Tilki T, Gönülalan Y, Muratal O, Atabek D. Effect of Thickness Reduction in BIW Weight Reduction: Transition from 600DU to 800DU on Splitting Behavior. DEUFMD. 2025;27(81):507-16.