Research Article
BibTex RIS Cite

Gallik Asidin Rahim Ağzı Kanseri Hücre Hattına (HeLa) Karşı Antikanser Etkisi

Year 2023, , 365 - 373, 15.09.2023
https://doi.org/10.5798/dicletip.1360684

Abstract

Amaç: Servikal kanser, kadın infertilitesinde oldukça önemli yer teşkil eden ve dünya çapında kadınları en çok etkileyen dördüncü kanser olarak karşımıza çıkmaktadır. Doxorubicin (Dox), yumurtalık ve meme kanseri tedavisinde en sık reçete edilen kemoterapötiklerdendir. Kemoterapötik ilaçlar çok etkili tedavi sonuçları ile yanıt oluştursalar da, ciddi yan etkileri oluşturmakta ve ilaç direnci gelişmesi bu ilaçların kullanımına kısıtlama getirmektedir. Antikanser aktiviteye sahip doğal ürünlerin kullanılması bu sorunların kısmen üstesinden gelinmesine yardımcı olabilir. Gallik asit (GA), çeşitli bitki ve gıdalarda yaygın olarak bulunur ve çeşitli biyolojik etkilere sahip olduğu bildirilmiştir. Bu çalışmada GA'in ve güçlü bir kemoterapi ajanı olan Dox’in HeLa hücreleri ve insan deri keratinosit hücre hattı (HaCaT) üzerindeki hücre büyümesinin inhibisyonu ve ölümü ile ilgili etkileri MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) yöntemi ile belirlenmesi amaçlanmıştır.
Yöntemler: Çalışmada serviks adenokarsinoma hücre serisi HeLa (CCL-2™) ve sağlıklı hücre serisi olarak insan deri keratinosit hücre serisi HaCat (RRID: CVCL_0038) kullanılmıştır. Dox ve GA’in IC50 (inhibitory concentration) dozlarının belirlenmesi için HeLa ve HaCaT hücre hattı otomatik multipipet yardımı ile ekimi yapılmıştır. Daha sonra hücre sağkalım (viyabilite) analizini yapmak için MTT testi uygulanmıştır.
Bulgular: HeLa hücre büyümesi, Dox ile muamele edilen hücrelerde 48. saatte yaklaşık IC50 137.6 uM iken, GA'in 48. saatteki IC50 değeri 239.2 uM bulunmuştur.
Sonuç: Bu sonuçlar, GA’in Dox’nun etkisini güçlendirdiğini ve Dox/GA asit kombinasyonunun, rahim ağzı kanseri tedavisinde diğer kemoterapötik kombinasyonları için daha düşük yan etkilerle umut verici bir alternatif olabileceğini göstermektedir.

References

  • 1.Cancer. https ://www.who.int/news-room/fact-sheet s/detail/cancer. Erişim: 16.04.2023.
  • 2.Bray F, Ferlay J, Soerjomataram I, et al. Global cancerstatistics 2018: GLOBOCAN estimates of incidence andmortality worldwide for 36 cancers in 185 countries.CA A Cancer J Clin 2018; 68(6): 394-424.
  • 3.Mirili C, Yılmaz A, Bilici M, et al. Long-Term Follow-Up Outcomes of Cervical Cancer Patients: A SingleCenter Experience from the East Anatolian Region ofTurkey. Dicle Tıp Dergisi 2019; 46(4): 857-865.
  • 4.Aborehab NM, Osama N. Effect of Gallic acid inpotentiating chemotherapeutic effect of Paclitaxel inHeLa cervical cancer cells. Cancer Cell Int 2019; 19:154.
  • 5.Gong C, Xie Y, Zhao Y, et al. Comparison of tworegimens of weekly paclitaxel plus gemcitabine inpatients with metastatic breast cancer: propensityscore-matched analysis of real-world data. Ther AdvDrug Saf 2022; 13.
  • 6.Bayat Mokhtari R, Baluch N, Morgatskaya E, et al.Human bronchial carcinoid tumor initiating cells aretargeted by the combination of acetazolamide andsulforaphane. BMC Cancer 2019; 19(1): 864.
  • 7.Frazier AL, Stoneham S, Rodriguez-Galindo C, et al.Comparison of carboplatin versus cisplatin in thetreatment of paediatric extracranial malignant germcell tumours: a report of the Malignant Germ CellInternational Consortium. Eur J Cancer 2018; 98: 30–7.
  • 8.Jiang S, Pan AW, Lin TY, et al. Paclitaxel enhancescarboplatin-dna adduct formation and cytotoxicity.Chem Res Toxicol 2015; 28(12): 2250-2.
  • 9.Bhattacharya S, Muhammad N, Steele R, et al. BitterMelon enhances natural killer-mediated toxicityagainst head and neck cancer cells. Cancer Prev Res2017; 10(6): 337-44.
  • 10.Wright GD. Opportunities for natural products in21(st) century antibiotic discovery. Nat Prod Rep2017; 34(7): 694-701.
  • 11.Yao H, Liu J, Xu S, et al. The structural modificationof natural products for novel drug discovery. ExpertOpin Drug Discov 2017; 12(2): 121-40.
  • 12. Muhammad N, Steele R, Isbell TS, et al. Bitter melonextract inhibits breast cancer growth in preclinicalmodel by inducing autophagic cell death. Oncotarget2017; 8(39): 66226-36.
  • 13.Bhattacharya S, Muhammad N, Steele R, et al.Immunomodulatory role of bitter melon extract ininhibition of head and neck squamous cell carcinomagrowth. Oncotarget 2016; 7(22): 33202-9.
  • 14.De A, De A, Sharma R, et al. Sensitization ofCarboplatinum- and Taxol-Resistant High-GradeSerous Ovarian Cancer Cells Carrying p53, BRCA1/2Mutations by Emblica officinalis (Amla) via MultipleTargets. J Cancer 2020; 11(7): 1927-1939.
  • 15.Sourani ZM, Pourgheysari BP, Beshkar PM, et al.Gallic Acid inhibits proliferation and induces apoptosisin lymphoblastic leukemia cell line (C121). Iran J MedSci 2016; 41(6): 525-30.
  • 16.He Z, Chen AY, Rojanasakul Y, et al. Gallic acid, aphenolic compound, exerts anti-angiogenic effects viathe PTEN/AKT/HIF-1α/VEGF signaling pathway inovarian cancer cells. Oncol Rep 2016 ; 35(1): 291-7.
  • 17.Jiang Y, Pei J, Zheng Y, et al. Gallic Acid: A PotentialAnti-Cancer Agent. Chin J Integr Med 2022; 28(7): 661-671.
  • 18.Park WH, Kim SH. MAPK inhibitors augment gallicacid-induced A549 lung cancer cell death through theenhancement of glutathione depletion. Oncol Rep2013; 30(1): 513-9.
  • 19.Al Balushi N, Hassan SI, Abdullah N, et al. Additionof Gallic Acid Overcomes Resistance to Cisplatin inOvarian Cancer Cell Lines. Asian Pac J Cancer Prev2022; 23(8): 2661-2669.
  • 20.Park WH. Gallic acid induces HeLa cell death viaincreasing GSH depletion rather than ROS levels. OncolRep 2017; 37(2): 1277-83.
  • 21.Dorniani D, Saifullah B, Barahuie F, et al. Grapheneoxide-Gallic Acid nanodelivery system for cancer therapy. Nanoscale Res Lett 2016; 11(1): 491.
  • 22.Präbst K, Engelhardt H, Ringgeler S, et al. BasicColorimetric Proliferation Assays: MTT, WST, andResazurin. Methods Mol Biol 2017; 1601: 1-17.
  • 23.Yan XX, Zhao YQ, He Y, et al. Cytotoxic and pro-apoptotic effects of botanical drugs derived from theindigenous cultivated medicinal plant Paris polyphyllavar. yunnanensis. Front Pharmacol 2023; 14: 1100825.
  • 24.Stockert JC, Horobin RW, Colombo LL, et al.Tetrazolium salts and formazan products in CellBiology: Viability assessment, fluorescence imaging,and labeling perspectives. Acta Histochem 2018;120(3): 159-67.
  • 25.He Y, Zhu Q, Chen M, et al. The changing 50%inhibitory concentration (IC50) of cisplatin: a pilotstudy on the artifacts of the MTT assay and the precisemeasurement of density-dependent chemoresistancein ovarian cancer. Oncotarget 2016; 7(43): 70803-21.
  • 26.Sanchez-Carranza JN, Diaz JF, Redondo-Horcajo M,et al. Gallic acid sensitizes paclitaxel-resistant humanovarian carcinoma cells through an increase in reactive oxygen species and subsequent downregulation ofERK activation. Oncol Rep 2018; 39(6): 3007-14.
  • 27.Liu Y, Zhao R, Qin X, et al. Cobimetinib SensitizesCervical Cancer to Paclitaxel via SuppressingPaclitaxel-Induced ERK Activation. Pharmacology2022; 107(7-8): 398-405.
Year 2023, , 365 - 373, 15.09.2023
https://doi.org/10.5798/dicletip.1360684

Abstract

References

  • 1.Cancer. https ://www.who.int/news-room/fact-sheet s/detail/cancer. Erişim: 16.04.2023.
  • 2.Bray F, Ferlay J, Soerjomataram I, et al. Global cancerstatistics 2018: GLOBOCAN estimates of incidence andmortality worldwide for 36 cancers in 185 countries.CA A Cancer J Clin 2018; 68(6): 394-424.
  • 3.Mirili C, Yılmaz A, Bilici M, et al. Long-Term Follow-Up Outcomes of Cervical Cancer Patients: A SingleCenter Experience from the East Anatolian Region ofTurkey. Dicle Tıp Dergisi 2019; 46(4): 857-865.
  • 4.Aborehab NM, Osama N. Effect of Gallic acid inpotentiating chemotherapeutic effect of Paclitaxel inHeLa cervical cancer cells. Cancer Cell Int 2019; 19:154.
  • 5.Gong C, Xie Y, Zhao Y, et al. Comparison of tworegimens of weekly paclitaxel plus gemcitabine inpatients with metastatic breast cancer: propensityscore-matched analysis of real-world data. Ther AdvDrug Saf 2022; 13.
  • 6.Bayat Mokhtari R, Baluch N, Morgatskaya E, et al.Human bronchial carcinoid tumor initiating cells aretargeted by the combination of acetazolamide andsulforaphane. BMC Cancer 2019; 19(1): 864.
  • 7.Frazier AL, Stoneham S, Rodriguez-Galindo C, et al.Comparison of carboplatin versus cisplatin in thetreatment of paediatric extracranial malignant germcell tumours: a report of the Malignant Germ CellInternational Consortium. Eur J Cancer 2018; 98: 30–7.
  • 8.Jiang S, Pan AW, Lin TY, et al. Paclitaxel enhancescarboplatin-dna adduct formation and cytotoxicity.Chem Res Toxicol 2015; 28(12): 2250-2.
  • 9.Bhattacharya S, Muhammad N, Steele R, et al. BitterMelon enhances natural killer-mediated toxicityagainst head and neck cancer cells. Cancer Prev Res2017; 10(6): 337-44.
  • 10.Wright GD. Opportunities for natural products in21(st) century antibiotic discovery. Nat Prod Rep2017; 34(7): 694-701.
  • 11.Yao H, Liu J, Xu S, et al. The structural modificationof natural products for novel drug discovery. ExpertOpin Drug Discov 2017; 12(2): 121-40.
  • 12. Muhammad N, Steele R, Isbell TS, et al. Bitter melonextract inhibits breast cancer growth in preclinicalmodel by inducing autophagic cell death. Oncotarget2017; 8(39): 66226-36.
  • 13.Bhattacharya S, Muhammad N, Steele R, et al.Immunomodulatory role of bitter melon extract ininhibition of head and neck squamous cell carcinomagrowth. Oncotarget 2016; 7(22): 33202-9.
  • 14.De A, De A, Sharma R, et al. Sensitization ofCarboplatinum- and Taxol-Resistant High-GradeSerous Ovarian Cancer Cells Carrying p53, BRCA1/2Mutations by Emblica officinalis (Amla) via MultipleTargets. J Cancer 2020; 11(7): 1927-1939.
  • 15.Sourani ZM, Pourgheysari BP, Beshkar PM, et al.Gallic Acid inhibits proliferation and induces apoptosisin lymphoblastic leukemia cell line (C121). Iran J MedSci 2016; 41(6): 525-30.
  • 16.He Z, Chen AY, Rojanasakul Y, et al. Gallic acid, aphenolic compound, exerts anti-angiogenic effects viathe PTEN/AKT/HIF-1α/VEGF signaling pathway inovarian cancer cells. Oncol Rep 2016 ; 35(1): 291-7.
  • 17.Jiang Y, Pei J, Zheng Y, et al. Gallic Acid: A PotentialAnti-Cancer Agent. Chin J Integr Med 2022; 28(7): 661-671.
  • 18.Park WH, Kim SH. MAPK inhibitors augment gallicacid-induced A549 lung cancer cell death through theenhancement of glutathione depletion. Oncol Rep2013; 30(1): 513-9.
  • 19.Al Balushi N, Hassan SI, Abdullah N, et al. Additionof Gallic Acid Overcomes Resistance to Cisplatin inOvarian Cancer Cell Lines. Asian Pac J Cancer Prev2022; 23(8): 2661-2669.
  • 20.Park WH. Gallic acid induces HeLa cell death viaincreasing GSH depletion rather than ROS levels. OncolRep 2017; 37(2): 1277-83.
  • 21.Dorniani D, Saifullah B, Barahuie F, et al. Grapheneoxide-Gallic Acid nanodelivery system for cancer therapy. Nanoscale Res Lett 2016; 11(1): 491.
  • 22.Präbst K, Engelhardt H, Ringgeler S, et al. BasicColorimetric Proliferation Assays: MTT, WST, andResazurin. Methods Mol Biol 2017; 1601: 1-17.
  • 23.Yan XX, Zhao YQ, He Y, et al. Cytotoxic and pro-apoptotic effects of botanical drugs derived from theindigenous cultivated medicinal plant Paris polyphyllavar. yunnanensis. Front Pharmacol 2023; 14: 1100825.
  • 24.Stockert JC, Horobin RW, Colombo LL, et al.Tetrazolium salts and formazan products in CellBiology: Viability assessment, fluorescence imaging,and labeling perspectives. Acta Histochem 2018;120(3): 159-67.
  • 25.He Y, Zhu Q, Chen M, et al. The changing 50%inhibitory concentration (IC50) of cisplatin: a pilotstudy on the artifacts of the MTT assay and the precisemeasurement of density-dependent chemoresistancein ovarian cancer. Oncotarget 2016; 7(43): 70803-21.
  • 26.Sanchez-Carranza JN, Diaz JF, Redondo-Horcajo M,et al. Gallic acid sensitizes paclitaxel-resistant humanovarian carcinoma cells through an increase in reactive oxygen species and subsequent downregulation ofERK activation. Oncol Rep 2018; 39(6): 3007-14.
  • 27.Liu Y, Zhao R, Qin X, et al. Cobimetinib SensitizesCervical Cancer to Paclitaxel via SuppressingPaclitaxel-Induced ERK Activation. Pharmacology2022; 107(7-8): 398-405.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Medical Education
Journal Section Research Articles
Authors

Umut Sarı This is me

Yasemin Afşin This is me

İlhan Özdemir

Serap Mutlu Özçelik This is me

Şamil Öztürk

Publication Date September 15, 2023
Submission Date May 4, 2023
Published in Issue Year 2023

Cite

APA Sarı, U., Afşin, Y., Özdemir, İ., Mutlu Özçelik, S., et al. (2023). Gallik Asidin Rahim Ağzı Kanseri Hücre Hattına (HeLa) Karşı Antikanser Etkisi. Dicle Tıp Dergisi365-373. https://doi.org/10.5798/dicletip.1360684
AMA Sarı U, Afşin Y, Özdemir İ, Mutlu Özçelik S, Öztürk Ş. Gallik Asidin Rahim Ağzı Kanseri Hücre Hattına (HeLa) Karşı Antikanser Etkisi. diclemedj. Published online September 1, 2023:365-373. doi:10.5798/dicletip.1360684
Chicago Sarı, Umut, Yasemin Afşin, İlhan Özdemir, Serap Mutlu Özçelik, and Şamil Öztürk. “Gallik Asidin Rahim Ağzı Kanseri Hücre Hattına (HeLa) Karşı Antikanser Etkisi”. Dicle Tıp Dergisi, September (September 2023), 365-73. https://doi.org/10.5798/dicletip.1360684.
EndNote Sarı U, Afşin Y, Özdemir İ, Mutlu Özçelik S, Öztürk Ş (September 1, 2023) Gallik Asidin Rahim Ağzı Kanseri Hücre Hattına (HeLa) Karşı Antikanser Etkisi. Dicle Tıp Dergisi 365–373.
IEEE U. Sarı, Y. Afşin, İ. Özdemir, S. Mutlu Özçelik, and Ş. Öztürk, “Gallik Asidin Rahim Ağzı Kanseri Hücre Hattına (HeLa) Karşı Antikanser Etkisi”, diclemedj, pp. 365–373, September 2023, doi: 10.5798/dicletip.1360684.
ISNAD Sarı, Umut et al. “Gallik Asidin Rahim Ağzı Kanseri Hücre Hattına (HeLa) Karşı Antikanser Etkisi”. Dicle Tıp Dergisi. September 2023. 365-373. https://doi.org/10.5798/dicletip.1360684.
JAMA Sarı U, Afşin Y, Özdemir İ, Mutlu Özçelik S, Öztürk Ş. Gallik Asidin Rahim Ağzı Kanseri Hücre Hattına (HeLa) Karşı Antikanser Etkisi. diclemedj. 2023;:365–373.
MLA Sarı, Umut et al. “Gallik Asidin Rahim Ağzı Kanseri Hücre Hattına (HeLa) Karşı Antikanser Etkisi”. Dicle Tıp Dergisi, 2023, pp. 365-73, doi:10.5798/dicletip.1360684.
Vancouver Sarı U, Afşin Y, Özdemir İ, Mutlu Özçelik S, Öztürk Ş. Gallik Asidin Rahim Ağzı Kanseri Hücre Hattına (HeLa) Karşı Antikanser Etkisi. diclemedj. 2023:365-73.