Research Article
BibTex RIS Cite

New vector fields and planes of framed curves in Euclidean 4-space

Year 2025, Volume: 1 Issue: 1, 34 - 40, 28.11.2025

Abstract

In this study, we define new Darboux vectors for curves with singular points in Euclidean 4-space. By using these vectors, we construct new planes and determine curves lying in these planes. Subsequently, we give characterizations and corollaries related to these curves.

References

  • [1] S. Izumiya, N. Takeuchi (2004), New special curves and developable surfaces, Turk. J. Math., 28(2), 153–163.
  • [2] Ç. Çamcı, K. İlarslan, L. Kula, H.H. Hacısalihoğlu (2009), Harmonic curvatures and generalized helices in En, Chaos Solitons Fractals, 40(5), 2590–2596. https://doi.org/10.1016/j.chaos.2007.11.001
  • [3] M. Düld¨ül (2020), Vector fields and planes in E4 which play the role of Darboux vector, Turk. J. Math., 44(1), 274–283. https://doi.org/10.3906/mat-1908-9
  • [4] S. Honda, M. Takahashi (2016), Framed curves in the Euclidean space, Adv. Geom., 16(3), 265–276. https://doi.org/10.1515/advgeom-2015-0035
  • [5] S. Honda, M. Takahashi (2016), Evolutes of framed immersions in the Euclidean space, Hokkaido Univ. Preprint Series in Math., 1095, 1–24. https://doi.org/10.14943/84239
  • [6] T. Fukunaga, M. Takahashi (2013), Existence and uniqueness for Legendre curves, J. Geom., 104(2), 297–307. https://doi.org/10.1007/s00022-013-0162-6
  • [7] K. Eren, Ö.G. Yıldız, M. Akyiğit (2022), Tubular surfaces associated with framed base curves in Euclidean 3-space, Math. Methods Appl. Sci., 45(18), 12110–12118. https://doi.org/10.1002/mma.7590
  • [8] M. Ateş, M. Akyiğit (2023), Framed general helix and framed z3-slant helix in R4, An. Ştiin. Univ. Ovidius Constanta Ser. Mat., 31(3). https://doi.org/10.2478/auom-2023-0029
  • [9] B. Doğan Yazıcı, O.Z. Okuyucu, M. Tosun (2023), On special singular curve couples of framed curves in 3D Lie groups, Commun. Fac. Sci. Univ. Ankara Ser. A1 Math. Stat., 72(3), 710–720. https://doi.org/10.31801/cfsuasmas.1197154
  • [10] O.Z. Okuyucu, M. Canbirdi (2021), Framed slant helices in Euclidean 3-space, Adv. Differ. Equ., 2021, 1–14. https://doi.org/10.1186/s13662-021-03664-7
  • [11] Ö.G. Yıldız, M. Akyiğit, M. Tosun (2021), On the trajectory ruled surfaces of framed base curves in the Euclidean space, Math. Methods Appl. Sci., 44(9), 7463–7470. https://doi.org/10.1002/mma.6267
  • [12] B.D. Yazıcı, S.Ö. Karakuş, M. Tosun (2022), On framed Tzitzeica curves in Euclidean space, Facta Univ. Ser. Math. Inform., 37(2), 307–319. https://doi.org/10.22190/FUMI211025021D
  • [13] B.D. Yazıcı, S.Ö. Karakuş, M. Tosun (2022), On the classification of framed rectifying curves in Euclidean space, Math. Methods Appl. Sci., 45(18), 12089–12098. https://doi.org/10.1002/mma.7561
  • [14] B.D. Yazıcı, S.Ö. Karakuş, M. Tosun (2021), Framed normal curves in Euclidean space, Tbilisi Math. J., 14(3), 27–37. https://doi.org/10.1002/mma.7561
  • [15] S. Honda, Flat surfaces associated with framed base curves, Ph.D. Thesis, Hokkaido University, Japan, 2018. https://doi.org/10.14943/doctoral.k13123
  • [16] M.Z. Williams, F.M. Stein (1964), A triple product of vectors in four-space, Math. Mag., 37(4), 230–235. https://doi.org/10.1080/0025570X.1964.11975525
  • [17] M.N. Şavlı, 4-boyutlu Öklid uzaynda çatılandırılmış oskültatör ve rektifiyan eğriler, Masters thesis, Bilecik Şeyh Edebali University, Türkiye, 2022.
  • [18] B.Y. Chen (2003), When does the position vector of a space curve always lie in its rectifying plane?, Amer. Math. Monthly, 110(2), 147–152. https://doi.org/10.2307/3647775
There are 18 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Önder Gökmen Yıldız 0000-0002-2760-1223

Fatma Balkan 0009-0004-8932-4251

Publication Date November 28, 2025
Submission Date July 7, 2025
Acceptance Date August 7, 2025
Published in Issue Year 2025 Volume: 1 Issue: 1

Cite

APA Yıldız, Ö. G., & Balkan, F. (2025). New vector fields and planes of framed curves in Euclidean 4-space. Düzce Mathematical Research, 1(1), 34-40.
AMA Yıldız ÖG, Balkan F. New vector fields and planes of framed curves in Euclidean 4-space. Düzce Mathematical Research. November 2025;1(1):34-40.
Chicago Yıldız, Önder Gökmen, and Fatma Balkan. “New Vector Fields and Planes of Framed Curves in Euclidean 4-Space”. Düzce Mathematical Research 1, no. 1 (November 2025): 34-40.
EndNote Yıldız ÖG, Balkan F (November 1, 2025) New vector fields and planes of framed curves in Euclidean 4-space. Düzce Mathematical Research 1 1 34–40.
IEEE Ö. G. Yıldız and F. Balkan, “New vector fields and planes of framed curves in Euclidean 4-space”, Düzce Mathematical Research, vol. 1, no. 1, pp. 34–40, 2025.
ISNAD Yıldız, Önder Gökmen - Balkan, Fatma. “New Vector Fields and Planes of Framed Curves in Euclidean 4-Space”. Düzce Mathematical Research 1/1 (November2025), 34-40.
JAMA Yıldız ÖG, Balkan F. New vector fields and planes of framed curves in Euclidean 4-space. Düzce Mathematical Research. 2025;1:34–40.
MLA Yıldız, Önder Gökmen and Fatma Balkan. “New Vector Fields and Planes of Framed Curves in Euclidean 4-Space”. Düzce Mathematical Research, vol. 1, no. 1, 2025, pp. 34-40.
Vancouver Yıldız ÖG, Balkan F. New vector fields and planes of framed curves in Euclidean 4-space. Düzce Mathematical Research. 2025;1(1):34-40.