Research Article
BibTex RIS Cite

CLOSE LOOK IN EMT, MAPK AND INFLAMMATION: WHAT DIFFERS BETWEEN MOUSE EMBRYONIC STEM, SOMATIC AND CANCER CELLS?

Year 2018, Volume: 32 Issue: 3, 201 - 212, 15.12.2018
https://doi.org/10.5505/deutfd.2018.49469

Abstract




Objective: Life is a continuous cycle of
the cells, composed of beginning, surviving and death. Cells keep dividing,
differentiate and turn into somatic cells. The somatic cells at some point
can give way to cancer cells and share characteristics of stem cells. The
processes during these periods are important for identifying the tendency to
abnormality and transformation to the cancer cells in somatic cells. To
control emergence and progress of the cancer, mechanisms which take part in
the survival become significant, especially EMT and inflammation. EMT occurs
in both embryonic developmental stages and cancer progression and molecular
basis of this process can be the therapeutic target for cure.


Material and Method: For cancer representation mouse squamous
lung cancer cells (SqLCCs), for somatic origin mouse skin fibroblasts (MSFs)
and for embryonic stem cell mouse embryonic stem cells (mESCs) were used for
comparison of three signaling pathways (EMT, MAPK and inflammation) at the
gene expression level. Immunofluorescence staining protein levels of ERK 1/2,
Vimentin and Twist were compared.


Results: ERK1/2 protein expression similar in MSFs and
SqLCCs while mESCs expression wasthe lowest. Besides, Twist and Vimentin
expression statistically different in three. According to gene expression
profiling of the EMT and inflammation supported by the MAPK signaling pathway
are a far cry from each other at prominent genes especially Sparc, Vimentin,
Mapksp1 and Il24.





Conclusion:
Three different cell linages showed different pattern both in gene and protein
expression. Therefore, these molecules can be the potential driving force for
therapeutic target

References

  • Chen CY, Cheng YY, Yen CYT, Hsieh PCH. Mechanisms of pluripotency maintenance in mouse embryonic stem cells. Cell Mol Life Sci. 2017; 74: 1805–17.
  • Tucak A, Vrabac D, Smajić A, Sažić A. Future trends and possibilities of using induced pluripotent stem cells (iPSC) in regenerative medicine. In Springer, Singapore; 2017; 459–64.
  • He N, Feng G, Li Y, Xu Y, Xie X, Wang H, et al. Embryonic stem cell preconditioned microenvironment suppresses tumorigenic properties in breast cancer. Stem Cell Res Ther. 2016;7:95.
  • Kan X-X, Li Q, Chen X, Wang Y-J, LiY-J, Yang Q, et al. A novel cell cycle blocker extracted from Stellera chamaejasme L. inhibits the proliferation of hepatocarcinoma cells. Oncol Rep. 2016; 35: 3480–8.
  • Kim Y-S, Yi B-R, Kim N-H, Choi K-C. Role of the epithelial–mesenchymal transition and its effects on embryonic stem cells. Exp Mol Med. 2014;46: e108.
  • Chen C-L, Chen Y-H, Tai M-C, Liang C-M, Lu D-W, Chen J-T. Resveratrol inhibits transforming growth factor-β2-induced epithelial-to-mesenchymal transition in human retinal pigment epithelial cells by suppressing the Smad pathway. Drug Des Devel Ther. 2017;11:163–73.
  • Iskender B, Izgi K, Hizar E, Jauch J, Arslanhan A, Yuksek EH, et al. Inhibition of epithelial-mesenchymal transition in bladder cancer cells via modulation of mTOR signalling. Tumor Biol. 2016;37: 8281–91.
  • Shagieva G, Domnina L, Makarevich O, Chernyak B, Skulachev V, Dugina V. Depletion of mitochondrial reactive oxygen species downregulates epithelial-to-mesenchymal transition in cervical cancer cells. Oncotarget. 2017; 8: 4901-4913
  • Bryan RT. Cell adhesion and urothelial bladder cancer: the role of cadherin switching and related phenomena. Philos Trans R Soc Lond B Biol Sci. 2015; 370: 20140042.
  • Zhou P, Li B, Liu F, Zhang M, Wang Q, Liu Y, et al. The epithelial to mesenchymal transition (EMT) and cancer stem cells: implication for treatment resistance in pancreatic cancer. Mol Cancer. 2017;16: 52.
  • Pang M-F, Georgoudaki A-M, Lambut L, Johansson J, Tabor V, Hagikura K, et al. TGF-β1-induced EMT promotes targeted migration of breast cancer cells through the lymphatic system by the activation of CCR7/CCL21-mediated chemotaxis. Oncogene. 2016; 35: 748–60.
  • Fuxe J, Vincent T, De Herreros AG. Transcriptional crosstalk between TGFβ and stem cell pathways in tumor cell invasion: Role of EMT promoting Smad complexes. Cell Cycle. 2010; 9: 2363–74.
  • Rahman MS, Akhtar N, Jamil HM, Banik RS, Asaduzzaman SM. TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Res. 2015; 3: 15005.
  • Morry J, Ngamcherdtrakul W, Yantasee W. Oxidative stress in cancer and fibrosis: Opportunity for therapeutic intervention with antioxidant compounds, enzymes, and nanoparticles. Redox Biology. 2017; 11: 240–53.
  • Tseng JH, Bisogna M, Hoang LN, Olvera N, Rodriguez-Aguayo C, Lopez-Berestein G, et al. miR-200c-driven Mesenchymal-To-Epithelial Transition is a Therapeutic Target in Uterine Carcinosarcomas. Sci Rep. 2017; 7: 3614.
  • Suarez-Carmona M, Lesage J, Cataldo D, Gilles C. EMT and inflammation: inseparable actors of cancer progression. Mol Oncol. 2017; 11: 805–23.
  • López-Novoa JM, Nieto MA. Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol Med. 2009; 1:303–14.
  • Khalafalla FG, Khan MW. Inflammation and Epithelial-Mesenchymal Transition in Pancreatic Ductal Adenocarcinoma: Fighting Against Multiple Opponents. Cancer Growth Metastasis. 2017;10: 1179064417709287.
  • Ye X, Tam WL, Shibue T, Kaygusuz Y, Reinhardt F, Ng Eaton E, et al. Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature. 2015;525: 256–60.
  • Arvelo F, Sojo F, Cotte C. Tumour progression and metastasis. Ecancermedicalscience. 2016; 10: 617.
  • Franco AT, Corken A, Ware J. Platelets at the interface of thrombosis, inflammation, and cancer. Blood. 2015; 126: 582–8.
  • Klameth L, Rath B, Hochmaier M, Moser D, Redl M, Mungenast F, et al. Small cell lung cancer: model of circulating tumor cell tumorospheres in chemoresistance. Sci Rep. 2017;7:5337.
  • Crusz SM, Balkwill FR. Inflammation and cancer: advances and new agents. Nat Rev Clin Oncol. 2015;12:584–96.
  • Low HB, Zhang Y. Regulatory Roles of MAPK Phosphatases in Cancer. Immune Netw. 2016;16:85–98.
  • Burotto M, Chiou VL, Lee JM, Kohn EC. The MAPK pathway across different malignancies: A new perspective. Cancer. 2014;120:3446–56.
  • Derynck R, Muthusamy BP, Saeteurn KY. Signaling pathway cooperation in TGF-β-induced epithelial-mesenchymal transition. Curr Opin Cell Biol. 2014;31:56–66.
  • Molina JR, Adjei AA. The Ras/Raf/MAPK Pathway. J Thorac Oncol. 2006;1:7–9.
  • Moyano J V, Greciano PG, Buschmann MM, Koch M, Matlin KS. Autocrine transforming growth factor-β1 activation mediated by integrin αVβ3 regulates transcriptional expression of laminin-332 in madin-darby canine kidney epithelial cells. Mol Biol Cell. 2010;21:3654–68.
  • Micalizzi DS, Farabaugh SM, Ford HL. Epithelial-mesenchymal transition in cancer: Parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia. 15: 2010; 117–34.
  • Chu P-Y, Hu F-W, Yu C-C, Tsai L-L, Yu C-H, Wu B-C, et al. Epithelial–mesenchymal transition transcription factor ZEB1/ZEB2 co-expression predicts poor prognosis and maintains tumor-initiating properties in head and neck cancer. Oral Oncol. 2013;49:34–41.
  • Yang L. TGFβ and cancer metastasis: an inflammation link. Cancer Metastasis Rev. 2010;29:263–71.
  • Zeng J, Zhan P, Wu G, Yang W, Liang W, Lv T, et al. Prognostic value of Twist in lung cancer: systematic review and meta-analysis. Transl Lung Cancer Res. 2015;4:236–41.
  • Dauphin M, Barbe C, Lemaire S, Nawrocki-Raby B, Lagonotte E, Delepine G, et al. Vimentin expression predicts the occurrence of metastases in non small cell lung carcinomas. Lung Cancer. 2013;81:117–22.
  • Jones EA, Clement-Jones M, Wilson DI. JAGGED1 expression in human embryos: correlation with the Alagille syndrome phenotype. J Med Genet. 2000;37:658–62.
  • Zhang L, Ye Y, Long X, Xiao P, Ren X, Yu J. BMP signaling and its paradoxical effects in tumorigenesis and dissemination. Oncotarget. 2016;7:78206–18.
  • Tan X, Zheng F, Zhou Q, Duan L, Li Y. [Effect of bone morphogenetic protein-7 on monocyte chemoattractant protein-1 induced epithelial-myofibroblast transition and TGF-beta1-Smad 3 signaling pathway of HKC cells]. Zhonghua Yi Xue Za Zhi. 2005; 85:2607–12.
  • Duangkumpha K, Techasen A, Loilome W, Namwat N, Thanan R, Khuntikeo N, et al. BMP-7 blocks the effects of TGF-??-induced EMT in cholangiocarcinoma. Tumour Biol. 2014;35):9667–76.
  • Mock K, Preca B-T, Brummer T, Brabletz S, Stemmler MP, Brabletz T. The EMT-activator ZEB1 induces bone metastasis associated genes including BMP-inhibitors. Oncotarget. 2015;6: 14399-412.
  • Sahoo A, Im S-H. Molecular Mechanisms Governing IL-24 Gene Expression. Immune Netw. 2012;12:1–7.
  • Manesh ME, Esmaeilzadeh A, Mirzaei MH. IL-24: A novel gene therapy candidate for immune system upregulation in Hodgkin’s lymphoma. J Med Hypotheses Ideas. 2015;9:61–6.
  • Goerlich G, Shanker M, Jiankang J, Mani S, Ramesh R. Interleukin-(IL)-24 Regulates Epithelial to Mesenchymal Transition (EMT) Transcription Factors. Mol Ther. 2010;18:S93.
  • Wang M, Liang P. Interleukin-24 and its receptors. Immunology. 2005; 114:166–70.
  • Wang Y, Velho S, Vakiani E, Peng S, Bass AJ, Chu GC, et al. Mutant N-RAS protects colorectal cancer cells from stress-induced apoptosis and contributes to cancer development and progression. Cancer Discov. 2013;3:294–307.
  • Tsao H, Chin L, Garraway LA, Fisher DE. Melanoma: From mutations to medicine. Genes Dev. 2012; 26:1131–55.
  • Ansieau S, Collin G, Hill L. EMT or EMT-Promoting Transcription Factors, Where to Focus the Light? Front Oncol. 2014;4:353.
  • Tulchinsky E, Pringle JH, Caramel J, Ansieau S. Plasticity of melanoma and EMT-TF reprogramming. Oncotarget. 2014; 5:1–2.
  • Thomassen E, Renshaw BR, Sims JE. Identification and characterization of SIGIRR, a molecule representing a novel subtype of the IL-1R superfamily. Cytokine. 1999;11:389–99.
  • Garlanda C, Riva F, Veliz T, Polentarutti N, Pasqualini F, Radaelli E, et al. Increased susceptibility to colitis-associated cancer of mice lacking TIR8, an inhibitory member of the interleukin-1 receptor family. Cancer Res. 2007;67:6017–21.
  • Thomson S, Petti F, Sujka-Kwok I, Mercado P, Bean J, Monaghan M, et al. A systems view of epithelial-mesenchymal transition signaling states. Clin Exp Metastasis. 2011;28:137–55.
  • Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26:3279–90.
  • Lu Z, Xu S. ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life. 2006;58:621–31.
  • Xie L, Law BK, Chytil AM, Brown KA, Aakre ME, Moses HL. Activation of the Erk pathway is required for TGF-beta1-induced EMT in vitro. Neoplasia. 2004;6:603–10.
  • Buonato JM, Lazzara MJ. ERK1/2 blockade prevents epithelial-mesenchymal transition in lung cancer cells and promotes their sensitivity to EGFR inhibition. Cancer Res. 2014;74:309–19.
  • Du L, Rao G, Wang H, Li B, Tian W, Cui J, et al. CD44-positive cancer stem cells expressing cellular prion protein contribute to metastatic capacity in colorectal cancer. Cancer Res. 2013;73:2682–94.
  • Li XW, Tuergan M, Abulizi G. Expression of MAPK1 in cervical cancer and effect of MAPK1 gene silencing on epithelial-mesenchymal transition, invasion and metastasis. Asian Pac J Trop Med. 2015;8:937–43.

EMG, MAPK ve inflamasyona yakından bakış: Fare embriyonik kök hücre, somatik ve kanser hücrelerinde ne farklıdır?

Year 2018, Volume: 32 Issue: 3, 201 - 212, 15.12.2018
https://doi.org/10.5505/deutfd.2018.49469

Abstract

Amaç: Yaşam; başlangıç, hayatta kalma ve
ölümü içeren hücrelerin devamlı olan döngüsünden oluşmaktadır. Hücreler devamlı
olarak bölünür, farklılaşır ve somatik hücreleri oluştururlar. Somatik hücreler
de belli bir noktada kanser hücrelerini oluşturup kök hücreler ile benzer
karakteristikleri paylaşabilmektedirler. Bu dönemlerdeki süreçler, somatik
hücrelerde anormalliğe eğilimi ve kanser hücrelerine dönüşümü tanımlamak için
önemlidir. Kanserin ortaya çıkışını ve ilerleyişini kontrol etmek için, hayatta
kalma mekanizmaları özellikle de epitelyal-mezenkimal geçiş (EMG) ve iltihaplanma
önemlidir. EMG, hem embriyonik gelişim aşamalarında, hem de kanser
ilerlemesinde ortaya çıkar ve bu süreç özellikle moleküler temelli tedavi için
terapötik hedef olabilir.



Gereç ve Yöntem: EMG, MAP-Kinaz ve
inflamasyon yolaklarının gen ekspresyon seviyesinde karşılaştırılmasında kanser
hücreleri temsili için fare skuamöz akciğer kanseri hücreleri (SqLCCs), somatik
kökenli hücre örneği olarak fare derisi fibroblastları (MSF'ler) ve embriyonik
kök hücre olarak da fare embriyonik kök hücreleri (mEKH'ler) kullanılmıştır.
ERK 1/2, Vimentin ve Twist'in immünofloresan boyama protein düzeyleri aynı
hücrelerde karşılaştırılarak incelenmiştir.



Bulgular: MSF'lerde ve
SqLCC'lerde ERK1/2 protein ekspresyonu benzer iken mEKH’lerde ekspresyonu en
düşük bulunmuştur. Ayrıca, Twist ve Vimentin ifadesi istatistiksel olarak üç
hücre hattında farklı çıkmıştır. EMG'nin gen ekspresyon profiline ve MAPK
sinyal yolağının desteklediği inflamasyona göre, özellikle Sparc, Vimentin,
Mapksp1 ve Il24 gibi belirgin genlerde ekspresyon profilleri birbirinden çok
farklı bulunmuştur.



Sonuç: Üç farklı hücre hattı hem gen hem
de protein ekspresyonunda farklı özellikler göstermiştir. Bu nedenle, bu
moleküller terapötik hedef belirlenmesinde potansiyel itici güç olabilir.

References

  • Chen CY, Cheng YY, Yen CYT, Hsieh PCH. Mechanisms of pluripotency maintenance in mouse embryonic stem cells. Cell Mol Life Sci. 2017; 74: 1805–17.
  • Tucak A, Vrabac D, Smajić A, Sažić A. Future trends and possibilities of using induced pluripotent stem cells (iPSC) in regenerative medicine. In Springer, Singapore; 2017; 459–64.
  • He N, Feng G, Li Y, Xu Y, Xie X, Wang H, et al. Embryonic stem cell preconditioned microenvironment suppresses tumorigenic properties in breast cancer. Stem Cell Res Ther. 2016;7:95.
  • Kan X-X, Li Q, Chen X, Wang Y-J, LiY-J, Yang Q, et al. A novel cell cycle blocker extracted from Stellera chamaejasme L. inhibits the proliferation of hepatocarcinoma cells. Oncol Rep. 2016; 35: 3480–8.
  • Kim Y-S, Yi B-R, Kim N-H, Choi K-C. Role of the epithelial–mesenchymal transition and its effects on embryonic stem cells. Exp Mol Med. 2014;46: e108.
  • Chen C-L, Chen Y-H, Tai M-C, Liang C-M, Lu D-W, Chen J-T. Resveratrol inhibits transforming growth factor-β2-induced epithelial-to-mesenchymal transition in human retinal pigment epithelial cells by suppressing the Smad pathway. Drug Des Devel Ther. 2017;11:163–73.
  • Iskender B, Izgi K, Hizar E, Jauch J, Arslanhan A, Yuksek EH, et al. Inhibition of epithelial-mesenchymal transition in bladder cancer cells via modulation of mTOR signalling. Tumor Biol. 2016;37: 8281–91.
  • Shagieva G, Domnina L, Makarevich O, Chernyak B, Skulachev V, Dugina V. Depletion of mitochondrial reactive oxygen species downregulates epithelial-to-mesenchymal transition in cervical cancer cells. Oncotarget. 2017; 8: 4901-4913
  • Bryan RT. Cell adhesion and urothelial bladder cancer: the role of cadherin switching and related phenomena. Philos Trans R Soc Lond B Biol Sci. 2015; 370: 20140042.
  • Zhou P, Li B, Liu F, Zhang M, Wang Q, Liu Y, et al. The epithelial to mesenchymal transition (EMT) and cancer stem cells: implication for treatment resistance in pancreatic cancer. Mol Cancer. 2017;16: 52.
  • Pang M-F, Georgoudaki A-M, Lambut L, Johansson J, Tabor V, Hagikura K, et al. TGF-β1-induced EMT promotes targeted migration of breast cancer cells through the lymphatic system by the activation of CCR7/CCL21-mediated chemotaxis. Oncogene. 2016; 35: 748–60.
  • Fuxe J, Vincent T, De Herreros AG. Transcriptional crosstalk between TGFβ and stem cell pathways in tumor cell invasion: Role of EMT promoting Smad complexes. Cell Cycle. 2010; 9: 2363–74.
  • Rahman MS, Akhtar N, Jamil HM, Banik RS, Asaduzzaman SM. TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Res. 2015; 3: 15005.
  • Morry J, Ngamcherdtrakul W, Yantasee W. Oxidative stress in cancer and fibrosis: Opportunity for therapeutic intervention with antioxidant compounds, enzymes, and nanoparticles. Redox Biology. 2017; 11: 240–53.
  • Tseng JH, Bisogna M, Hoang LN, Olvera N, Rodriguez-Aguayo C, Lopez-Berestein G, et al. miR-200c-driven Mesenchymal-To-Epithelial Transition is a Therapeutic Target in Uterine Carcinosarcomas. Sci Rep. 2017; 7: 3614.
  • Suarez-Carmona M, Lesage J, Cataldo D, Gilles C. EMT and inflammation: inseparable actors of cancer progression. Mol Oncol. 2017; 11: 805–23.
  • López-Novoa JM, Nieto MA. Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol Med. 2009; 1:303–14.
  • Khalafalla FG, Khan MW. Inflammation and Epithelial-Mesenchymal Transition in Pancreatic Ductal Adenocarcinoma: Fighting Against Multiple Opponents. Cancer Growth Metastasis. 2017;10: 1179064417709287.
  • Ye X, Tam WL, Shibue T, Kaygusuz Y, Reinhardt F, Ng Eaton E, et al. Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature. 2015;525: 256–60.
  • Arvelo F, Sojo F, Cotte C. Tumour progression and metastasis. Ecancermedicalscience. 2016; 10: 617.
  • Franco AT, Corken A, Ware J. Platelets at the interface of thrombosis, inflammation, and cancer. Blood. 2015; 126: 582–8.
  • Klameth L, Rath B, Hochmaier M, Moser D, Redl M, Mungenast F, et al. Small cell lung cancer: model of circulating tumor cell tumorospheres in chemoresistance. Sci Rep. 2017;7:5337.
  • Crusz SM, Balkwill FR. Inflammation and cancer: advances and new agents. Nat Rev Clin Oncol. 2015;12:584–96.
  • Low HB, Zhang Y. Regulatory Roles of MAPK Phosphatases in Cancer. Immune Netw. 2016;16:85–98.
  • Burotto M, Chiou VL, Lee JM, Kohn EC. The MAPK pathway across different malignancies: A new perspective. Cancer. 2014;120:3446–56.
  • Derynck R, Muthusamy BP, Saeteurn KY. Signaling pathway cooperation in TGF-β-induced epithelial-mesenchymal transition. Curr Opin Cell Biol. 2014;31:56–66.
  • Molina JR, Adjei AA. The Ras/Raf/MAPK Pathway. J Thorac Oncol. 2006;1:7–9.
  • Moyano J V, Greciano PG, Buschmann MM, Koch M, Matlin KS. Autocrine transforming growth factor-β1 activation mediated by integrin αVβ3 regulates transcriptional expression of laminin-332 in madin-darby canine kidney epithelial cells. Mol Biol Cell. 2010;21:3654–68.
  • Micalizzi DS, Farabaugh SM, Ford HL. Epithelial-mesenchymal transition in cancer: Parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia. 15: 2010; 117–34.
  • Chu P-Y, Hu F-W, Yu C-C, Tsai L-L, Yu C-H, Wu B-C, et al. Epithelial–mesenchymal transition transcription factor ZEB1/ZEB2 co-expression predicts poor prognosis and maintains tumor-initiating properties in head and neck cancer. Oral Oncol. 2013;49:34–41.
  • Yang L. TGFβ and cancer metastasis: an inflammation link. Cancer Metastasis Rev. 2010;29:263–71.
  • Zeng J, Zhan P, Wu G, Yang W, Liang W, Lv T, et al. Prognostic value of Twist in lung cancer: systematic review and meta-analysis. Transl Lung Cancer Res. 2015;4:236–41.
  • Dauphin M, Barbe C, Lemaire S, Nawrocki-Raby B, Lagonotte E, Delepine G, et al. Vimentin expression predicts the occurrence of metastases in non small cell lung carcinomas. Lung Cancer. 2013;81:117–22.
  • Jones EA, Clement-Jones M, Wilson DI. JAGGED1 expression in human embryos: correlation with the Alagille syndrome phenotype. J Med Genet. 2000;37:658–62.
  • Zhang L, Ye Y, Long X, Xiao P, Ren X, Yu J. BMP signaling and its paradoxical effects in tumorigenesis and dissemination. Oncotarget. 2016;7:78206–18.
  • Tan X, Zheng F, Zhou Q, Duan L, Li Y. [Effect of bone morphogenetic protein-7 on monocyte chemoattractant protein-1 induced epithelial-myofibroblast transition and TGF-beta1-Smad 3 signaling pathway of HKC cells]. Zhonghua Yi Xue Za Zhi. 2005; 85:2607–12.
  • Duangkumpha K, Techasen A, Loilome W, Namwat N, Thanan R, Khuntikeo N, et al. BMP-7 blocks the effects of TGF-??-induced EMT in cholangiocarcinoma. Tumour Biol. 2014;35):9667–76.
  • Mock K, Preca B-T, Brummer T, Brabletz S, Stemmler MP, Brabletz T. The EMT-activator ZEB1 induces bone metastasis associated genes including BMP-inhibitors. Oncotarget. 2015;6: 14399-412.
  • Sahoo A, Im S-H. Molecular Mechanisms Governing IL-24 Gene Expression. Immune Netw. 2012;12:1–7.
  • Manesh ME, Esmaeilzadeh A, Mirzaei MH. IL-24: A novel gene therapy candidate for immune system upregulation in Hodgkin’s lymphoma. J Med Hypotheses Ideas. 2015;9:61–6.
  • Goerlich G, Shanker M, Jiankang J, Mani S, Ramesh R. Interleukin-(IL)-24 Regulates Epithelial to Mesenchymal Transition (EMT) Transcription Factors. Mol Ther. 2010;18:S93.
  • Wang M, Liang P. Interleukin-24 and its receptors. Immunology. 2005; 114:166–70.
  • Wang Y, Velho S, Vakiani E, Peng S, Bass AJ, Chu GC, et al. Mutant N-RAS protects colorectal cancer cells from stress-induced apoptosis and contributes to cancer development and progression. Cancer Discov. 2013;3:294–307.
  • Tsao H, Chin L, Garraway LA, Fisher DE. Melanoma: From mutations to medicine. Genes Dev. 2012; 26:1131–55.
  • Ansieau S, Collin G, Hill L. EMT or EMT-Promoting Transcription Factors, Where to Focus the Light? Front Oncol. 2014;4:353.
  • Tulchinsky E, Pringle JH, Caramel J, Ansieau S. Plasticity of melanoma and EMT-TF reprogramming. Oncotarget. 2014; 5:1–2.
  • Thomassen E, Renshaw BR, Sims JE. Identification and characterization of SIGIRR, a molecule representing a novel subtype of the IL-1R superfamily. Cytokine. 1999;11:389–99.
  • Garlanda C, Riva F, Veliz T, Polentarutti N, Pasqualini F, Radaelli E, et al. Increased susceptibility to colitis-associated cancer of mice lacking TIR8, an inhibitory member of the interleukin-1 receptor family. Cancer Res. 2007;67:6017–21.
  • Thomson S, Petti F, Sujka-Kwok I, Mercado P, Bean J, Monaghan M, et al. A systems view of epithelial-mesenchymal transition signaling states. Clin Exp Metastasis. 2011;28:137–55.
  • Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26:3279–90.
  • Lu Z, Xu S. ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life. 2006;58:621–31.
  • Xie L, Law BK, Chytil AM, Brown KA, Aakre ME, Moses HL. Activation of the Erk pathway is required for TGF-beta1-induced EMT in vitro. Neoplasia. 2004;6:603–10.
  • Buonato JM, Lazzara MJ. ERK1/2 blockade prevents epithelial-mesenchymal transition in lung cancer cells and promotes their sensitivity to EGFR inhibition. Cancer Res. 2014;74:309–19.
  • Du L, Rao G, Wang H, Li B, Tian W, Cui J, et al. CD44-positive cancer stem cells expressing cellular prion protein contribute to metastatic capacity in colorectal cancer. Cancer Res. 2013;73:2682–94.
  • Li XW, Tuergan M, Abulizi G. Expression of MAPK1 in cervical cancer and effect of MAPK1 gene silencing on epithelial-mesenchymal transition, invasion and metastasis. Asian Pac J Trop Med. 2015;8:937–43.
There are 55 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Articles
Authors

Fatih Oltulu This is me 0000-0001-6475-642X

Berrin Özdil This is me 0000-0001-6081-2308

Çevik Gürel This is me 0000-0003-0266-2115

Eda Açıkgöz This is me 0000-0002-6772-3081

Duygu Çalık Kocatürk This is me 0000-0001-5995-8967

Yasemin Adalı This is me 0000-0002-6314-4816

Ayşegül Uysal This is me 0000-0002-9919-2254

Altuğ Yavaşoğlu This is me 0000-0003-4227-1637

Gülperi Öktem This is me 0000-0001-6227-9519

Hüseyin Aktuğ This is me 0000-0003-4150-8495

Publication Date December 15, 2018
Submission Date June 7, 2018
Published in Issue Year 2018 Volume: 32 Issue: 3

Cite

Vancouver Oltulu F, Özdil B, Gürel Ç, Açıkgöz E, Çalık Kocatürk D, Adalı Y, Uysal A, Yavaşoğlu A, Öktem G, Aktuğ H. EMG, MAPK ve inflamasyona yakından bakış: Fare embriyonik kök hücre, somatik ve kanser hücrelerinde ne farklıdır?. J DEU Med. 2018;32(3):201-12.