Review
BibTex RIS Cite

High-Performance Polymers in Endodontic Practice

Year 2024, Volume: 6 Issue: 1, 36 - 49, 29.02.2024

Abstract

When considering aesthetic expectations in dentistry, the interest in metal-free restorations is increasing day by day. High-performance polymers (HPP) are biocompatible materials that have recently been used in dentistry. They can be produced in tooth-colored shades, meeting aesthetic requirements, and they exhibit high resistance to oral forces and corrosion without containing any metal alloy. HPP was initially introduced in the field of implantology and later found its place in prosthodontics in dentistry. The search for an ideal material to be used in the restoration of teeth that have undergone root canal treatment (RCT) continues in today's dentistry. Due to their superior properties, numerous studies have been conducted to evaluate the use of HPPs in the restoration of teeth that have undergone RCT. This review aims to examine the use of HPPs as a restorative material option in teeth that have undergone RCT.

References

  • 1. Taleghani, M., & Morgan, R. W. (1987). Reconstructive materials for endodontically treated teeth. Journal of Prosthetic Dentistry, 57(4), 446-449. doi:10.1016/0022-3913(87)90012-6
  • 2. Schilder, H. (1974). Cleaning and shaping the root canal. Dental Clinics of North America, 18, 269-296.
  • 3. Ruddle, C. J. (2015). Endodontic Triad For Success: The Role of Minimally Invasive Technology. Dentistry Today, 1-7.
  • 4. Patil, P., Newase, P., Pawar, S., Gosai, H., Shah, D., & Parhad, S. M. (2022). Comparison of Fracture Resistance of Endodontically Treated Teeth With Traditional Endodontic Access Cavity, Conservative Endodontic Access Cavity, Truss Endodontic Access Cavity, and Ninja Endodontic Access Cavity Designs: An In Vitro Study. Cureus, 14(8), e28090. https://doi.org/10.7759/cureus.28090
  • 5. Papa, J., Cain, C., & Messer, H. H. (1994). Moisture content of vital vs endodontically treated teeth. Endodontics & dental traumatology, 10(2), 91–93. https://doi.org/10.1111/j.1600-9657.1994.tb00067.x
  • 6. Garcia, A. J., Kuga, M. C., Palma-Dibb, R. G., Só, M. V., Matsumoto, M. A., Faria, G., & Keine, K. C. (2013). Effect of sodium hypochlorite under several formulations on root canal dentin microhardness. Journal of investigative and clinical dentistry, 4(4), 229–232. https://doi.org/10.1111/j.2041-1626.2012.00158.x
  • 7. González-López, S., De Haro-Gasquet, F., Vílchez-Díaz, M. A., Ceballos, L., & Bravo, M. (2006). Effect of restorative procedures and occlusal loading on cuspal deflection. Operative Dentistry, 31(1), 33-38. doi:10.2341/04-165
  • 8. Ferrari M, Pontoriero DIK, Ferrari Cagidiaco E, Carboncini F. Restorative difficulty evaluation system of endodontically treated teeth. J Esthet Restor Dent. 2022;34(1):65-80. doi:10.1111/jerd.12880
  • 9. Mannocci, F., & Cowie, J. (2014). Restoration of endodontically treated teeth. British Dental Journal, 216, 341-346. doi:10.1038/sj.bdj.2014.198
  • 10. Slutzky-Goldberg, I., Slutzky, H., Gorfil, C., & Smidt, A. (2009). Restoration of endodontically treated teeth review and treatment recommendations. International Journal of Dentistry, 2009, 150251. doi:10.1155/2009/150251
  • 11. Tekin, S., Adiguzel, O., Cangul, S., Atas, O., & Erpacal, B. (2020). Evaluation of the use of PEEK material in post-core and crown restorations using finite element analysis. American Journal of Dentistry, 33(5), 251-257.
  • 12. Başgül, C., Spece, H., Sharma, N., Thieringer, F. M., & Kurtz, S. M. (2021). Structure, properties, and bioactivity of 3D printed PAEKs for implant applications: A systematic review. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 109(11), 1924-1941. doi:10.1002/jbm.b.34845
  • 13. Maloo, L. M., Toshniwal, S. H., Reche, A., Paul, P., & Wanjari, M. B. (2022). A Sneak Peek Toward Polyaryletherketone (PAEK) Polymer: A Review. Cureus, 14(11), e31042. doi:10.7759/cureus.31042
  • 14. May, R. (1988). Polyetheretherketones. In H. F. Mark, N. M. Bikales, C. G. Overberger, G. Menges, & J. I. Kroschiwitz (Eds.), Encyclopedia of Polymer Science and Engineering (pp. 313-320). John Wiley and Sons.
  • 15. Kurtz, S. M., & Devine, J. N. (2007). PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials, 28(32), 4845-4869.
  • 16. McKeen, L. W. (2012). High Temperature/High-Performance Polymers. In L. W. McKeen (Ed.), Film Properties of Plastics and Elastomers (3rd edition, pp. 315-337). William Andrew Publishing. (ISBN: 9781455725519)
  • 17. Skirbutis, G., Dzingutė, A., Masiliūnaitė, V., Šulcaitė, G., & Žilinskas, J. (2017). A review of PEEK polymer's properties and its use in prosthodontics. Stomatologija, 19(1), 19–23.
  • 18. Alqurashi, H., Khurshid, Z., Syed, A. U., Rashid Habib, S., Rokaya, D., & Zafar, M. S. (2021). Polyetherketoneketone (PEKK): an emerging biomaterial for oral implants and dental prostheses. Journal of Advanced Research, 28, 87-95. doi:10.1016/j.jare.2020.09.004
  • 19. Panayotov, I. V., Orti, V., Cuisinier, F., & Yachouh, J. (2016). Polyetheretherketone (PEEK) for medical applications. Journal of Materials Science: Materials in Medicine, 27(7), 118. doi:10.1007/s10856-016-5731-4
  • 20. Park, C., Jun, D. J., Park, S. W., & Lim, H. P. (2017). Use of polyaryletherketone (PAEK) based polymer for implant-supported telescopic overdenture: A case report. Journal of Advanced Prosthodontics, 9(1), 74-76. doi:10.4047/jap.2017.9.1.74
  • 21. Schwitalla, A. D., Abou-Emara, M., Spintig, T., Lackmann, J., & Müller, W. D. (2015). Finite element analysis of the biomechanical effects of PEEK dental implants on the peri-implant bone. Journal of Biomechanics, 48(1), 1-7. doi:10.1016/j.jbiomech.2014.11.017
  • 22. Atsü, S., Aksan, M. E., & Bulut, A. (2019). Fracture Resistance of Titanium, Zirconia, and Ceramic-Reinforced Polyetheretherketone Implant Abutments Supporting CAD/CAM Monolithic Lithium Disilicate Ceramic Crowns After Aging. The International Journal of Oral & Maxillofacial Implants, 34(1), 92-100.
  • 23. Beuer, F., Schweiger, J., Eichberger, M., Kappert, H., Gernet, W., & Edelhoff, D. (2009). High-strength CAD/CAM-fabricated veneering material sintered to zirconia copings — A new fabrication mode for all-ceramic restorations. Dental Materials, 25(1), 121–128.
  • 24. Abduo, J., & Lyons, K. (2018). Clinical considerations for the use of PEEK dental implants: a systematic review. Journal of Prosthodontic Research, 62(1), 1-9.
  • 25. Attia, M. A., Shokry, T. E., & Abdel-Aziz, M. (2022). Effect of different surface treatments on the bond strength of milled polyetheretherketone posts. Journal of Prosthetic Dentistry, 127(6), 866-874. doi:10.1016/j.prosdent.2020.08.033
  • 26. Stawarczyk, B., Jordan, P., Schmidlin, P. R., Roos, M., Eichberger, M., Gernet, W., & Keul, C. (2014). PEEK surface treatment effects on tensile bond strength to veneering resins. Journal of Prosthetic Dentistry, 112(5), 1278-1288.
  • 27. Keul C, Liebermann A, Schmidlin PR, Roos M, Sener B, Stawarczyk B. Influence of PEEK surface modification on surface properties and bond strength to veneering resin composites. J Adhes Dent. 2014;16(4):383-392.
  • 28. Ma R, Wang J, Li C, Ma K, Wei J, Yang P, Guo D, Wang K, Wang W. Effects of different sulfonation times and post-treatment methods on the characterization and cytocompatibility of sulfonated PEEK. J Biomater Appl. 2020;35:342-352.
  • 29. Zhang J, Yi Y, Wang C, Ding L, Wang R, Wu G. Effect of Acid-Etching Duration on the Adhesive Performance of Printed Polyetheretherketone to Veneering Resin. Polymers. 2021;13:3509. doi:10.3390/polym13203509
  • 30. Taha D, Safwat F, Wahsh M. Effect of combining different surface treatments on the surface characteristics of polyetheretherketone-based core materials and shear bond strength to a veneering composite resin. J Prosthet Dent. 2022.
  • 31. Wang B, Huang M, Dang P, Xie J, Zhang X, Yan X. PEEK in Fixed Dental Prostheses: Application and Adhesion Improvement. Polymers. 2022;14(12):2323. doi:10.3390/polym14122323
  • 32. Soares Machado P, Cadore Rodrigues AC, Chaves ET, Susin AH, Valandro LF, Pereira GKR, Rippe MP. Surface Treatments and Adhesives Used to Increase the Bond Strength Between Polyetheretherketone and Resin-based Dental Materials: A Scoping Review. J Adhes Dent. 2022;24(1):233-245. doi:10.3290/j.jad.b2288283
  • 33. Freedman GA. Esthetic post-and-core treatment. Dent Clin North Am. 2001;45(1):103-116.
  • 34. Schwartz RS, Robbins JW. Post placement and restoration of endodontically treated teeth: a literature review. J Endod. 2004;30(5):289-301. doi:10.1097/00004770-200405000-00001
  • 35. Jurema ALB, Filgueiras AT, Santos KA, Bresciani E, Caneppele TMF. Effect of intraradicular fiber post on the fracture resistance of endodontically treated and restored anterior teeth: A systematic review and meta-analysis. J Prosthet Dent. 2022;128(1):13-24. doi:10.1016/j.prosdent.2020.12.013
  • 36. Badami V, Ketineni H, Pb S, Akarapu S, Mittapalli SP, Khan A. Comparative Evaluation of Different Post Materials on Stress Distribution in Endodontically Treated Teeth Using the Finite Element Analysis Method: A Systematic Review. Cureus. 2022;14(9):e29753. Published 2022 Sep 29. doi:10.7759/cureus.29753
  • 37. Zarow, M., Vadini, M., Chojnacka-Brozek, A., Szczeklik, K., Milewski, G., Biferi, V., D'Arcangelo, C., & De Angelis, F. (2020). Effect of Fiber Posts on Stress Distribution of Endodontically Treated Upper Premolars: Finite Element Analysis. Nanomaterials (Basel, Switzerland), 10(9), 1708. https://doi.org/10.3390/nano10091708
  • 38. Martins, M. D., Junqueira, R. B., de Carvalho, R. F., Lacerda, M. F. L. S., Faé, D. S., & Lemos, C. A. A. (2021). Is a fiber post better than a metal post for the restoration of endodontically treated teeth? A systematic review and meta-analysis. Journal of dentistry, 112, 103750. https://doi.org/10.1016/j.jdent.2021.103750
  • 39. Bathe KJ. Finite Element Procedures. Springer; 2007:1-2.
  • 40. Lee KS, Shin JH, Kim JE, et al. Biomechanical Evaluation of a Tooth Restored with High Performance Polymer PEKK Post-Core System: A 3D Finite Element Analysis [published correction appears in Biomed Res Int. 2017;2017:7196847]. Biomed Res Int. 2017;2017:1373127. doi:10.1155/2017/1373127
  • 41. Nahar R, Mishra SK, Chowdhary R. Evaluation of stress distribution in an endodontically treated tooth restored with four different post systems and two different crowns- A finite element analysis. J Oral Biol Craniofac Res. 2020;10(4):719-726. doi:10.1016/j.jobcr.2020.10.004
  • 42. Huang L, Nemoto R, Okada D, et al. Investigation of stress distribution within an endodontically treated tooth restored with different restorations. J Dent Sci. 2022;17(3):1115-1124. doi:10.1016/j.jds.2022.01.015
  • 43. Ibrahim RO, Al-Zahawi AR, Sabri LA. Mechanical and thermal stress evaluation of PEEK prefabricated post with different head design in endodontically treated tooth: 3D-finite element analysis. Dent Mater J. 2021;40(2):508-518. doi:10.4012/dmj.2020-053
  • 44. Yu, H., Feng, Z., Wang, L., Mihcin, S., Kang, J., Bai, S., & Zhao, Y. (2022). Finite Element Study of PEEK Materials Applied in Post-Retained Restorations. Polymers, 14(16), 3422. https://doi.org/10.3390/polym14163422
  • 45. Pourkhalili H, Maleki D. Fracture resistance of polyetheretherketone, Ni-Cr, and fiberglass postcore systems: An in vitro study. Dent Res J (Isfahan). 2022;19:20. Published 2022 Feb 28. doi:10.4103/1735-3327.338783
  • 46. Teixeira KN, Duque TM, Maia HP, Gonçalves T. Fracture Resistance and Failure Mode of Custom-made Post-and-cores of Polyetheretherketone and Nano-ceramic Composite. Oper Dent. 2020;45(5):506-515. doi:10.2341/19-080-L
  • 47. Saisho H, Marcolina G, Perucelli F, Goulart da Costa R, Machado de Souza E, Rached RN. Fracture strength, pull-out bond strength, and volume of luting agent of tooth-colored CAD-CAM post-and-cores. J Prosthet Dent. 2023;129(4):599-606. doi:10.1016/j.prosdent.2022.06.012
  • 48. Benli M, Eker Gümüş B, Kahraman Y, Huck O, Özcan M. Surface characterization and bonding properties of milled polyetheretherketone dental posts. Odontology. 2020;108(4):596-606. doi:10.1007/s10266-020-00484-1
  • 49. Pissis P. Fabrication of a metal-free ceramic restoration utilizing the monobloc technique. Pract Periodontics Aesthet Dent. 1995;7(5):83-94.
  • 50. Bindl A, Mörmann WH. Clinical evaluation of adhesively placed Cerec endo-crowns after 2 years--preliminary results. J Adhes Dent. 1999;1(3):255-265.
  • 51. Ree M, Schwartz RS. The endo-restorative interface: current concepts. Dent Clin North Am. 2010;54(2):345-374. doi:10.1016/j.cden.2009.12.005
  • 52. Ramírez-Sebastià A, Bortolotto T, Roig M, Krejci I. Composite vs ceramic computer-aided design/computer-assisted manufacturing crowns in endodontically treated teeth: analysis of marginal adaptation. Oper Dent. 2013;38(6):663-673. doi:10.2341/12-208-L
  • 53. Godil AZ, Kazi AI, Wadwan SA, Gandhi KY, Dugal RJS. Comparative evaluation of marginal and internal fit of endocrowns using lithium disilicate and polyetheretherketone computer-aided design - computer-aided manufacturing (CAD-CAM) materials: An in vitro study. J Conserv Dent. 2021;24(2):190-194. doi:10.4103/JCD.JCD_547_20
  • 54. Ghajghouj O, Taşar-Faruk S. Evaluation of Fracture Resistance and Microleakage of Endocrowns with Different Intracoronal Depths and Restorative Materials Luted with Various Resin Cements. Materials (Basel). 2019;12(16):2528. Published 2019 Aug 8. doi:10.3390/ma12162528
  • 55. Elashmawy Y, Aboushelib M, Elshahawy W. Retention of different CAD/CAM endocrowns bonded to severely damaged endodontically treated teeth: An in vitro study. J Indian Prosthodont Soc. 2021;21(3):269-275. doi:10.4103/jips.jips_91_21
  • 56. Unsal GS, Yusufoglu SI. Finite element analysis of endocrown and post-core abutments for removable partial dentures with different framework materials [published online ahead of print, 2021 Mar 27]. Int J Prosthodont. 2021;10.11607/ijp.7269. doi:10.11607/ijp.7269
  • 57. Shams A, Elsherbini M, Elsherbiny AA, Özcan M, Sakrana AA. Rehabilitation of severely-destructed endodontically treated premolar teeth with novel endocrown system: Biomechanical behavior assessment through 3D finite element and in vitro analyses. J Mech Behav Biomed Mater. 2022;126:105031. doi:10.1016/j.jmbbm.2021.105031.

Yüksek Performanslı Polimerlerin Endodontide Kullanımı

Year 2024, Volume: 6 Issue: 1, 36 - 49, 29.02.2024

Abstract

Diş hekimliğinde estetik beklentiler dikkate alındığında metal içermeyen restorasyonlara olan ilgi günden güne artmaktadır. Yüksek performanslı polimerler (YPP) yakın zamanda diş hekimliğinde kullanılmaya başlamış biyouyumlu, diş renginde üretilebilen dolayısıyla estetik gereksinimleri karşılayabilen, ağız içi kuvvetlere ve korozyona direnci yüksek olan, metal alaşım içermeyen malzemelerdir. YPP ilk olarak implantoloji alanında daha sonralarda ise protetik açıdan diş hekimliğinde yer almıştır. Kök kanalı tedavisi (KKT) görmüş dişlerin restorasyonlarında kullanılacak ideal materyal arayışı günümüzde devam etmektedir. Üstün özellikleri sayesinde KKT görmüş dişlerin restorasyonlarında değerlendirilmek üzere pek çok araştırma yapılmıştır. Bu derleme çalışmasında YPP’lerin KKT görmüş dişlerde restoratif materyal seçeneği olarak kullanımının incelenmesi amaçlanmıştır.

Supporting Institution

İstanbul Üniversitesi Diş Hekimliği Fakültesi

References

  • 1. Taleghani, M., & Morgan, R. W. (1987). Reconstructive materials for endodontically treated teeth. Journal of Prosthetic Dentistry, 57(4), 446-449. doi:10.1016/0022-3913(87)90012-6
  • 2. Schilder, H. (1974). Cleaning and shaping the root canal. Dental Clinics of North America, 18, 269-296.
  • 3. Ruddle, C. J. (2015). Endodontic Triad For Success: The Role of Minimally Invasive Technology. Dentistry Today, 1-7.
  • 4. Patil, P., Newase, P., Pawar, S., Gosai, H., Shah, D., & Parhad, S. M. (2022). Comparison of Fracture Resistance of Endodontically Treated Teeth With Traditional Endodontic Access Cavity, Conservative Endodontic Access Cavity, Truss Endodontic Access Cavity, and Ninja Endodontic Access Cavity Designs: An In Vitro Study. Cureus, 14(8), e28090. https://doi.org/10.7759/cureus.28090
  • 5. Papa, J., Cain, C., & Messer, H. H. (1994). Moisture content of vital vs endodontically treated teeth. Endodontics & dental traumatology, 10(2), 91–93. https://doi.org/10.1111/j.1600-9657.1994.tb00067.x
  • 6. Garcia, A. J., Kuga, M. C., Palma-Dibb, R. G., Só, M. V., Matsumoto, M. A., Faria, G., & Keine, K. C. (2013). Effect of sodium hypochlorite under several formulations on root canal dentin microhardness. Journal of investigative and clinical dentistry, 4(4), 229–232. https://doi.org/10.1111/j.2041-1626.2012.00158.x
  • 7. González-López, S., De Haro-Gasquet, F., Vílchez-Díaz, M. A., Ceballos, L., & Bravo, M. (2006). Effect of restorative procedures and occlusal loading on cuspal deflection. Operative Dentistry, 31(1), 33-38. doi:10.2341/04-165
  • 8. Ferrari M, Pontoriero DIK, Ferrari Cagidiaco E, Carboncini F. Restorative difficulty evaluation system of endodontically treated teeth. J Esthet Restor Dent. 2022;34(1):65-80. doi:10.1111/jerd.12880
  • 9. Mannocci, F., & Cowie, J. (2014). Restoration of endodontically treated teeth. British Dental Journal, 216, 341-346. doi:10.1038/sj.bdj.2014.198
  • 10. Slutzky-Goldberg, I., Slutzky, H., Gorfil, C., & Smidt, A. (2009). Restoration of endodontically treated teeth review and treatment recommendations. International Journal of Dentistry, 2009, 150251. doi:10.1155/2009/150251
  • 11. Tekin, S., Adiguzel, O., Cangul, S., Atas, O., & Erpacal, B. (2020). Evaluation of the use of PEEK material in post-core and crown restorations using finite element analysis. American Journal of Dentistry, 33(5), 251-257.
  • 12. Başgül, C., Spece, H., Sharma, N., Thieringer, F. M., & Kurtz, S. M. (2021). Structure, properties, and bioactivity of 3D printed PAEKs for implant applications: A systematic review. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 109(11), 1924-1941. doi:10.1002/jbm.b.34845
  • 13. Maloo, L. M., Toshniwal, S. H., Reche, A., Paul, P., & Wanjari, M. B. (2022). A Sneak Peek Toward Polyaryletherketone (PAEK) Polymer: A Review. Cureus, 14(11), e31042. doi:10.7759/cureus.31042
  • 14. May, R. (1988). Polyetheretherketones. In H. F. Mark, N. M. Bikales, C. G. Overberger, G. Menges, & J. I. Kroschiwitz (Eds.), Encyclopedia of Polymer Science and Engineering (pp. 313-320). John Wiley and Sons.
  • 15. Kurtz, S. M., & Devine, J. N. (2007). PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials, 28(32), 4845-4869.
  • 16. McKeen, L. W. (2012). High Temperature/High-Performance Polymers. In L. W. McKeen (Ed.), Film Properties of Plastics and Elastomers (3rd edition, pp. 315-337). William Andrew Publishing. (ISBN: 9781455725519)
  • 17. Skirbutis, G., Dzingutė, A., Masiliūnaitė, V., Šulcaitė, G., & Žilinskas, J. (2017). A review of PEEK polymer's properties and its use in prosthodontics. Stomatologija, 19(1), 19–23.
  • 18. Alqurashi, H., Khurshid, Z., Syed, A. U., Rashid Habib, S., Rokaya, D., & Zafar, M. S. (2021). Polyetherketoneketone (PEKK): an emerging biomaterial for oral implants and dental prostheses. Journal of Advanced Research, 28, 87-95. doi:10.1016/j.jare.2020.09.004
  • 19. Panayotov, I. V., Orti, V., Cuisinier, F., & Yachouh, J. (2016). Polyetheretherketone (PEEK) for medical applications. Journal of Materials Science: Materials in Medicine, 27(7), 118. doi:10.1007/s10856-016-5731-4
  • 20. Park, C., Jun, D. J., Park, S. W., & Lim, H. P. (2017). Use of polyaryletherketone (PAEK) based polymer for implant-supported telescopic overdenture: A case report. Journal of Advanced Prosthodontics, 9(1), 74-76. doi:10.4047/jap.2017.9.1.74
  • 21. Schwitalla, A. D., Abou-Emara, M., Spintig, T., Lackmann, J., & Müller, W. D. (2015). Finite element analysis of the biomechanical effects of PEEK dental implants on the peri-implant bone. Journal of Biomechanics, 48(1), 1-7. doi:10.1016/j.jbiomech.2014.11.017
  • 22. Atsü, S., Aksan, M. E., & Bulut, A. (2019). Fracture Resistance of Titanium, Zirconia, and Ceramic-Reinforced Polyetheretherketone Implant Abutments Supporting CAD/CAM Monolithic Lithium Disilicate Ceramic Crowns After Aging. The International Journal of Oral & Maxillofacial Implants, 34(1), 92-100.
  • 23. Beuer, F., Schweiger, J., Eichberger, M., Kappert, H., Gernet, W., & Edelhoff, D. (2009). High-strength CAD/CAM-fabricated veneering material sintered to zirconia copings — A new fabrication mode for all-ceramic restorations. Dental Materials, 25(1), 121–128.
  • 24. Abduo, J., & Lyons, K. (2018). Clinical considerations for the use of PEEK dental implants: a systematic review. Journal of Prosthodontic Research, 62(1), 1-9.
  • 25. Attia, M. A., Shokry, T. E., & Abdel-Aziz, M. (2022). Effect of different surface treatments on the bond strength of milled polyetheretherketone posts. Journal of Prosthetic Dentistry, 127(6), 866-874. doi:10.1016/j.prosdent.2020.08.033
  • 26. Stawarczyk, B., Jordan, P., Schmidlin, P. R., Roos, M., Eichberger, M., Gernet, W., & Keul, C. (2014). PEEK surface treatment effects on tensile bond strength to veneering resins. Journal of Prosthetic Dentistry, 112(5), 1278-1288.
  • 27. Keul C, Liebermann A, Schmidlin PR, Roos M, Sener B, Stawarczyk B. Influence of PEEK surface modification on surface properties and bond strength to veneering resin composites. J Adhes Dent. 2014;16(4):383-392.
  • 28. Ma R, Wang J, Li C, Ma K, Wei J, Yang P, Guo D, Wang K, Wang W. Effects of different sulfonation times and post-treatment methods on the characterization and cytocompatibility of sulfonated PEEK. J Biomater Appl. 2020;35:342-352.
  • 29. Zhang J, Yi Y, Wang C, Ding L, Wang R, Wu G. Effect of Acid-Etching Duration on the Adhesive Performance of Printed Polyetheretherketone to Veneering Resin. Polymers. 2021;13:3509. doi:10.3390/polym13203509
  • 30. Taha D, Safwat F, Wahsh M. Effect of combining different surface treatments on the surface characteristics of polyetheretherketone-based core materials and shear bond strength to a veneering composite resin. J Prosthet Dent. 2022.
  • 31. Wang B, Huang M, Dang P, Xie J, Zhang X, Yan X. PEEK in Fixed Dental Prostheses: Application and Adhesion Improvement. Polymers. 2022;14(12):2323. doi:10.3390/polym14122323
  • 32. Soares Machado P, Cadore Rodrigues AC, Chaves ET, Susin AH, Valandro LF, Pereira GKR, Rippe MP. Surface Treatments and Adhesives Used to Increase the Bond Strength Between Polyetheretherketone and Resin-based Dental Materials: A Scoping Review. J Adhes Dent. 2022;24(1):233-245. doi:10.3290/j.jad.b2288283
  • 33. Freedman GA. Esthetic post-and-core treatment. Dent Clin North Am. 2001;45(1):103-116.
  • 34. Schwartz RS, Robbins JW. Post placement and restoration of endodontically treated teeth: a literature review. J Endod. 2004;30(5):289-301. doi:10.1097/00004770-200405000-00001
  • 35. Jurema ALB, Filgueiras AT, Santos KA, Bresciani E, Caneppele TMF. Effect of intraradicular fiber post on the fracture resistance of endodontically treated and restored anterior teeth: A systematic review and meta-analysis. J Prosthet Dent. 2022;128(1):13-24. doi:10.1016/j.prosdent.2020.12.013
  • 36. Badami V, Ketineni H, Pb S, Akarapu S, Mittapalli SP, Khan A. Comparative Evaluation of Different Post Materials on Stress Distribution in Endodontically Treated Teeth Using the Finite Element Analysis Method: A Systematic Review. Cureus. 2022;14(9):e29753. Published 2022 Sep 29. doi:10.7759/cureus.29753
  • 37. Zarow, M., Vadini, M., Chojnacka-Brozek, A., Szczeklik, K., Milewski, G., Biferi, V., D'Arcangelo, C., & De Angelis, F. (2020). Effect of Fiber Posts on Stress Distribution of Endodontically Treated Upper Premolars: Finite Element Analysis. Nanomaterials (Basel, Switzerland), 10(9), 1708. https://doi.org/10.3390/nano10091708
  • 38. Martins, M. D., Junqueira, R. B., de Carvalho, R. F., Lacerda, M. F. L. S., Faé, D. S., & Lemos, C. A. A. (2021). Is a fiber post better than a metal post for the restoration of endodontically treated teeth? A systematic review and meta-analysis. Journal of dentistry, 112, 103750. https://doi.org/10.1016/j.jdent.2021.103750
  • 39. Bathe KJ. Finite Element Procedures. Springer; 2007:1-2.
  • 40. Lee KS, Shin JH, Kim JE, et al. Biomechanical Evaluation of a Tooth Restored with High Performance Polymer PEKK Post-Core System: A 3D Finite Element Analysis [published correction appears in Biomed Res Int. 2017;2017:7196847]. Biomed Res Int. 2017;2017:1373127. doi:10.1155/2017/1373127
  • 41. Nahar R, Mishra SK, Chowdhary R. Evaluation of stress distribution in an endodontically treated tooth restored with four different post systems and two different crowns- A finite element analysis. J Oral Biol Craniofac Res. 2020;10(4):719-726. doi:10.1016/j.jobcr.2020.10.004
  • 42. Huang L, Nemoto R, Okada D, et al. Investigation of stress distribution within an endodontically treated tooth restored with different restorations. J Dent Sci. 2022;17(3):1115-1124. doi:10.1016/j.jds.2022.01.015
  • 43. Ibrahim RO, Al-Zahawi AR, Sabri LA. Mechanical and thermal stress evaluation of PEEK prefabricated post with different head design in endodontically treated tooth: 3D-finite element analysis. Dent Mater J. 2021;40(2):508-518. doi:10.4012/dmj.2020-053
  • 44. Yu, H., Feng, Z., Wang, L., Mihcin, S., Kang, J., Bai, S., & Zhao, Y. (2022). Finite Element Study of PEEK Materials Applied in Post-Retained Restorations. Polymers, 14(16), 3422. https://doi.org/10.3390/polym14163422
  • 45. Pourkhalili H, Maleki D. Fracture resistance of polyetheretherketone, Ni-Cr, and fiberglass postcore systems: An in vitro study. Dent Res J (Isfahan). 2022;19:20. Published 2022 Feb 28. doi:10.4103/1735-3327.338783
  • 46. Teixeira KN, Duque TM, Maia HP, Gonçalves T. Fracture Resistance and Failure Mode of Custom-made Post-and-cores of Polyetheretherketone and Nano-ceramic Composite. Oper Dent. 2020;45(5):506-515. doi:10.2341/19-080-L
  • 47. Saisho H, Marcolina G, Perucelli F, Goulart da Costa R, Machado de Souza E, Rached RN. Fracture strength, pull-out bond strength, and volume of luting agent of tooth-colored CAD-CAM post-and-cores. J Prosthet Dent. 2023;129(4):599-606. doi:10.1016/j.prosdent.2022.06.012
  • 48. Benli M, Eker Gümüş B, Kahraman Y, Huck O, Özcan M. Surface characterization and bonding properties of milled polyetheretherketone dental posts. Odontology. 2020;108(4):596-606. doi:10.1007/s10266-020-00484-1
  • 49. Pissis P. Fabrication of a metal-free ceramic restoration utilizing the monobloc technique. Pract Periodontics Aesthet Dent. 1995;7(5):83-94.
  • 50. Bindl A, Mörmann WH. Clinical evaluation of adhesively placed Cerec endo-crowns after 2 years--preliminary results. J Adhes Dent. 1999;1(3):255-265.
  • 51. Ree M, Schwartz RS. The endo-restorative interface: current concepts. Dent Clin North Am. 2010;54(2):345-374. doi:10.1016/j.cden.2009.12.005
  • 52. Ramírez-Sebastià A, Bortolotto T, Roig M, Krejci I. Composite vs ceramic computer-aided design/computer-assisted manufacturing crowns in endodontically treated teeth: analysis of marginal adaptation. Oper Dent. 2013;38(6):663-673. doi:10.2341/12-208-L
  • 53. Godil AZ, Kazi AI, Wadwan SA, Gandhi KY, Dugal RJS. Comparative evaluation of marginal and internal fit of endocrowns using lithium disilicate and polyetheretherketone computer-aided design - computer-aided manufacturing (CAD-CAM) materials: An in vitro study. J Conserv Dent. 2021;24(2):190-194. doi:10.4103/JCD.JCD_547_20
  • 54. Ghajghouj O, Taşar-Faruk S. Evaluation of Fracture Resistance and Microleakage of Endocrowns with Different Intracoronal Depths and Restorative Materials Luted with Various Resin Cements. Materials (Basel). 2019;12(16):2528. Published 2019 Aug 8. doi:10.3390/ma12162528
  • 55. Elashmawy Y, Aboushelib M, Elshahawy W. Retention of different CAD/CAM endocrowns bonded to severely damaged endodontically treated teeth: An in vitro study. J Indian Prosthodont Soc. 2021;21(3):269-275. doi:10.4103/jips.jips_91_21
  • 56. Unsal GS, Yusufoglu SI. Finite element analysis of endocrown and post-core abutments for removable partial dentures with different framework materials [published online ahead of print, 2021 Mar 27]. Int J Prosthodont. 2021;10.11607/ijp.7269. doi:10.11607/ijp.7269
  • 57. Shams A, Elsherbini M, Elsherbiny AA, Özcan M, Sakrana AA. Rehabilitation of severely-destructed endodontically treated premolar teeth with novel endocrown system: Biomechanical behavior assessment through 3D finite element and in vitro analyses. J Mech Behav Biomed Mater. 2022;126:105031. doi:10.1016/j.jmbbm.2021.105031.
There are 57 citations in total.

Details

Primary Language Turkish
Subjects Endodontics
Journal Section Endodontics
Authors

Ömer Faruk Yenilmez 0000-0002-1970-8848

Bülent Yılmaz 0000-0003-4118-3475

Publication Date February 29, 2024
Submission Date June 13, 2023
Published in Issue Year 2024 Volume: 6 Issue: 1

Cite

Vancouver Yenilmez ÖF, Yılmaz B. Yüksek Performanslı Polimerlerin Endodontide Kullanımı. Dent & Med J - R. 2024;6(1):36-49.




"The truest guide for everything in the world, for civilization, for life, for success, is science. Seeking a guide outside of science and science is heedlessness, ignorance, and deviating from the right path. It is only necessary to understand the development of science and science in every minute we live and to follow the progress in time. To attempt to apply the rules of science and science a thousand, two thousand, and thousands of years ago, today, after so many thousand years, is, of course, not to be in science and science."
M. Kemal ATATÜRK