Research Article
BibTex RIS Cite

Assessment of Off-Grid Photovoltaic System Feasibility: A Dual Simulation Approach for Economic Viability and Performance in the Mediterranean Region

Year 2025, Volume: 27 Issue: 81, 499 - 506, 29.09.2025
https://doi.org/10.21205/deufmd.2025278118

Abstract

This study investigates the feasibility and economic viability of off-grid photovoltaic systems in the Mediterranean region, specifically focusing on a detached house located in Üçoluk Plateau, Antalya Province. The research employs dual simulation software, PVSyst and Homer Pro, to model and analyze the PV system's performance and cost effectiveness. The designed system incorporates a PV panel, battery storage, and an inverter, facilitating energy generation and storage to enhance reliability during periods of low solar radiation. The findings underscore the importance of energy storage solutions in off-grid applications and demonstrate that the proposed system can significantly reduce energy costs while minimizing greenhouse gas emissions. Overall, this study advocates for the adoption of PV systems as a sustainable and economically advantageous energy source in regions with high solar potential, highlighting their role in promoting renewable energy initiatives and supporting environmental sustainability goals.

References

  • Blankenship, R.E., Tiede, D.M., Barber, J., Brudvig, G.W. et al. 2011. Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement, Science, Vol. 332, no. 6031, pp. 805-809, DOI: 10.1126/science.1200165.
  • Bai, A., Popp, J., Balogh, P., Gabnai, Z., Plyi, B., Farkas, I., Pintr, G., Zsiborcs, H. 2016. Technical and Economic Effects of Cooling of Monocrystalline Photovoltaic Modules Under Hungarian Conditions, Renewable and Sustainable Energy Reviews, Vol. 60, pp. 1086-1099, DOI: 10.1016/j.rser.2016.02.003.
  • Melikoglu, M., Turkmen, B. 2019. Food Waste to Energy: Forecasting Turkey’s Bioethanol Generation Potential from Wasted Crops and Cereals Till 2030, Sustainable Energy Technologies and Assessments, Vol. 36, p. 100553, DOI: 10.1016/j.seta.2019.100553.
  • Difiglio, C., Güray, B.S., Merdan, E. 2020. Turkey Energy Outlook 2020. TEO Book Printing.
  • TEIAS. 2021. Turkey Electricity Production-Consumption 2020 Statistics. https://www.teias.gov.tr/turkiye-elektrik-uretim-iletim-istatistikleri (Accessed: Nov. 01, 2024).
  • Celik, A.N., Ozgür, E. 2020. Review of Turkey’s Photovoltaic Energy Status: Legal Structure, Existing Installed Power and Comparative Analysis, Renewable and Sustainable Energy Reviews, Vol. 134, p. 110344, DOI: 10.1016/j.rser.2020.110344.
  • Sozen, A., Arcaklioglu, E., Ozalp, M., Kanit, E.G. 2005. Solar-Energy Potential in Turkey, Applied Energy, Vol. 80, no. 4, pp. 367-381, DOI: 10.1016/j.apenergy.2004.06.001.
  • Kılıç, U., Kekezoglu, B. 2022. A Review of Solar Photovoltaic Incentives and Policy: Selected Countries and Turkey, Ain Shams Engineering Journal, Vol. 13, no. 5, p. 101669, DOI: 10.1016/j.asej.2021.101669.
  • Coruhlu, Y.E., Solgun, N., Baser, V., Terzi, F. 2022. Revealing the Solar Energy Potential by Integration of GIS and AHP in Order to Compare Decisions of the Land Use on the Environmental Plans, Land Use Policy, Vol. 113, p. 105899, DOI: 10.1016/j.landusepol.2021.105899.
  • Çeçen, M., Yavuz, C., Tırmıkçı, C.A., Sarıkaya, S., Yanıkoglu, E. 2022. Analysis and Evaluation of Distributed Photovoltaic Generation in Electrical Energy Production and Related Regulations of Turkey, Clean Technologies and Environmental Policy, Vol. 24, no. 5, pp. 1321-1336, DOI: 10.1007/s10098-021-02247-0.
  • Jakhrani, A.Q., Othman, A.K., Rigit, A.R.H., Samo, S.R., Kamboh, S.A. 2012. A Novel Analytical Model for Optimal Sizing of Standalone Photovoltaic Systems, Energy, Vol. 46, pp. 675-682, DOI: 10.1016/j.energy.2012.05.020.
  • Bortolini, M., Gamberi, M., Graziani, A. 2014. Technical and Economic Design of Photovoltaic and Battery Energy Storage System, Energy Conversion and Management, Vol. 86, pp. 81-92, DOI: 10.1016/j.enconman.2014.04.089.
  • Nordin, N.D., Rahman, H.A. 2016. A Novel Optimization Method for Designing Standalone Photovoltaic System, Renewable Energy, Vol. 89, pp. 706-715, DOI: 10.1016/j.renene.2015.12.001.
  • Ibrahim, I.A., Khatib, T., Mohamed, A. 2017. Optimal Sizing of a Standalone Photovoltaic System for Remote Housing Electrification using Numerical Algorithm and Improved System Models, Energy, Vol. 126, pp. 392-403, DOI: 10.1016/j.energy.2017.03.053.
  • Chel, A., Tiwari, G.N., Chandra, A. 2009. Simplified Method of Sizing and Life Cycle Cost Assessment of Building Integrated Photovoltaic System, Energy and Buildings, Vol. 41, pp. 1172-1180, DOI: 10.1016/j.enbuild.2009.06.004.
  • Kaushika, N.D., Rai, A.K. 2006. Solar PV Design Aid Expert System, Solar Energy Materials and Solar Cells, Vol. 90, pp. 2829-2845, DOI: 10.1016/j.solmat.2006.04.010.
  • Singh, A., Baredar, P., Gupta, B. 2017. Techno-Economic Feasibility Analysis of Hydrogen Fuel Cell and Solar Photovoltaic Hybrid Renewable Energy System for Academic Research Building, Energy Conversion and Management, Vol. 145, pp. 398-414, DOI: 10.1016/j.enconman.2017.05.014.
  • Lee, K., Lee, D., Baek, N., Kwon, H., Lee, C. 2012. Preliminary Determination of Optimal Size for Renewable Energy Resources in Buildings using RETScreen, Energy, Vol. 47, pp. 83-96, DOI: 10.1016/j.energy.2012.08.040.
  • Mirzahosseini, A.H., Taheri, T. 2012. Environmental, Technical and Financial Feasibility Study of Solar Power Plants by RETScreen, According to the Targeting of Energy Subsidies in Iran, Renewable and Sustainable Energy Reviews, Vol. 16, pp. 2806-2811, DOI: 10.1016/j.rser.2012.01.066.
  • Kaundinya, D.P., Balachandra, P., Ravindranath, N.H. 2009. Grid-Connected Versus Stand-Alone Energy Systems for Decentralized Power—A Review of Literature, Renewable and Sustainable Energy Reviews, Vol. 13, pp. 2041-2050, DOI: 10.1016/j.rser.2009.02.002.
  • Roy, A., Kabir, M.A. 2012. Relative Life Cycle Economic Analysis of Stand-Alone Solar PV and Fossil Fuel Powered Systems in Bangladesh with Regard to Load Demand and Market Controlling Factors, Renewable and Sustainable Energy Reviews, Vol. 16, pp. 4629-4637, DOI: 10.1016/j.rser.2012.03.068.
  • Bhayo, B.A., Al-Kayiem, H.H., Gilani, S.I. 2019. Assessment of Standalone Solar PV-Battery System for Electricity Generation and Utilization of Excess Power for Water Pumping, Solar Energy, Vol. 194, pp. 766-776, DOI: 10.1016/j.solener.2019.11.026.
  • Rezk, H., Abdelkareem, M.A., Ghenai, C. 2019. Performance Evaluation and Optimal Design of Stand-Alone Solar PV-Battery System for Irrigation in Isolated Regions: A Case Study in Al Minya (Egypt), Sustainable Energy Technologies and Assessments, Vol. 36, p. 100556, DOI: 10.1016/j.seta.2019.100556.
  • Das, B.K., Zaman, F. 2019. Performance Analysis of a PV/Diesel Hybrid System for a Remote Area in Bangladesh: Effects of Dispatch Strategies, Batteries, and Generator Selection, Energy, Vol. 169, pp. 263-276, DOI: 10.1016/j.energy.2018.12.014.
  • Odou, O., Bhandari, R., Adamou, R. 2020. Hybrid Off-Grid Renewable Power System for Sustainable Rural Electrification in Benin, Renewable Energy, Vol. 145, pp. 1266-1279, DOI: 10.1016/j.renene.2019.06.032.
  • Liu, Z., Chen, Y., Zhuo, R., Jia, H. 2018. Energy Storage Capacity Optimization for Autonomy Microgrid Considering CHP and EV Scheduling, Applied Energy, Vol. 210, pp. 1113-1125, DOI: 10.1016/j.apenergy.2017.07.002.
  • Parra, D., Gillott, M., Norman, S.A., Walker, G.S. 2015. Optimum Community Energy Storage System for PV Energy Time-Shift, Applied Energy, Vol. 137, pp. 576-587, DOI: 10.1016/j.apenergy.2014.08.060.
  • Şenkal, O., Şahin, M., Peştemalci, V. 2010. The Estimation of Solar Radiation for Different Time Periods, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Vol. 32, no. 13, pp. 1176-1184, DOI: 10.1080/15567030902967850.
  • Bakirci, K. 2009. Correlations for Estimation of Daily Global Solar Radiation with Hours of Bright Sunshine in Turkey, Energy, Vol. 34, pp. 485-501, DOI: 10.1016/j.energy.2009.02.005.
  • Toğrul, I.T., Onat, E. 1999. A Study for Estimating Solar Radiation in Elazig using Geographical and Meteorological Data, Energy Conversion and Management, Vol. 40, pp. 1577-1584, DOI: 10.1016/S0196-8904(99)00035-7.
  • Ertekin, C., Yaldiz, O. 2000. Comparison of Some Existing Models for Estimating Global Solar Radiation for Antalya (Turkey), Energy Conversion and Management, Vol. 41, pp. 311-330, DOI: 10.1016/S0196-8904(99)00127-2.
  • GEPA. 2024. Solar Energy Potential Atlas. https://gepa.enerji.gov.tr/MyCalculator/ (Accessed: Nov. 01, 2024).
  • Latitude and Longitude Finder. https://www.latlong.net/ (Accessed: Jun. 03, 2024).
  • Akdeniz Elektrik Dagitim A.S. 2024. Article No. 321568, dated 16.01.2024.
  • Al Riza, D.F., Gilani, S.I.H. 2014. Standalone Photovoltaic System Sizing using Peak Sun Hour Method and Evaluation by TRNSYS Simulation, International Journal of Renewable Energy Research, Vol. 4, no. 1, pp. 109-114.

Şebeke Dışı Fotovoltaik Sistem Olanaklılığının Değerlendirilmesi: Akdeniz Bölgesinde Ekonomik Uygulanabilirlik ve Performans için Çift Simülasyon Yaklaşımı

Year 2025, Volume: 27 Issue: 81, 499 - 506, 29.09.2025
https://doi.org/10.21205/deufmd.2025278118

Abstract

Bu çalışma, Akdeniz bölgesindeki şebeke dışı fotovoltaik sistemlerin fizibilitesini ve ekonomik uygulanabilirliğini incelemekte olup, özellikle Antalya ili Üçoluk Yaylası'nda bulunan müstakil bir eve odaklanmaktadır. Araştırmada, PV sisteminin performansını ve maliyet etkinliğini modellemek ve analiz etmek için PVSyst ve Homer Pro olmak üzere çift simülasyon yazılımı kullanılmaktadır. Tasarlanan sistemde, elektrik enerjisi üretimi için PV paneller, üretilen DC akımlı elektriğin depolanması için batarya üniteleri ve AC elektriğe çevrilmesi için inverterler kullanılmıştır. Bulgular, şebeke dışı uygulamalarda enerji depolama çözümlerinin önemini vurgulamakta ve önerilen sistemin enerji maliyetlerini önemli ölçüde azaltırken sera gazı emisyonlarını en aza indirebileceğini göstermektedir. Genel olarak, bu çalışma, yüksek güneş potansiyeline sahip bölgelerde PV sistemlerinin sürdürülebilir ve ekonomik olarak avantajlı bir enerji kaynağı olarak benimsenmesini savunmakta, yenilenebilir enerji girişimlerini teşvik etmedeki ve çevresel sürdürülebilirlik hedeflerini desteklemedeki rollerini öne çıkarmaktadır.

References

  • Blankenship, R.E., Tiede, D.M., Barber, J., Brudvig, G.W. et al. 2011. Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement, Science, Vol. 332, no. 6031, pp. 805-809, DOI: 10.1126/science.1200165.
  • Bai, A., Popp, J., Balogh, P., Gabnai, Z., Plyi, B., Farkas, I., Pintr, G., Zsiborcs, H. 2016. Technical and Economic Effects of Cooling of Monocrystalline Photovoltaic Modules Under Hungarian Conditions, Renewable and Sustainable Energy Reviews, Vol. 60, pp. 1086-1099, DOI: 10.1016/j.rser.2016.02.003.
  • Melikoglu, M., Turkmen, B. 2019. Food Waste to Energy: Forecasting Turkey’s Bioethanol Generation Potential from Wasted Crops and Cereals Till 2030, Sustainable Energy Technologies and Assessments, Vol. 36, p. 100553, DOI: 10.1016/j.seta.2019.100553.
  • Difiglio, C., Güray, B.S., Merdan, E. 2020. Turkey Energy Outlook 2020. TEO Book Printing.
  • TEIAS. 2021. Turkey Electricity Production-Consumption 2020 Statistics. https://www.teias.gov.tr/turkiye-elektrik-uretim-iletim-istatistikleri (Accessed: Nov. 01, 2024).
  • Celik, A.N., Ozgür, E. 2020. Review of Turkey’s Photovoltaic Energy Status: Legal Structure, Existing Installed Power and Comparative Analysis, Renewable and Sustainable Energy Reviews, Vol. 134, p. 110344, DOI: 10.1016/j.rser.2020.110344.
  • Sozen, A., Arcaklioglu, E., Ozalp, M., Kanit, E.G. 2005. Solar-Energy Potential in Turkey, Applied Energy, Vol. 80, no. 4, pp. 367-381, DOI: 10.1016/j.apenergy.2004.06.001.
  • Kılıç, U., Kekezoglu, B. 2022. A Review of Solar Photovoltaic Incentives and Policy: Selected Countries and Turkey, Ain Shams Engineering Journal, Vol. 13, no. 5, p. 101669, DOI: 10.1016/j.asej.2021.101669.
  • Coruhlu, Y.E., Solgun, N., Baser, V., Terzi, F. 2022. Revealing the Solar Energy Potential by Integration of GIS and AHP in Order to Compare Decisions of the Land Use on the Environmental Plans, Land Use Policy, Vol. 113, p. 105899, DOI: 10.1016/j.landusepol.2021.105899.
  • Çeçen, M., Yavuz, C., Tırmıkçı, C.A., Sarıkaya, S., Yanıkoglu, E. 2022. Analysis and Evaluation of Distributed Photovoltaic Generation in Electrical Energy Production and Related Regulations of Turkey, Clean Technologies and Environmental Policy, Vol. 24, no. 5, pp. 1321-1336, DOI: 10.1007/s10098-021-02247-0.
  • Jakhrani, A.Q., Othman, A.K., Rigit, A.R.H., Samo, S.R., Kamboh, S.A. 2012. A Novel Analytical Model for Optimal Sizing of Standalone Photovoltaic Systems, Energy, Vol. 46, pp. 675-682, DOI: 10.1016/j.energy.2012.05.020.
  • Bortolini, M., Gamberi, M., Graziani, A. 2014. Technical and Economic Design of Photovoltaic and Battery Energy Storage System, Energy Conversion and Management, Vol. 86, pp. 81-92, DOI: 10.1016/j.enconman.2014.04.089.
  • Nordin, N.D., Rahman, H.A. 2016. A Novel Optimization Method for Designing Standalone Photovoltaic System, Renewable Energy, Vol. 89, pp. 706-715, DOI: 10.1016/j.renene.2015.12.001.
  • Ibrahim, I.A., Khatib, T., Mohamed, A. 2017. Optimal Sizing of a Standalone Photovoltaic System for Remote Housing Electrification using Numerical Algorithm and Improved System Models, Energy, Vol. 126, pp. 392-403, DOI: 10.1016/j.energy.2017.03.053.
  • Chel, A., Tiwari, G.N., Chandra, A. 2009. Simplified Method of Sizing and Life Cycle Cost Assessment of Building Integrated Photovoltaic System, Energy and Buildings, Vol. 41, pp. 1172-1180, DOI: 10.1016/j.enbuild.2009.06.004.
  • Kaushika, N.D., Rai, A.K. 2006. Solar PV Design Aid Expert System, Solar Energy Materials and Solar Cells, Vol. 90, pp. 2829-2845, DOI: 10.1016/j.solmat.2006.04.010.
  • Singh, A., Baredar, P., Gupta, B. 2017. Techno-Economic Feasibility Analysis of Hydrogen Fuel Cell and Solar Photovoltaic Hybrid Renewable Energy System for Academic Research Building, Energy Conversion and Management, Vol. 145, pp. 398-414, DOI: 10.1016/j.enconman.2017.05.014.
  • Lee, K., Lee, D., Baek, N., Kwon, H., Lee, C. 2012. Preliminary Determination of Optimal Size for Renewable Energy Resources in Buildings using RETScreen, Energy, Vol. 47, pp. 83-96, DOI: 10.1016/j.energy.2012.08.040.
  • Mirzahosseini, A.H., Taheri, T. 2012. Environmental, Technical and Financial Feasibility Study of Solar Power Plants by RETScreen, According to the Targeting of Energy Subsidies in Iran, Renewable and Sustainable Energy Reviews, Vol. 16, pp. 2806-2811, DOI: 10.1016/j.rser.2012.01.066.
  • Kaundinya, D.P., Balachandra, P., Ravindranath, N.H. 2009. Grid-Connected Versus Stand-Alone Energy Systems for Decentralized Power—A Review of Literature, Renewable and Sustainable Energy Reviews, Vol. 13, pp. 2041-2050, DOI: 10.1016/j.rser.2009.02.002.
  • Roy, A., Kabir, M.A. 2012. Relative Life Cycle Economic Analysis of Stand-Alone Solar PV and Fossil Fuel Powered Systems in Bangladesh with Regard to Load Demand and Market Controlling Factors, Renewable and Sustainable Energy Reviews, Vol. 16, pp. 4629-4637, DOI: 10.1016/j.rser.2012.03.068.
  • Bhayo, B.A., Al-Kayiem, H.H., Gilani, S.I. 2019. Assessment of Standalone Solar PV-Battery System for Electricity Generation and Utilization of Excess Power for Water Pumping, Solar Energy, Vol. 194, pp. 766-776, DOI: 10.1016/j.solener.2019.11.026.
  • Rezk, H., Abdelkareem, M.A., Ghenai, C. 2019. Performance Evaluation and Optimal Design of Stand-Alone Solar PV-Battery System for Irrigation in Isolated Regions: A Case Study in Al Minya (Egypt), Sustainable Energy Technologies and Assessments, Vol. 36, p. 100556, DOI: 10.1016/j.seta.2019.100556.
  • Das, B.K., Zaman, F. 2019. Performance Analysis of a PV/Diesel Hybrid System for a Remote Area in Bangladesh: Effects of Dispatch Strategies, Batteries, and Generator Selection, Energy, Vol. 169, pp. 263-276, DOI: 10.1016/j.energy.2018.12.014.
  • Odou, O., Bhandari, R., Adamou, R. 2020. Hybrid Off-Grid Renewable Power System for Sustainable Rural Electrification in Benin, Renewable Energy, Vol. 145, pp. 1266-1279, DOI: 10.1016/j.renene.2019.06.032.
  • Liu, Z., Chen, Y., Zhuo, R., Jia, H. 2018. Energy Storage Capacity Optimization for Autonomy Microgrid Considering CHP and EV Scheduling, Applied Energy, Vol. 210, pp. 1113-1125, DOI: 10.1016/j.apenergy.2017.07.002.
  • Parra, D., Gillott, M., Norman, S.A., Walker, G.S. 2015. Optimum Community Energy Storage System for PV Energy Time-Shift, Applied Energy, Vol. 137, pp. 576-587, DOI: 10.1016/j.apenergy.2014.08.060.
  • Şenkal, O., Şahin, M., Peştemalci, V. 2010. The Estimation of Solar Radiation for Different Time Periods, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Vol. 32, no. 13, pp. 1176-1184, DOI: 10.1080/15567030902967850.
  • Bakirci, K. 2009. Correlations for Estimation of Daily Global Solar Radiation with Hours of Bright Sunshine in Turkey, Energy, Vol. 34, pp. 485-501, DOI: 10.1016/j.energy.2009.02.005.
  • Toğrul, I.T., Onat, E. 1999. A Study for Estimating Solar Radiation in Elazig using Geographical and Meteorological Data, Energy Conversion and Management, Vol. 40, pp. 1577-1584, DOI: 10.1016/S0196-8904(99)00035-7.
  • Ertekin, C., Yaldiz, O. 2000. Comparison of Some Existing Models for Estimating Global Solar Radiation for Antalya (Turkey), Energy Conversion and Management, Vol. 41, pp. 311-330, DOI: 10.1016/S0196-8904(99)00127-2.
  • GEPA. 2024. Solar Energy Potential Atlas. https://gepa.enerji.gov.tr/MyCalculator/ (Accessed: Nov. 01, 2024).
  • Latitude and Longitude Finder. https://www.latlong.net/ (Accessed: Jun. 03, 2024).
  • Akdeniz Elektrik Dagitim A.S. 2024. Article No. 321568, dated 16.01.2024.
  • Al Riza, D.F., Gilani, S.I.H. 2014. Standalone Photovoltaic System Sizing using Peak Sun Hour Method and Evaluation by TRNSYS Simulation, International Journal of Renewable Energy Research, Vol. 4, no. 1, pp. 109-114.
There are 35 citations in total.

Details

Primary Language English
Subjects Solar Energy Systems
Journal Section Research Article
Authors

İbrahim Gür 0009-0007-7374-4448

Coşkun Fırat 0000-0002-2853-8940

Early Pub Date September 25, 2025
Publication Date September 29, 2025
Submission Date December 21, 2024
Acceptance Date March 6, 2025
Published in Issue Year 2025 Volume: 27 Issue: 81

Cite

APA Gür, İ., & Fırat, C. (2025). Assessment of Off-Grid Photovoltaic System Feasibility: A Dual Simulation Approach for Economic Viability and Performance in the Mediterranean Region. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 27(81), 499-506. https://doi.org/10.21205/deufmd.2025278118
AMA Gür İ, Fırat C. Assessment of Off-Grid Photovoltaic System Feasibility: A Dual Simulation Approach for Economic Viability and Performance in the Mediterranean Region. DEUFMD. September 2025;27(81):499-506. doi:10.21205/deufmd.2025278118
Chicago Gür, İbrahim, and Coşkun Fırat. “Assessment of Off-Grid Photovoltaic System Feasibility: A Dual Simulation Approach for Economic Viability and Performance in the Mediterranean Region”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 27, no. 81 (September 2025): 499-506. https://doi.org/10.21205/deufmd.2025278118.
EndNote Gür İ, Fırat C (September 1, 2025) Assessment of Off-Grid Photovoltaic System Feasibility: A Dual Simulation Approach for Economic Viability and Performance in the Mediterranean Region. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 27 81 499–506.
IEEE İ. Gür and C. Fırat, “Assessment of Off-Grid Photovoltaic System Feasibility: A Dual Simulation Approach for Economic Viability and Performance in the Mediterranean Region”, DEUFMD, vol. 27, no. 81, pp. 499–506, 2025, doi: 10.21205/deufmd.2025278118.
ISNAD Gür, İbrahim - Fırat, Coşkun. “Assessment of Off-Grid Photovoltaic System Feasibility: A Dual Simulation Approach for Economic Viability and Performance in the Mediterranean Region”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 27/81 (September2025), 499-506. https://doi.org/10.21205/deufmd.2025278118.
JAMA Gür İ, Fırat C. Assessment of Off-Grid Photovoltaic System Feasibility: A Dual Simulation Approach for Economic Viability and Performance in the Mediterranean Region. DEUFMD. 2025;27:499–506.
MLA Gür, İbrahim and Coşkun Fırat. “Assessment of Off-Grid Photovoltaic System Feasibility: A Dual Simulation Approach for Economic Viability and Performance in the Mediterranean Region”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 27, no. 81, 2025, pp. 499-06, doi:10.21205/deufmd.2025278118.
Vancouver Gür İ, Fırat C. Assessment of Off-Grid Photovoltaic System Feasibility: A Dual Simulation Approach for Economic Viability and Performance in the Mediterranean Region. DEUFMD. 2025;27(81):499-506.