Research Article
BibTex RIS Cite

Determination of the Relationship Between Alteration Minerals and Active Tectonism Using Image Enhancement Techniques

Year 2026, Volume: 2 Issue: 1, 1 - 12, 31.01.2026

Abstract

This study aims to reveal the spatial relationship between tectonic structures and hydrothermal alteration minerals and to analyze this relationship using remote sensing technologies. The Heltepe Fault, located within the Eastern Anatolian Fault Zone (EAFZ), was selected as the study area. The distribution of alteration zones developed along the Heltepe Fault, in relation to fault zones, was evaluated using remote sensing data. Multispectral images from the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) satellite, widely regarded as a ‘workhorse’ in the field of mineral mapping, were utilized for this purpose. Three principal image enhancement techniques—Principal Component Analysis (PCA), Decorrelation Stretch (DS), and Minimum Noise Fraction (MNF)—were applied to the visible–near infrared (VNIR) and shortwave infrared (SWIR) bands of the ASTER imagery. The enhanced images obtained through these methods were interpreted based on the spectral characteristics of alteration minerals to generate mineral distribution maps. Indicators of alteration, particularly iron oxides, hydroxyl-bearing minerals, clay minerals (kaolinite, alunite, muscovite), chlorite, and carbonate minerals (calcite, epidote, etc.), were identified using eigenvector values derived from PCA components. The results of the study show that alteration zones along the Heltepe Fault predominantly develop parallel to the fault trace and become more concentrated in proximity to the fault lines. Additionally, the displacement of some alteration zones due to fault movements directly demonstrates the impact of tectonic activity on alteration processes.

References

  • Referans1 Abrams, M. 1984. Landsat-4 Thematic Mapper and Thematic Mapper Simulator data for a porphyry copper deposit. Photogrammetric Engineering and Remote Sensing, 50(8), 1171–1173.
  • Referans2 Akça, M. D., ve Doğan, S. 2002. Sayısal görüntülerde ana bileşen dönüşümü. Harita Dergisi, 69(128), 1–15.
  • Referans3 Amer, R., Kusky, T., El Mezayen, A. 2016. Hydrothermal alteration mapping in the Eastern Desert of Egypt using ASTER data. Ore Geology Reviews, 76, 127–140.
  • Referans4 Asadzadeh, S., ve de Souza Filho, C. R. 2016. A review on spectral processing methods for geological remote sensing. International Journal of Applied Earth Observation and Geoinformation, 47, 69–90.
  • Referans5 Azizi, H., Tarverdi, M. A., Akbarpour, A. 2010. Extraction of hydrothermal alterations from ASTER SWIR data from East Zanjan, Northern Iran. Advances in Space Research, 46(1), 99–109.
  • Referans6 Başıbüyük, Z., Kavak, K. Ş., Yalçın, H., Bozkaya, Ö. 2014. Kösedağ Magmatiklerinde (Zara-Sivas) Hidrotermal Alterasyonla İlişkili Kaolin Yataklarının Landsat Etm+ Görüntüsü Kullanılarak Belirlenmesi. Cumhuriyet Yerbilimleri Dergisi. 31(1-2).
  • Referans7 Boardman, J. W., Kruse, F. A., Green, R. O. 1995. Mapping target signatures via partial unmixing of AVIRIS data [Paper presentation]. Fifth Annual JPL Airborne Earth Science Workshop, Pasadena, CA.
  • Referans8 Caine, J. S., Evans, J. P., Forster, C. B. 1996. Fault zone architecture and permeability structure. Geology, 24(11), 1025–1028.
  • Referans9 Campbell, N. A. 1996. The decorrelation stretch transformation. International Journal of Remote Sensing, 17(10), 1939–1949.
  • Referans10 Canbaz, O., Gürsoy, Ö., Gökce, A. 2018. Detecting clay minerals in hydrothermal alteration areas with integration of ASTER image and spectral data in Kösedag-Zara (Sivas), Turkey. Journal of the Geological Society of India, 91(4), 483-488.
  • Referans11 Demirtaş, R. 2019. Kuzey Anadolu Fay Sistemi (KAFS) Diri Fayları ve Deprem Etkinlikleri Paleosismolojik Çalışmalar ve Gelecek Deprem Potansiyelleri, DOI: 10.13140/RG.2.2.36608.69125, file:///C:/Users/Erkan%20AVLLAR/Downloads/KAFSfaylar%20(1), Erişim Tarihi: 10.12.2023.
  • Referans12 Di Tommaso, I., ve Rubinstein, N. 2007. Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina. Ore Geology Reviews, 32(1-2), 275–290.
  • Referans13 El-Desoky, M. M., Abdel-Monem, A. A., Ghoneim, E. M. 2022. Hydrothermal alteration mapping using Landsat 8 and ASTER data in the Egyptian shield. Remote Sensing, 14(14), 3456.
  • Referans14 Elghrabawy, O. 2025. Mapping hydrothermal alteration zones of Gebel MU'TIQ area using ASTER and aeromagnetic data in central eastern desert, Egypt. Journal of Applied Geophysics, 106027.
  • Referans15 Emre, Ö., Duman, T.Y., Özalp, S., Elmacı, H., Olgun, Ş. ve Şaroğlu, F. 2013. Açıklamalı Türkiye Diri Fay Haritası. Ölçek 1:1.250.000, Maden Tetkik ve Arama Genel Müdürlüğü, Özel Yayın Serisi-30, Ankara-Türkiye. ISBN: 978-605-5310-56-1.
  • Referans16 Fakhari, S., Jafarirad, A., Afzal, P., Lotfi, M. 2019. Delineation of hydrothermal alteration zones for porphyry systems utilizing ASTER data in Jebal barez area, SE Iran. Iranian Journal of Earth Sciences, 11, 80–92.
  • Referans17 Fujisada, H. 1995. Design and performance of ASTER instrument. Proceedings of SPIE, the International Society for Optical Engineering, 2583, 16–25.
  • Referans18 Gholipour, A. M., Nabatian, G., Rastad, E., Asadi, S. 2025. ASTER-based alteration mapping and structural analysis of the Saheb Divan hydrothermal system, NW Iran. Natural Resources for Sustainable Development.
  • Referans19 Gillespie, A. R. 1992. Enhancement of multispectral thermal infrared images: Decorrelation contrast stretching. Remote Sensing of Environment, 42(2), 147–155.
  • Referans20 Gillespie, A. R., Kahle, A. B., Walker, R. E. 1986. Color enhancement of highly correlated images: I. Decorrelation and HSI contrast stretches. Remote Sensing of Environment, 20(3), 209–235.
  • Referans21 Green, A. A., Berman, M., Switzer, P., Craig, M. D. 1988. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on Geoscience and Remote Sensing, 26(1), 65–74.
  • Referans22 Guha, A., Ray, R., Gupta, S. 2015. Implementation of reflection spectroscopy-based ASTER indices and principal component transformation for hydrothermal mapping [Paper presentation]. Proceedings of ISPRS Conference on Remote Sensing Applications.
  • Referans23 Gupta, R. P. 2003. Remote Sensing Geology (2nd ed.). Springer-Verlag.
  • Referans24 Güzel, F. 2023. Uzaktan algılama teknolojileri kullanarak aktif tektonik ile mineral alterasyonu arasındaki ilişkinin belirlenmesi. Süleyman Demirel Üniversitesi, Sosyal Bilimleri Enstitüsü, 130 s. Isparta.
  • Referans25 Güzel, F., ve Sarp, G. 2024. Evaluation of the tectonic activity of faults with mineral alterations: A case of the East Anatolian Fault-Palu segment, Türkiye. Bulletin of the Mineral Research and Exploration, 175, 149–165.
  • Referans26 Güzel, F., ve Sarp, G. 2025. Tektonik aktivitenin izleri: Fay-alterasyon ilişkisi ve ASTER verileri ile analizi (Ovacık fayı örneği). VII. Uluslararası Stratejik ve Sosyal Araştırmalar Sempozyumu Tam Metin Bildiriler Kitabı (ss. 141–152).
  • Referans27 Hewson, R. D., Cudahy, T. J., Mizuhiko, S., Ueda, K., Mauger, A. J. 2005. Seamless geological map generation using ASTER in the Broken Hill-Curnamona province of Australia. Remote Sensing of Environment, 99, 159–172.
  • Referans28 Hunt, G. R. 1977. Spectral Signatures Of Particulate Minerals İn The Visible And Near İnfrared. Geophysics, 42(3): 501-513.
  • Referans29 İnal, S., ve Kavak, K. Ş. 2024. Alterasyon Minerallerinin Haritalamasında Hiperspektral Görüntülerin Kullanılması. Teknik Meslek Yüksekokulları Akademik Araştırma Dergisi, 2(2), 32-38.
  • Referans30 Jelloulı, A., Chakourı, M., Adırı, Z., El Hachımı, J., Jarı, A. 2025. Lithological and hydrothermal alteration mapping using Terra ASTER and Landsat-8 OLI multispectral data in the north-eastern border of Kerdous Inlier, Western Anti-Atlasic Belt, Morocco. Artificial Satellites, 60(1), 14–36.
  • Referans31 Jensen, J. R. 2015. Introductory digital image processing: A remote sensing perspective (4th ed.). Pearson Education.
  • Referans32 Kahle, A. B., Palluconi, F. D., Hook, S. J., Realmuto, V. J., Bothwell, G. 1991. The Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER). International Journal of Imaging Systems and Technology, 3(2), 144–156.
  • Referans33 Kalimuthu, R., Porwal, A., Pandalai, H. S. 2025. Remote mapping of lineaments and hydrothermal alteration zones related to unconformity-related uranium deposits in the Badami Group of the western Kaladgi basin. Ore and Energy Resource Geology, 6, 100189.
  • Referans34 Kartal, R. F., Kadirioğlu, F. T., Demirtaş, R. 2016. 3 Aralık 2015 Kiğı-Bingöl Depremi (Mw=5.3), artçı deprem aktivitesi ve bölgenin tektoniği ile ilişkisi [Bildiri]. 69. Türkiye Jeoloji Kurultayı, Ankara.
  • Referans35 Kayadibi, Ö. 2008. Mineral haritalamada bant oranlama ve Crosta metotları ile elde edilen sonuçların jeoistatiksel olarak karşılaştırılması [Bildiri]. 2. Uzaktan Algılama ve Coğrafi Bilgi Sistemleri Sempozyumu, Kayseri.
  • Referans36 Khaleghi, M., Ranjbar, H., Abedini, A., Calagari, A. A. 2020. Synergetic use of the Sentınel-2, ASTER, and Landsat-8 Data for Hydrothermal Alteratıon and Iron Oxide Minerals Mapping in a Mine Scale. Acta Geodynamica et Geomaterialia, 17(3).
  • Referans37 Loughlin, W. P. 1991. Principal component analysis for alteration mapping. Photogrammetric Engineering and Remote Sensing, 57(9), 1163–1169.
  • Referans38 Noori, L., Beiranvand Pour, A., Askari, G., Taghipour, N., Pradhan, B., Lee, C. W. 2023. Comparison of different algorithms to map hydrothermal alteration zones using ASTER remote sensing data for polymetallic vein-type ore exploration: Toroud–Chahshirin Magmatic Belt, NW Iran. Remote Sensing, 15(15), 3745.
  • Referans39 Nabatian, G., Songjian, A., Pour, A. B., Abdollahi, F. 2025. Integration of ASTER imagery and field data for gold exploration. Earth Science Informatics, 18, 112–128.
  • Referans40 Ninomiya, Y. 2004. Lithologic mapping with multispectral ASTER TIR and SWIR data. Sensors, Systems, and Next-Generation Satellites VII, SPIE, 5234, 180–190.
  • Referans41 Okada, K. 2021. A Historical Overview of the Past Three Decades of Mineral Exploration Technology. Nat Resour Res 30: 2839–2860.
  • Referans42 Öztürk, S. 2009. Deprem tehlikesi ve artçışok olasılığı değerlendirme yöntemlerinin Türkiye’deki depremlere bir uygulaması Doktora Tezi, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 346s. Trabzon.
  • Referans43 Pour, A. B., ve Hashim, M. 2012. The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geology Reviews, 44, 1–9.
  • Referans44 Pour, A. B., ve Hashim, M. 2015a. A review of remote sensing methods for mapping mineralized lithologies and hydrothermal alteration in arid region terrains. Earth-Science Reviews, 143, 123–134.
  • Referans45 Pour, A. B., ve Hashim, M. 2015b. Integrating Landsat-8 and ASTER data for mineral exploration in hydrothermal alteration zones, Zapshaneh area, NW Iran. International Journal of Digital Earth, 8(10), 839–857.
  • Referans46 Pour, A. B., Park, Y., Hashim, M. 2022. Satellite remote sensing for mineral exploration in hydrothermal alteration zones. Ore Geology Reviews, 144, 104850.
  • Referans47 Rajendran, S., Nasir, S., Kusky, T. M., Ghulam, A., El-Ghali, M. A. 2012. Remote sensing based approach for identification of hydrothermal alteration zones in Sabat area, Sultanate of Oman. International Journal of Remote Sensing, 33(18), 5802–5837.
  • Referans48 Rajendran, S., ve Nasir, S. 2017. Characterization of ASTER spectral bands for mapping of alteration zones of VMS deposits. Ore Geology Reviews, 81, 1215–1229.
  • Referans49 Rajan Girija, R., ve Mayappan, S. 2019. Mapping of mineral resources and lithological units: A review of remote sensing techniques. International Journal of Image and Data Fusion, 10(2), 79-106.
  • Referans50 Rajesh, H. M. 2020. Mineral exploration using hyperspectral remote sensing. Springer.
  • Referans51 Rani, A. J., Shetty, A., Kale, V. S. 2020. Mapping hydrothermal alteration zone through ASTER data in Gadag Schist Belt, India. Environmental Earth Sciences, 79, 279.
  • Referans52 Richards, J. A. 2013. Remote sensing digital image analysis: An introduction (5th ed.). Springer.
  • Referans53 Rowan, L. C., Bowers, T. L., Crowley, J. K., Anton-Pacheco, C., Gumiel, P., Kingston, M. J. 1995. Analysis of airborne visible-infrared imaging spectrometer (AVIRIS) data of the Iron Hill, Colorado, carbonatite-alkalic igneous complex. Economic Geology, 90(7), 1966–1982.
  • Referans54 Rowan, L. C., ve Mars, J. C. 2003. Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sensing of Environment, 84(3), 350–366.
  • Referans55 Rowan, L. C., Schmidt, R. G., Mars, J. C. 2006. Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data. Remote Sensing of Environment, 104(1), 74–87.
  • Referans56 Sabins, F. F. 1999. Remote sensing for mineral exploration. Ore Geology Reviews, 14, 157–183.
  • Referans57 Salem, S. M., El Sharkawi, M., El-Alfy, Z., Soliman, N. M., Ahmed, S. E. 2016. Exploration of gold occurrences in alteration zones at Dungash district, Southeastern Desert of Egypt using ASTER data and geochemical analyses. Journal of African Earth Sciences, 117, 389-400.
  • Referans58 Sarp, G., ve Erener, A. 2008. Litolojik birimlerin farklı sınıflandırma yöntemleri ile uydu görüntülerinden belirlenmesi. 1.Ulusal Jeolojik Uzaktan Algılama Sempozyumu Bildiriler Kitabı, 22–23 Mayıs, Cumhuriyet Üniversitesi Sivas, Türkiye.
  • Referans59 Shirmard, H., Farahbakhsh, E., Beiranvand Pour, A., Muslim, A. M., Müller, R. D., Chandra, R. 2020. Integration of selective dimensionality reduction techniques for mineral exploration using ASTER satellite data. Remote Sensing, 12(8), 1261.
  • Referans60 Sibson, R. H. 1994. Crustal stress, faulting and fluid flow. Geological Society, London, Special Publications, 78(1), 73–84.
  • Referans61 Singh, A., ve Harrison, A. 1985. Standardized principal components. International Journal of Remote Sensing, 6(6), 883–896.
  • Referans62 Soha, J. M., ve Schwartz, A. A. 1978. Multispectral histogram normalization contrast enhancement [Paper presentation]. 5th Canadian Symposium on Remote Sensing, Victoria, BC, Canada.
  • Referans63 Sümer, E. Ö., Gürçay, B., Pekesin, B. F., Avcı, K., Koruyucu, M., Dağlıyar, A., Teoman, A., Topçu, T., Özgüner, C. 2006. ASTER uydu verisi uygulamaları: Türkiye'den örnekler (Özel Yayın Serisi-5). Maden Tetkik Arama Genel Müdürlüğü.
  • Referans64 Tarhan, N. 2007. 1:100 000 ölçekli Türkiye jeoloji haritası, Erzincan İ-43 paftası. Jeoloji Etütleri Dairesi.
  • Referans65 Tarhan, N. 2008. 1:100 000 ölçekli Türkiye jeoloji haritası, Erzincan J-43 paftası. Jeoloji Etütleri Dairesi.
  • Referans66 Taylor, M. M. 1973. Principal components color display of ERTS imagery [Paper presentation]. Third Earth Resources Technology Satellite-1 Symposium, NASA SP-351.
  • Referans67 Tripathi, M. K., ve Govil, H. 2022. Regolith mapping and geochemistry of hydrothermally altered, weathered and clay minerals, Western Jahajpur belt, Bhilwara, India. Geocarto International, 37(3), 879-895.
  • Referans68 USGS-EarthExplorer. 2022. EarthExplorer database. https://earthexplorer.usgs.gov (Erişim Tarihi: 05.03.2022).
  • Referans69 Van der Meer, F. D., van der Werff, H. M. A., van Ruitenbeek, F. J. A. 2014. Multi- and hyperspectral geologic remote sensing: A review. International Journal of Applied Earth Observation and Geoinformation, 32, 32–47.
  • Referans70 Yamaguchi, Y., Kahle, A. B., Tsu, H., Kawakami, T., Pniel, M. 1998. Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). IEEE Transactions on Geoscience and Remote Sensing, 36(4), 1062–1071.
  • Referans71 Yamaguchi, Y., ve Naito, C. 2003. Spectral indices for lithologic discrimination and mapping by using the ASTER SWIR bands. International Journal of Remote Sensing, 24(22), 4311–4323.
  • Referans72 Yazıcı, M., Zabcı, C., Sançar, T., Natal’in, B. A. 2018. The role of intraplate strike slip faults in shaping the surrounding morphology: The Ovacık Fault (eastern Turkey) as a case study. Geomorphology, 321, 129–145.
  • Referans73 Zabcı, C., Sançar, T., Yazıcı, M., Tikhomirov, D., Ivy-Ochs, S., Vockenhuber, C., Akçar, N. 2016. Ovacık fayı'nın morfokronoloji temelli kayma hızı: Anadolu'nun iç deformasyonu hakkında düşünceler [Bildiri]. Aktif Tektonik Araştırma Grubu (ATAG) Çalıştayı, Denizli.

Alterasyon Mineralleri ve Aktif Tektonizma Arasındaki İlişkinin Görüntü Zenginleştirme Teknikleri ile Belirlenmesi

Year 2026, Volume: 2 Issue: 1, 1 - 12, 31.01.2026

Abstract

Bu çalışma, tektonik yapılar ile hidrotermal alterasyon mineralleri arasındaki mekânsal ilişkiyi ortaya koymak ve bu ilişkinin uzaktan algılama teknolojileriyle analiz edilmesini sağlamak amacıyla gerçekleştirilmiştir. Araştırma alanı olarak, Doğu Anadolu Fay Zonu (DAFZ) içerisinde yer alan Heltepe Fayı seçilmiştir. Heltepe Fayı boyunca gelişen alterasyon zonlarının, fay zonlarıyla ilişkili olarak dağılımı, uzaktan algılama verileriyle değerlendirilmiş ve bu verilerden mineral haritalaması alanında ‘iş atı’ olarak literatürde yerini alan ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) uydusuna ait multispektral görüntüler kullanılmıştır. Çalışmada, ASTER görüntüsünün görünür-yakın kızılötesi (VNIR), kısa dalga kızılötesi (SWIR) bantlarına, Temel Bileşenler Analizi (PCA), Dekorelasyon Germe (DS) ve Minimum Gürültü Fraksiyonu (MNF) olmak üzere üç temel görüntü zenginleştirme teknikleri uygulanmıştır. Bu yöntemlerle elde edilen yeni görüntüler, alterasyon minerallerinin spektral özelliklerine göre yorumlanarak mineral dağılım haritaları oluşturulmuştur. Özellikle demir oksitler, hidroksil mineralleri, kil mineralleri (kaolinit, alunit, muskovit), klorit ve karbonat mineralleri (kalsit, epidot vb.) gibi alterasyon göstergeleri PCA bileşenlerinden elde edilen eigenvektör değerleri yardımıyla tanımlanmıştır. Çalışma sonuçları, Heltepe Fayı boyunca alterasyonların çoğunlukla fayların uzanımına paralel bir biçimde geliştiğini ve fay hatlarına yakınlaştıkça yoğunlaştığını göstermiştir. Ayrıca bazı alterasyon alanlarının fay atımları nedeniyle ötelenmiş olması, tektonik hareketlerin alterasyon süreçleri üzerindeki etkisini doğrudan ortaya koymaktadır.

References

  • Referans1 Abrams, M. 1984. Landsat-4 Thematic Mapper and Thematic Mapper Simulator data for a porphyry copper deposit. Photogrammetric Engineering and Remote Sensing, 50(8), 1171–1173.
  • Referans2 Akça, M. D., ve Doğan, S. 2002. Sayısal görüntülerde ana bileşen dönüşümü. Harita Dergisi, 69(128), 1–15.
  • Referans3 Amer, R., Kusky, T., El Mezayen, A. 2016. Hydrothermal alteration mapping in the Eastern Desert of Egypt using ASTER data. Ore Geology Reviews, 76, 127–140.
  • Referans4 Asadzadeh, S., ve de Souza Filho, C. R. 2016. A review on spectral processing methods for geological remote sensing. International Journal of Applied Earth Observation and Geoinformation, 47, 69–90.
  • Referans5 Azizi, H., Tarverdi, M. A., Akbarpour, A. 2010. Extraction of hydrothermal alterations from ASTER SWIR data from East Zanjan, Northern Iran. Advances in Space Research, 46(1), 99–109.
  • Referans6 Başıbüyük, Z., Kavak, K. Ş., Yalçın, H., Bozkaya, Ö. 2014. Kösedağ Magmatiklerinde (Zara-Sivas) Hidrotermal Alterasyonla İlişkili Kaolin Yataklarının Landsat Etm+ Görüntüsü Kullanılarak Belirlenmesi. Cumhuriyet Yerbilimleri Dergisi. 31(1-2).
  • Referans7 Boardman, J. W., Kruse, F. A., Green, R. O. 1995. Mapping target signatures via partial unmixing of AVIRIS data [Paper presentation]. Fifth Annual JPL Airborne Earth Science Workshop, Pasadena, CA.
  • Referans8 Caine, J. S., Evans, J. P., Forster, C. B. 1996. Fault zone architecture and permeability structure. Geology, 24(11), 1025–1028.
  • Referans9 Campbell, N. A. 1996. The decorrelation stretch transformation. International Journal of Remote Sensing, 17(10), 1939–1949.
  • Referans10 Canbaz, O., Gürsoy, Ö., Gökce, A. 2018. Detecting clay minerals in hydrothermal alteration areas with integration of ASTER image and spectral data in Kösedag-Zara (Sivas), Turkey. Journal of the Geological Society of India, 91(4), 483-488.
  • Referans11 Demirtaş, R. 2019. Kuzey Anadolu Fay Sistemi (KAFS) Diri Fayları ve Deprem Etkinlikleri Paleosismolojik Çalışmalar ve Gelecek Deprem Potansiyelleri, DOI: 10.13140/RG.2.2.36608.69125, file:///C:/Users/Erkan%20AVLLAR/Downloads/KAFSfaylar%20(1), Erişim Tarihi: 10.12.2023.
  • Referans12 Di Tommaso, I., ve Rubinstein, N. 2007. Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina. Ore Geology Reviews, 32(1-2), 275–290.
  • Referans13 El-Desoky, M. M., Abdel-Monem, A. A., Ghoneim, E. M. 2022. Hydrothermal alteration mapping using Landsat 8 and ASTER data in the Egyptian shield. Remote Sensing, 14(14), 3456.
  • Referans14 Elghrabawy, O. 2025. Mapping hydrothermal alteration zones of Gebel MU'TIQ area using ASTER and aeromagnetic data in central eastern desert, Egypt. Journal of Applied Geophysics, 106027.
  • Referans15 Emre, Ö., Duman, T.Y., Özalp, S., Elmacı, H., Olgun, Ş. ve Şaroğlu, F. 2013. Açıklamalı Türkiye Diri Fay Haritası. Ölçek 1:1.250.000, Maden Tetkik ve Arama Genel Müdürlüğü, Özel Yayın Serisi-30, Ankara-Türkiye. ISBN: 978-605-5310-56-1.
  • Referans16 Fakhari, S., Jafarirad, A., Afzal, P., Lotfi, M. 2019. Delineation of hydrothermal alteration zones for porphyry systems utilizing ASTER data in Jebal barez area, SE Iran. Iranian Journal of Earth Sciences, 11, 80–92.
  • Referans17 Fujisada, H. 1995. Design and performance of ASTER instrument. Proceedings of SPIE, the International Society for Optical Engineering, 2583, 16–25.
  • Referans18 Gholipour, A. M., Nabatian, G., Rastad, E., Asadi, S. 2025. ASTER-based alteration mapping and structural analysis of the Saheb Divan hydrothermal system, NW Iran. Natural Resources for Sustainable Development.
  • Referans19 Gillespie, A. R. 1992. Enhancement of multispectral thermal infrared images: Decorrelation contrast stretching. Remote Sensing of Environment, 42(2), 147–155.
  • Referans20 Gillespie, A. R., Kahle, A. B., Walker, R. E. 1986. Color enhancement of highly correlated images: I. Decorrelation and HSI contrast stretches. Remote Sensing of Environment, 20(3), 209–235.
  • Referans21 Green, A. A., Berman, M., Switzer, P., Craig, M. D. 1988. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on Geoscience and Remote Sensing, 26(1), 65–74.
  • Referans22 Guha, A., Ray, R., Gupta, S. 2015. Implementation of reflection spectroscopy-based ASTER indices and principal component transformation for hydrothermal mapping [Paper presentation]. Proceedings of ISPRS Conference on Remote Sensing Applications.
  • Referans23 Gupta, R. P. 2003. Remote Sensing Geology (2nd ed.). Springer-Verlag.
  • Referans24 Güzel, F. 2023. Uzaktan algılama teknolojileri kullanarak aktif tektonik ile mineral alterasyonu arasındaki ilişkinin belirlenmesi. Süleyman Demirel Üniversitesi, Sosyal Bilimleri Enstitüsü, 130 s. Isparta.
  • Referans25 Güzel, F., ve Sarp, G. 2024. Evaluation of the tectonic activity of faults with mineral alterations: A case of the East Anatolian Fault-Palu segment, Türkiye. Bulletin of the Mineral Research and Exploration, 175, 149–165.
  • Referans26 Güzel, F., ve Sarp, G. 2025. Tektonik aktivitenin izleri: Fay-alterasyon ilişkisi ve ASTER verileri ile analizi (Ovacık fayı örneği). VII. Uluslararası Stratejik ve Sosyal Araştırmalar Sempozyumu Tam Metin Bildiriler Kitabı (ss. 141–152).
  • Referans27 Hewson, R. D., Cudahy, T. J., Mizuhiko, S., Ueda, K., Mauger, A. J. 2005. Seamless geological map generation using ASTER in the Broken Hill-Curnamona province of Australia. Remote Sensing of Environment, 99, 159–172.
  • Referans28 Hunt, G. R. 1977. Spectral Signatures Of Particulate Minerals İn The Visible And Near İnfrared. Geophysics, 42(3): 501-513.
  • Referans29 İnal, S., ve Kavak, K. Ş. 2024. Alterasyon Minerallerinin Haritalamasında Hiperspektral Görüntülerin Kullanılması. Teknik Meslek Yüksekokulları Akademik Araştırma Dergisi, 2(2), 32-38.
  • Referans30 Jelloulı, A., Chakourı, M., Adırı, Z., El Hachımı, J., Jarı, A. 2025. Lithological and hydrothermal alteration mapping using Terra ASTER and Landsat-8 OLI multispectral data in the north-eastern border of Kerdous Inlier, Western Anti-Atlasic Belt, Morocco. Artificial Satellites, 60(1), 14–36.
  • Referans31 Jensen, J. R. 2015. Introductory digital image processing: A remote sensing perspective (4th ed.). Pearson Education.
  • Referans32 Kahle, A. B., Palluconi, F. D., Hook, S. J., Realmuto, V. J., Bothwell, G. 1991. The Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER). International Journal of Imaging Systems and Technology, 3(2), 144–156.
  • Referans33 Kalimuthu, R., Porwal, A., Pandalai, H. S. 2025. Remote mapping of lineaments and hydrothermal alteration zones related to unconformity-related uranium deposits in the Badami Group of the western Kaladgi basin. Ore and Energy Resource Geology, 6, 100189.
  • Referans34 Kartal, R. F., Kadirioğlu, F. T., Demirtaş, R. 2016. 3 Aralık 2015 Kiğı-Bingöl Depremi (Mw=5.3), artçı deprem aktivitesi ve bölgenin tektoniği ile ilişkisi [Bildiri]. 69. Türkiye Jeoloji Kurultayı, Ankara.
  • Referans35 Kayadibi, Ö. 2008. Mineral haritalamada bant oranlama ve Crosta metotları ile elde edilen sonuçların jeoistatiksel olarak karşılaştırılması [Bildiri]. 2. Uzaktan Algılama ve Coğrafi Bilgi Sistemleri Sempozyumu, Kayseri.
  • Referans36 Khaleghi, M., Ranjbar, H., Abedini, A., Calagari, A. A. 2020. Synergetic use of the Sentınel-2, ASTER, and Landsat-8 Data for Hydrothermal Alteratıon and Iron Oxide Minerals Mapping in a Mine Scale. Acta Geodynamica et Geomaterialia, 17(3).
  • Referans37 Loughlin, W. P. 1991. Principal component analysis for alteration mapping. Photogrammetric Engineering and Remote Sensing, 57(9), 1163–1169.
  • Referans38 Noori, L., Beiranvand Pour, A., Askari, G., Taghipour, N., Pradhan, B., Lee, C. W. 2023. Comparison of different algorithms to map hydrothermal alteration zones using ASTER remote sensing data for polymetallic vein-type ore exploration: Toroud–Chahshirin Magmatic Belt, NW Iran. Remote Sensing, 15(15), 3745.
  • Referans39 Nabatian, G., Songjian, A., Pour, A. B., Abdollahi, F. 2025. Integration of ASTER imagery and field data for gold exploration. Earth Science Informatics, 18, 112–128.
  • Referans40 Ninomiya, Y. 2004. Lithologic mapping with multispectral ASTER TIR and SWIR data. Sensors, Systems, and Next-Generation Satellites VII, SPIE, 5234, 180–190.
  • Referans41 Okada, K. 2021. A Historical Overview of the Past Three Decades of Mineral Exploration Technology. Nat Resour Res 30: 2839–2860.
  • Referans42 Öztürk, S. 2009. Deprem tehlikesi ve artçışok olasılığı değerlendirme yöntemlerinin Türkiye’deki depremlere bir uygulaması Doktora Tezi, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 346s. Trabzon.
  • Referans43 Pour, A. B., ve Hashim, M. 2012. The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geology Reviews, 44, 1–9.
  • Referans44 Pour, A. B., ve Hashim, M. 2015a. A review of remote sensing methods for mapping mineralized lithologies and hydrothermal alteration in arid region terrains. Earth-Science Reviews, 143, 123–134.
  • Referans45 Pour, A. B., ve Hashim, M. 2015b. Integrating Landsat-8 and ASTER data for mineral exploration in hydrothermal alteration zones, Zapshaneh area, NW Iran. International Journal of Digital Earth, 8(10), 839–857.
  • Referans46 Pour, A. B., Park, Y., Hashim, M. 2022. Satellite remote sensing for mineral exploration in hydrothermal alteration zones. Ore Geology Reviews, 144, 104850.
  • Referans47 Rajendran, S., Nasir, S., Kusky, T. M., Ghulam, A., El-Ghali, M. A. 2012. Remote sensing based approach for identification of hydrothermal alteration zones in Sabat area, Sultanate of Oman. International Journal of Remote Sensing, 33(18), 5802–5837.
  • Referans48 Rajendran, S., ve Nasir, S. 2017. Characterization of ASTER spectral bands for mapping of alteration zones of VMS deposits. Ore Geology Reviews, 81, 1215–1229.
  • Referans49 Rajan Girija, R., ve Mayappan, S. 2019. Mapping of mineral resources and lithological units: A review of remote sensing techniques. International Journal of Image and Data Fusion, 10(2), 79-106.
  • Referans50 Rajesh, H. M. 2020. Mineral exploration using hyperspectral remote sensing. Springer.
  • Referans51 Rani, A. J., Shetty, A., Kale, V. S. 2020. Mapping hydrothermal alteration zone through ASTER data in Gadag Schist Belt, India. Environmental Earth Sciences, 79, 279.
  • Referans52 Richards, J. A. 2013. Remote sensing digital image analysis: An introduction (5th ed.). Springer.
  • Referans53 Rowan, L. C., Bowers, T. L., Crowley, J. K., Anton-Pacheco, C., Gumiel, P., Kingston, M. J. 1995. Analysis of airborne visible-infrared imaging spectrometer (AVIRIS) data of the Iron Hill, Colorado, carbonatite-alkalic igneous complex. Economic Geology, 90(7), 1966–1982.
  • Referans54 Rowan, L. C., ve Mars, J. C. 2003. Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sensing of Environment, 84(3), 350–366.
  • Referans55 Rowan, L. C., Schmidt, R. G., Mars, J. C. 2006. Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data. Remote Sensing of Environment, 104(1), 74–87.
  • Referans56 Sabins, F. F. 1999. Remote sensing for mineral exploration. Ore Geology Reviews, 14, 157–183.
  • Referans57 Salem, S. M., El Sharkawi, M., El-Alfy, Z., Soliman, N. M., Ahmed, S. E. 2016. Exploration of gold occurrences in alteration zones at Dungash district, Southeastern Desert of Egypt using ASTER data and geochemical analyses. Journal of African Earth Sciences, 117, 389-400.
  • Referans58 Sarp, G., ve Erener, A. 2008. Litolojik birimlerin farklı sınıflandırma yöntemleri ile uydu görüntülerinden belirlenmesi. 1.Ulusal Jeolojik Uzaktan Algılama Sempozyumu Bildiriler Kitabı, 22–23 Mayıs, Cumhuriyet Üniversitesi Sivas, Türkiye.
  • Referans59 Shirmard, H., Farahbakhsh, E., Beiranvand Pour, A., Muslim, A. M., Müller, R. D., Chandra, R. 2020. Integration of selective dimensionality reduction techniques for mineral exploration using ASTER satellite data. Remote Sensing, 12(8), 1261.
  • Referans60 Sibson, R. H. 1994. Crustal stress, faulting and fluid flow. Geological Society, London, Special Publications, 78(1), 73–84.
  • Referans61 Singh, A., ve Harrison, A. 1985. Standardized principal components. International Journal of Remote Sensing, 6(6), 883–896.
  • Referans62 Soha, J. M., ve Schwartz, A. A. 1978. Multispectral histogram normalization contrast enhancement [Paper presentation]. 5th Canadian Symposium on Remote Sensing, Victoria, BC, Canada.
  • Referans63 Sümer, E. Ö., Gürçay, B., Pekesin, B. F., Avcı, K., Koruyucu, M., Dağlıyar, A., Teoman, A., Topçu, T., Özgüner, C. 2006. ASTER uydu verisi uygulamaları: Türkiye'den örnekler (Özel Yayın Serisi-5). Maden Tetkik Arama Genel Müdürlüğü.
  • Referans64 Tarhan, N. 2007. 1:100 000 ölçekli Türkiye jeoloji haritası, Erzincan İ-43 paftası. Jeoloji Etütleri Dairesi.
  • Referans65 Tarhan, N. 2008. 1:100 000 ölçekli Türkiye jeoloji haritası, Erzincan J-43 paftası. Jeoloji Etütleri Dairesi.
  • Referans66 Taylor, M. M. 1973. Principal components color display of ERTS imagery [Paper presentation]. Third Earth Resources Technology Satellite-1 Symposium, NASA SP-351.
  • Referans67 Tripathi, M. K., ve Govil, H. 2022. Regolith mapping and geochemistry of hydrothermally altered, weathered and clay minerals, Western Jahajpur belt, Bhilwara, India. Geocarto International, 37(3), 879-895.
  • Referans68 USGS-EarthExplorer. 2022. EarthExplorer database. https://earthexplorer.usgs.gov (Erişim Tarihi: 05.03.2022).
  • Referans69 Van der Meer, F. D., van der Werff, H. M. A., van Ruitenbeek, F. J. A. 2014. Multi- and hyperspectral geologic remote sensing: A review. International Journal of Applied Earth Observation and Geoinformation, 32, 32–47.
  • Referans70 Yamaguchi, Y., Kahle, A. B., Tsu, H., Kawakami, T., Pniel, M. 1998. Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). IEEE Transactions on Geoscience and Remote Sensing, 36(4), 1062–1071.
  • Referans71 Yamaguchi, Y., ve Naito, C. 2003. Spectral indices for lithologic discrimination and mapping by using the ASTER SWIR bands. International Journal of Remote Sensing, 24(22), 4311–4323.
  • Referans72 Yazıcı, M., Zabcı, C., Sançar, T., Natal’in, B. A. 2018. The role of intraplate strike slip faults in shaping the surrounding morphology: The Ovacık Fault (eastern Turkey) as a case study. Geomorphology, 321, 129–145.
  • Referans73 Zabcı, C., Sançar, T., Yazıcı, M., Tikhomirov, D., Ivy-Ochs, S., Vockenhuber, C., Akçar, N. 2016. Ovacık fayı'nın morfokronoloji temelli kayma hızı: Anadolu'nun iç deformasyonu hakkında düşünceler [Bildiri]. Aktif Tektonik Araştırma Grubu (ATAG) Çalıştayı, Denizli.
There are 73 citations in total.

Details

Primary Language Turkish
Subjects Geographic Information Systems, Physical Geography, Remote Sensing
Journal Section Research Article
Authors

Firdevs Güzel 0000-0002-3502-4745

Gülcan Sarp 0000-0002-5021-4918

Submission Date May 16, 2025
Acceptance Date January 27, 2026
Publication Date January 31, 2026
Published in Issue Year 2026 Volume: 2 Issue: 1

Cite

APA Güzel, F., & Sarp, G. (2026). Alterasyon Mineralleri ve Aktif Tektonizma Arasındaki İlişkinin Görüntü Zenginleştirme Teknikleri ile Belirlenmesi. Denizli İl Millî Eğitim Müdürlüğü Bilim Ve Eğitim Dergisi, 2(1), 1-12.