New vector fields and planes of framed curves in Euclidean 4-space
Year 2025,
Volume: 1 Issue: 1, 34 - 40, 28.11.2025
Önder Gökmen Yıldız
,
Fatma Balkan
Abstract
In this study, we define new Darboux vectors for curves with singular points in Euclidean 4-space. By using these vectors, we construct new planes and determine curves lying in these planes. Subsequently, we give characterizations and corollaries related to these curves.
References
-
[1] S. Izumiya, N. Takeuchi (2004), New special curves and developable surfaces, Turk. J. Math., 28(2), 153–163.
-
[2] Ç. Çamcı, K. İlarslan, L. Kula, H.H. Hacısalihoğlu (2009), Harmonic curvatures and generalized helices in En, Chaos Solitons Fractals, 40(5), 2590–2596. https://doi.org/10.1016/j.chaos.2007.11.001
-
[3] M. Düld¨ül (2020), Vector fields and planes in E4 which play the role of Darboux vector, Turk. J. Math., 44(1), 274–283. https://doi.org/10.3906/mat-1908-9
-
[4] S. Honda, M. Takahashi (2016), Framed curves in the Euclidean space, Adv. Geom., 16(3), 265–276. https://doi.org/10.1515/advgeom-2015-0035
-
[5] S. Honda, M. Takahashi (2016), Evolutes of framed immersions in the Euclidean space, Hokkaido Univ. Preprint Series in Math., 1095, 1–24. https://doi.org/10.14943/84239
-
[6] T. Fukunaga, M. Takahashi (2013), Existence and uniqueness for Legendre curves, J. Geom., 104(2), 297–307. https://doi.org/10.1007/s00022-013-0162-6
-
[7] K. Eren, Ö.G. Yıldız, M. Akyiğit (2022), Tubular surfaces associated with framed base curves in Euclidean 3-space, Math. Methods Appl. Sci., 45(18), 12110–12118. https://doi.org/10.1002/mma.7590
-
[8] M. Ateş, M. Akyiğit (2023), Framed general helix and framed z3-slant helix in R4, An. Ştiin. Univ. Ovidius Constanta Ser. Mat., 31(3). https://doi.org/10.2478/auom-2023-0029
-
[9] B. Doğan Yazıcı, O.Z. Okuyucu, M. Tosun (2023), On special singular curve couples of framed curves in 3D Lie groups, Commun. Fac. Sci. Univ. Ankara Ser. A1 Math. Stat., 72(3), 710–720. https://doi.org/10.31801/cfsuasmas.1197154
-
[10] O.Z. Okuyucu, M. Canbirdi (2021), Framed slant helices in Euclidean 3-space, Adv. Differ. Equ., 2021, 1–14. https://doi.org/10.1186/s13662-021-03664-7
-
[11] Ö.G. Yıldız, M. Akyiğit, M. Tosun (2021), On the trajectory ruled surfaces of framed base curves in the Euclidean space, Math. Methods Appl. Sci., 44(9), 7463–7470. https://doi.org/10.1002/mma.6267
-
[12] B.D. Yazıcı, S.Ö. Karakuş, M. Tosun (2022), On framed Tzitzeica curves in Euclidean space, Facta Univ. Ser. Math. Inform., 37(2), 307–319. https://doi.org/10.22190/FUMI211025021D
-
[13] B.D. Yazıcı, S.Ö. Karakuş, M. Tosun (2022), On the classification of framed rectifying curves in Euclidean space, Math. Methods Appl. Sci., 45(18), 12089–12098. https://doi.org/10.1002/mma.7561
-
[14] B.D. Yazıcı, S.Ö. Karakuş, M. Tosun (2021), Framed normal curves in Euclidean space, Tbilisi Math. J., 14(3), 27–37. https://doi.org/10.1002/mma.7561
-
[15] S. Honda, Flat surfaces associated with framed base curves, Ph.D. Thesis, Hokkaido University, Japan, 2018. https://doi.org/10.14943/doctoral.k13123
-
[16] M.Z. Williams, F.M. Stein (1964), A triple product of vectors in four-space, Math. Mag., 37(4), 230–235. https://doi.org/10.1080/0025570X.1964.11975525
-
[17] M.N. Şavlı, 4-boyutlu Öklid uzaynda çatılandırılmış oskültatör ve rektifiyan eğriler, Masters thesis, Bilecik Şeyh Edebali University, Türkiye, 2022.
-
[18] B.Y. Chen (2003), When does the position vector of a space curve always lie in its rectifying plane?, Amer. Math. Monthly, 110(2), 147–152. https://doi.org/10.2307/3647775