Research Article
PDF EndNote BibTex Cite

Dijital Mamografide farklı meme yoğunluklarında doz ve görüntü kalitesi arasındaki ilişkinin değerlendirilmesi

Year 2019, Volume 33, Issue 3, 207 - 212, 06.02.2020
https://doi.org/10.5505/deutfd.2019.98250

Abstract

Amaç: Bu çalışmada, Dijital Mamografi (DM)’de memenin glandüler yapısına bağlı olarak her bir uygulamadaki ortalama glandüler doz değeri ile görüntü kalitesi arasındaki ilişkinin değerlendirilmesi amaçlanmıştır. Gereç ve Yöntem: Retrospektif olarak gerçekleştirilen çalışmada hastaların sağ ve sol meme CranioCaudal (sırasıyla RCC ve LCC) ve MedioLateralOblik (sırasıyla RMLO ve LMLO) iki boyutlu (2B) ve üç boyutlu (3B) tomosentez görüntü verileri incelendi ve meme görüntüleme raporlama ve veri sistemi (Breast Imaging Reporting and Data System- BI-RADS) kriterlerine göre meme yapısı A, B, C ve D olarak sınıflandırıldı. Çalışmaya başlamadan önce cihazın verdiği doz değerlerini doğrulamak amacıyla DM Tomosentez cihazının dozla ilgili kalite kontrol çalışmaları gerçekleştirildi. Cilt giriş dozu (CGD), ortalama glandüler doz (OGD) ve sinyal gürültü oranı (Signal Noise Ratio- SNR) değerleri belirlendi ve hastaya verilen doz ve görüntü kalitesi arasındaki ilişkinin sayısal olarak değerlendirmek için Figure of Merit (FOM) hesaplandı. Grupların istatistiksel analizleri SPSS 15 programı kullanılarak parametrik gruplarda Pearson korelasyonu anlamlılık değeri p hesaplandı ve p<0,05 olarak alındı. Bulgular: 3B tomosentez incelemesinde B ve C tipi memenin RMLO, LMLO, sağ ve sol meme MedioLateralOblik Combo (sırasıyla RMLOc ve LMLOc) pozisyonları, 2B mamografide çoğunluğu oluşturan grup A tipi memenin RCC, LCC, RMLO, LMLO pozisyonları ayrı ayrı değerlendirildi ve her çekim pozisyonunda OGD-FOM ve SNR-FOM arasında anlamlı bir korelasyon (p<0,05) bulundu. Sonuç: Meme glandüler yapısına göre, doz ve görüntü kalitesi arasında güçlü bir korelasyon olması memenin aldığı doza karşılık elde edilen görüntü kalitesinin optimum şartlarda olduğunu göstermektedir.

References

  • 1. World Cancer Research Fund and American Institute for Cancer Research. Breast Cancer Statistics: Breast cancer is the most common cancer in women worldwide. 2018 [Erişim Tarihi: 30 Eylül 2019]. (Erişim Adresi: https://www.wcrf.org/dietandcancer/cancer-trends/breast-cancer-statistics)
  • 2. Michaelson J, Satija S, Moore R, Weber G, Halpern E, Garland A, et al. The pattern of breast cancer screening utilization and its consequences. Cancer. 2002;94(1):37-43.
  • 3. Friedewald SM, Rafferty EA, Rose SL, Durand MA, Plecha DM, Greenberg JS, et al. Breast cancer screening using tomosynthesis in combination with digital mammography. JAMA. 2014;311(24):2499-507.
  • 4. Sosu EK, Boadu M, Mensah SY. Determination of dose delivery accuracy and image quality in full - field digital mammography. J Radiat Res Appl Sci. 2019;11(3):232-6.
  • 5. Sharma R SS, Sarkar PS, Datta D. Imaging and dosimetric study on direct flat-panel detector based digital mammography system. J Med Phys. 2018;4(43):255-63.
  • 6. Fausto AM, Lopes MC, de Sousa MC, Furquim TA, Mol AW, Velasco FG. Optimization of image quality and dose in digital mammography. J Digit Imaging. 2017;30(2):185-96.
  • 7. Taskin F. Dijital meme tomosentezi ve kontrastlı mamografi. Türk Radyoloji Seminerleri. 2014;2(2):182-91.
  • 8. Rojas LJ, Fausto AMF, Mol AW, Velasco FG, Abreu POS, Henriques G, et al. Optimization of the exposure parameters in digital mammography using contrast-detail metrics. Phys Med. 2017;42:13-8.
  • 9. Borg M, Badr I, Royle GJ. The use of a figure-of-merit (FOM) for optimisation in digital mammography: a literature review. Radiat Prot Dosimetry. 2012;151(1):81-8.
  • 10. Zhou Y, Scott A 2nd, Allahverdian J, Frankel S. Evaluation of automatic exposure control options in digital mammography. J Xray Sci Technol. 2014;22(3):377-94.
  • 11. Rao AA, Feneis J, Lalonde C, Ojeda-Fournier H. A pictorial review of changes in the BI-RADS fifth edition. Radiographics. 2016;36(3):623-39.
  • 12. Baek JE KB, Kim SH and Lee HS. Radiation dose affected by mammographic composition and breast size: first application of a radiation dose management system for full-field digital mammography in Korean women. World J Surg Oncol. 2017:15-38.
  • 13. Dance DR, Skinner CL, Carlsson GA. Breast dosimetry. Appl Radiat Isot. 1999;50(1):185-203.
  • 14. Public Health England. Routine quality control tests for breast tomosynthesis (physicists). NHS Breast Screening Programme Equipmant Report 1407. 2015:5-47.
  • 15. Sechopoulos I, Sabol JM, Berglund J, Bolch WE, Brateman L, Christodoulou E, et al. Radiation dosimetry in digital breast tomosynthesis: report of AAPM Tomosynthesis Subcommittee Task Group 223. Med Phys. 2014;41(9):091501.
  • 16. Magnotta VA, Friedman L, First B. Measurement of Signal-to-Noise and Contrast-to-Noise in the fBIRN multicenter imaging study. J Digit Imaging. 2006;19(2):140-7.
  • 17. Ranger NT, Lo JY, Samei E. A technique optimization protocol and the potential for dose reduction in digital mammography. Med Phys. 2010;37(3):962-9.

EVALUATION OF THE RELATION BETWEEN DOSE AND IMAGE QUALITY AT DIFFERENT BREAST DENSITIES IN DIGITAL MAMMOGRAPHY

Year 2019, Volume 33, Issue 3, 207 - 212, 06.02.2020
https://doi.org/10.5505/deutfd.2019.98250

Abstract

Objective: The aim of this study was to evaluate the relation between image quality and mean glandular dose (MGD) value in each application in Digital Mammography (DM) depending on the glandular structure of the breast. Material and Method: In this retrospective study, right and left breast CranioCaudal (RCC and LCC, respectively) and Medio Lateral Oblique (RMLO and LMLO, respectively) two-dimensional (2D) and three-dimensional (3D) tomosynthesis image data of the patients' were examined and the breast structure was classified as A, B, C and D according to Breast Imaging Reporting and Data System(BI-RADS) criteria. Firstly, the dose-related quality control evaluations of the DM tomosynthesis system were performed to confirm the dose values given by devices. Skin entrance dose (SED), mean glandular dose (MGD) and Signal Noise Ratio (SNR) values were determined and Figure of Merit (FOM) was calculated to quantitatively assess the relation between the dose given to the patient and image quality. Statistical analysis of the groups was performed by using SPSS 15 program and Pearson correlation significance value was calculated as p <0.05 for parametric groups. Results: In the 3D tomosynthesis examination, the RMLO, LMLO, right and left breast Medio Lateral Oblique Combo (RMLOc and LMLOc, respectively) positions of the B and C breasts, and the RCC, LCC, RMLO, LMLO positions of the group A type breast, which constituted the majority in 2D mammography were evaluated separately and a significant correlation (p <0.05) was found between MGD-FOM and SNR-FOM in each position. Conclusion: According to the breast glandular structure, a strong correlation between dose and image quality indicates that the image quality obtained under the given dose is in optimum conditions

References

  • 1. World Cancer Research Fund and American Institute for Cancer Research. Breast Cancer Statistics: Breast cancer is the most common cancer in women worldwide. 2018 [Erişim Tarihi: 30 Eylül 2019]. (Erişim Adresi: https://www.wcrf.org/dietandcancer/cancer-trends/breast-cancer-statistics)
  • 2. Michaelson J, Satija S, Moore R, Weber G, Halpern E, Garland A, et al. The pattern of breast cancer screening utilization and its consequences. Cancer. 2002;94(1):37-43.
  • 3. Friedewald SM, Rafferty EA, Rose SL, Durand MA, Plecha DM, Greenberg JS, et al. Breast cancer screening using tomosynthesis in combination with digital mammography. JAMA. 2014;311(24):2499-507.
  • 4. Sosu EK, Boadu M, Mensah SY. Determination of dose delivery accuracy and image quality in full - field digital mammography. J Radiat Res Appl Sci. 2019;11(3):232-6.
  • 5. Sharma R SS, Sarkar PS, Datta D. Imaging and dosimetric study on direct flat-panel detector based digital mammography system. J Med Phys. 2018;4(43):255-63.
  • 6. Fausto AM, Lopes MC, de Sousa MC, Furquim TA, Mol AW, Velasco FG. Optimization of image quality and dose in digital mammography. J Digit Imaging. 2017;30(2):185-96.
  • 7. Taskin F. Dijital meme tomosentezi ve kontrastlı mamografi. Türk Radyoloji Seminerleri. 2014;2(2):182-91.
  • 8. Rojas LJ, Fausto AMF, Mol AW, Velasco FG, Abreu POS, Henriques G, et al. Optimization of the exposure parameters in digital mammography using contrast-detail metrics. Phys Med. 2017;42:13-8.
  • 9. Borg M, Badr I, Royle GJ. The use of a figure-of-merit (FOM) for optimisation in digital mammography: a literature review. Radiat Prot Dosimetry. 2012;151(1):81-8.
  • 10. Zhou Y, Scott A 2nd, Allahverdian J, Frankel S. Evaluation of automatic exposure control options in digital mammography. J Xray Sci Technol. 2014;22(3):377-94.
  • 11. Rao AA, Feneis J, Lalonde C, Ojeda-Fournier H. A pictorial review of changes in the BI-RADS fifth edition. Radiographics. 2016;36(3):623-39.
  • 12. Baek JE KB, Kim SH and Lee HS. Radiation dose affected by mammographic composition and breast size: first application of a radiation dose management system for full-field digital mammography in Korean women. World J Surg Oncol. 2017:15-38.
  • 13. Dance DR, Skinner CL, Carlsson GA. Breast dosimetry. Appl Radiat Isot. 1999;50(1):185-203.
  • 14. Public Health England. Routine quality control tests for breast tomosynthesis (physicists). NHS Breast Screening Programme Equipmant Report 1407. 2015:5-47.
  • 15. Sechopoulos I, Sabol JM, Berglund J, Bolch WE, Brateman L, Christodoulou E, et al. Radiation dosimetry in digital breast tomosynthesis: report of AAPM Tomosynthesis Subcommittee Task Group 223. Med Phys. 2014;41(9):091501.
  • 16. Magnotta VA, Friedman L, First B. Measurement of Signal-to-Noise and Contrast-to-Noise in the fBIRN multicenter imaging study. J Digit Imaging. 2006;19(2):140-7.
  • 17. Ranger NT, Lo JY, Samei E. A technique optimization protocol and the potential for dose reduction in digital mammography. Med Phys. 2010;37(3):962-9.

Details

Primary Language Turkish
Subjects Medicine
Journal Section Research Articles
Authors

Ayşegül YURT This is me
DOKUZ EYLÜL ÜNİVERSİTESİ, SAĞLIK HİZMETLERİ MESLEK YÜKSEKOKULU
0000-0001-9898-2329
Türkiye


Nilsu CİNİ This is me
DOKUZ EYLÜL ÜNİVERSİTESİ SAĞLIK BİLİMLERİ ENSTİTÜSÜ, MEDİKAL FİZİK ANABİLİM DALI
0000-0001-6370-6535
Türkiye


Aliye OKTAY This is me
BURSA ALİ OSMAN SÖNMEZ ONKOLOJİ HASTANESİ
0000-0002-4649-1007
Türkiye


Pınar BALCI This is me
DOKUZ EYLÜL ÜNİVERSİTESİ, TIP FAKÜLTESİ, DAHİLİ TIP BİLİMLERİ BÖLÜMÜ, RADYOLOJİ ANABİLİM DALI
0000-0002-2425-7631
Türkiye

Publication Date February 6, 2020
Application Date July 11, 2019
Acceptance Date September 4, 2019
Published in Issue Year 2019, Volume 33, Issue 3

Cite

Vancouver Yurt A. , Cini N. , Oktay A. , Balcı P. Dijital Mamografide farklı meme yoğunluklarında doz ve görüntü kalitesi arasındaki ilişkinin değerlendirilmesi. Dokuz Eylül Üniversitesi Tıp Fakültesi Dergisi. 2020; 33(3): 207-212.