SOME COSMOLOGICAL MODELS WITH MAGNETIC FIELD IN SCALAR FIELD COSMOLOGIES
Year 2015,
Issue: 034, 41 - 56, 15.06.2015
Kezban Kanmaz
İsmail Tarhan
Abstract
In this study, obtaining
some cosmological models with perfect fluid and the magnetized scalar field which
is believed to be effective in the early time of the universe, investigation of
their solutions and discussion of the physical and the mathematical properties
for the obtained solutions were aimed. For this purpose, the Einstein field
equations of the Marder metric which represents homogeneous and anisotropic
space-time and filled with scalar field containing magnetic field were obtained
and their solutions were investigated. Asymptotic behaviors and physical
properties of the obtained solutions were examined and the role of the results
to the evolution of the universe and explanation of cosmological events were
discussed in the framework of current knowledge.
References
- [1] H. J. Blome, T. L. Wilson, “Primordial Magnetic Field Measurements From The Moon”, 28th Annual Lunar and Planetary Science Conferece, Houston-Texas, 123 (1997).
- [2] A. Pradhan, K. Jotania, A. Singh, “Magnetized String Cosmological Model in Cylindrically Symmetric Inhomogeneous Universe with Time Dependent Cosmological-Term Lambda”, Brazilian Journal of Physics, 38,167-177 (2008).
- [3] R. Beck, “Cosmic Magnetic Fields: Observations and Prospects”, ed. F.M. Rieger, AIP Conf. Proc. (astro-ph/arXiv:1104.3749v1), Texas Symposium (2010).
- [4] P.P. Kronberg, “Cosmic magnetic fields, and implications for HE particle anisotropies”, The XVI International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2010), Batavia, IL, USA (28 June - 2 July 2010).
- [5] F. Miniati, A.R. Bell, “The 6th Annual International Conference on Numerical Modeling of Space Plasma Flows in Valencia”, Spain, (ASTRONUM-2011), 459, 125-130 (2011).
- [6] H. Weyl, “Gravitation and Elecromagnetism”, Akad and Wiss Pres., Berlin. 2, 465-468 (1918).
- [7] H. Weyl, “Space, Time and Matter”, Dover Publication Inc., London (1922).
- [8] J. A. Belinchon, T. Harko, M. K. Mak, “Full Causal Buk Viscous Cosmological Models with Variable G and Lambda”, gr-qc/0112020 (2001).
[9] M. K. Mak, T. Harko, “Bianchi Type I Universes with Causal Bulk Viscous Cosmological Fluid”, gr-qc/010069 (2001).
- [10] G. Mendell, “Magnetic effect on the viscous boundary layer damping of the r-modes in neutron stars”, gr-qc/0102042 (2001).
- [11] B.C. Paul, “Viscous Cosmologies with Extra Dimensions”, gr-qc/0106031 (2001).
- [12] İ. Tarhan, “Astr. Nachr.” 313, 3 (2002).
- [13] G. Mohanty, B. Mishra, R. Das, “Bull. Inst. Math.”, 28, 43-51 (2000).
- [14] G. Mohanty, U. K. Panigrahy, R. C. Sahu, “Astrophysics and Space Science”, 281, 633–640 ( 2002).
- [15] G. Mohanty, R. C. Sahu, U. K. Panigrahy, “Astrophysics and Space Science”, 284, 1055-1062 (2003).
- [16] S. Aygün, İ. Tarhan, “The Decay of Massive Scalar Field in Non-Static Gödel Type Universe with Viscous Fluid and Heat Flow”. International Journal of Theoretical Physics, Int. J. Theor. Phys., 47, 3257-3266 (2008).
- [17] S. Aygün, İ. Tarhan, H. Baysal, “Scalar field theory and energy-momentum problem of Yilmaz-Rosen metric in general relativity and teleparallel gravity”, Astrophysics and Space Science, Astrophys. Space Sci., 314, 323 (2008).
- [18] R.C. Sahu, G. Mohanty, “Astrophysics and Space Science”, 306, 179-183 (December 29, 2006).
- [19] L. O. Pimentel, “Astrophysics and Space Science”, 116, 395-399 (1985).
- [20] G. Mohanty, B. Mishra, R. Das, “Theo. Ve Appl. Mech.”, 26, 71 (2001).
- [21] R.C. Sahu, U. K. Panigrahi, “Astrophysics and Space Science”, 288, 601-610 (2003).
- [22] U. K. Panigrahi, R. C. Sahu, “Czech. J. Physc.”, 54, 543 ( 2004).
- [23] N.P. Gaikwad, M.S. Borkar, S.S. Charjan, “Bianchi Type-I Massive String Magnetized Barotropic Perfect Fluid Cosmological Model in the Bimetric Theory of Gravitation”,Chinese Physics Letters, 28, 089803 (2011).
- [24] P. S. Letelier, “Phys. Rev.”, D20, 1294-1302 (1979).
- [25] P. S. Letelier, “Phys. Rev.”, D28, 2414-2419 ( 1983).
- [26] J. Stachel, “Phys. Rev.”, D21, 2171-2181 (1980).
- [27] D. G. Yamazaki, K. Ichiki, T. Kajino, G.J. Mathews, astro-ph/0610234v1.( 2006).
- [28] F. A. Membiela, M. Bellini, “Primordial Large-Scale Electromagnetic Fields From Gravitoelectromanyetic Inflation”, gr-qc/0811.0993v1. (2008).
- [29] S. W. Hawking, W. Israel, “General Relativity: An Einstein Centenary Survay”, Cambridge University Pres, Cambridge. 277 - 291(1979).
- [30] L. D. Landau, E.M. Lifshitz, “The ClassicalTheory of Fields”, Bergamon Pres. 239 – 254 (1987).
- [31] L. P. Hungston, K. P. Tod, “An Introduction to General Relativity”, Cambridge University Pres, Cambridge. 136 – 143 (1990).
- [32] H. Stephani, Relativity: “An Introduction to Special and General Relativity”, Cambridge University Press. 233 – 248 (2004).
- [33] M. Demianski, “Physics of the Expanding Universe”, Springer-Verlag, Berlin.p. 374 (1979).
- [34] L. Marder, “Proc. Roy. Soc. Lond”, A244, 524-537 (1958a.).
- [35] L. Marder, “Proc. Roy. Soc. Lond.”, A246, 133-143 (1958b.).
- [36] M.A.H. MacCallum, “In General Relativity and Einstein Centenary Survey”, Cambridge University Press, Cambridge. 194 – 221 (1979).
- [37] Ya. B. Zel’dovich, Sov. Sci. Rev. E Astrophys. Space Phys., 5, 1-37 (1986).
- [38] D. Kramer, H. Stephani, E. Herlt, M.A.H. MacCallum, E. Schmutzer, “Exact Solutions of Einstein’s Field Equations”, Cambridge Univ. Pres. Cambridge. 356 – 384 (1980).
- [39] C.B. Collins, E.N. Class, D.A. Wilkinson, “Exact Spatially Homogeneous Cosmologies”, General Relativity
and Gravity, 12, 805 ( 1980).
- [40] S. Selak, “Astrophysics and Space Science”, 109, 123-130 (1985).
SKALER ALAN KOZMOLOJİLERDE MANYETİK ALAN KAYNAKLI BAZI KOZMOLOJİK MODELLER
Year 2015,
Issue: 034, 41 - 56, 15.06.2015
Kezban Kanmaz
İsmail Tarhan
Abstract
Bu çalışmada, Evrenin
ilk çağlarında etkin olduğuna inanılan manyetize olmuş skaler alan ve ideal
akışkanlı bazı kozmolojik modeller elde edip çözümlerin araştırılması, elde
edilen çözümlerin fiziksel ve matematiksel
özelliklerinin tartışılması hedeflenmiştir. Bu amaçla; manyetik alan içeren
skaler alan ile dolu, homojen fakat anizotrop bir uzay zamanı temsil eden
Marder metriği için Einstein alan denklemleri elde edilerek çözümler
aranmaktadır. Elde edilen çözümlerin asimptotik davranışları ve fiziksel
özellikleri incelenmiş ve sonuçların evrenin evrimine ve evrim işlemleri
sırasında karşılaşılan kozmolojik olayları açıklamadaki rolü güncel bilgiler
çerçevesinde tartışılmaktadır.
References
- [1] H. J. Blome, T. L. Wilson, “Primordial Magnetic Field Measurements From The Moon”, 28th Annual Lunar and Planetary Science Conferece, Houston-Texas, 123 (1997).
- [2] A. Pradhan, K. Jotania, A. Singh, “Magnetized String Cosmological Model in Cylindrically Symmetric Inhomogeneous Universe with Time Dependent Cosmological-Term Lambda”, Brazilian Journal of Physics, 38,167-177 (2008).
- [3] R. Beck, “Cosmic Magnetic Fields: Observations and Prospects”, ed. F.M. Rieger, AIP Conf. Proc. (astro-ph/arXiv:1104.3749v1), Texas Symposium (2010).
- [4] P.P. Kronberg, “Cosmic magnetic fields, and implications for HE particle anisotropies”, The XVI International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2010), Batavia, IL, USA (28 June - 2 July 2010).
- [5] F. Miniati, A.R. Bell, “The 6th Annual International Conference on Numerical Modeling of Space Plasma Flows in Valencia”, Spain, (ASTRONUM-2011), 459, 125-130 (2011).
- [6] H. Weyl, “Gravitation and Elecromagnetism”, Akad and Wiss Pres., Berlin. 2, 465-468 (1918).
- [7] H. Weyl, “Space, Time and Matter”, Dover Publication Inc., London (1922).
- [8] J. A. Belinchon, T. Harko, M. K. Mak, “Full Causal Buk Viscous Cosmological Models with Variable G and Lambda”, gr-qc/0112020 (2001).
[9] M. K. Mak, T. Harko, “Bianchi Type I Universes with Causal Bulk Viscous Cosmological Fluid”, gr-qc/010069 (2001).
- [10] G. Mendell, “Magnetic effect on the viscous boundary layer damping of the r-modes in neutron stars”, gr-qc/0102042 (2001).
- [11] B.C. Paul, “Viscous Cosmologies with Extra Dimensions”, gr-qc/0106031 (2001).
- [12] İ. Tarhan, “Astr. Nachr.” 313, 3 (2002).
- [13] G. Mohanty, B. Mishra, R. Das, “Bull. Inst. Math.”, 28, 43-51 (2000).
- [14] G. Mohanty, U. K. Panigrahy, R. C. Sahu, “Astrophysics and Space Science”, 281, 633–640 ( 2002).
- [15] G. Mohanty, R. C. Sahu, U. K. Panigrahy, “Astrophysics and Space Science”, 284, 1055-1062 (2003).
- [16] S. Aygün, İ. Tarhan, “The Decay of Massive Scalar Field in Non-Static Gödel Type Universe with Viscous Fluid and Heat Flow”. International Journal of Theoretical Physics, Int. J. Theor. Phys., 47, 3257-3266 (2008).
- [17] S. Aygün, İ. Tarhan, H. Baysal, “Scalar field theory and energy-momentum problem of Yilmaz-Rosen metric in general relativity and teleparallel gravity”, Astrophysics and Space Science, Astrophys. Space Sci., 314, 323 (2008).
- [18] R.C. Sahu, G. Mohanty, “Astrophysics and Space Science”, 306, 179-183 (December 29, 2006).
- [19] L. O. Pimentel, “Astrophysics and Space Science”, 116, 395-399 (1985).
- [20] G. Mohanty, B. Mishra, R. Das, “Theo. Ve Appl. Mech.”, 26, 71 (2001).
- [21] R.C. Sahu, U. K. Panigrahi, “Astrophysics and Space Science”, 288, 601-610 (2003).
- [22] U. K. Panigrahi, R. C. Sahu, “Czech. J. Physc.”, 54, 543 ( 2004).
- [23] N.P. Gaikwad, M.S. Borkar, S.S. Charjan, “Bianchi Type-I Massive String Magnetized Barotropic Perfect Fluid Cosmological Model in the Bimetric Theory of Gravitation”,Chinese Physics Letters, 28, 089803 (2011).
- [24] P. S. Letelier, “Phys. Rev.”, D20, 1294-1302 (1979).
- [25] P. S. Letelier, “Phys. Rev.”, D28, 2414-2419 ( 1983).
- [26] J. Stachel, “Phys. Rev.”, D21, 2171-2181 (1980).
- [27] D. G. Yamazaki, K. Ichiki, T. Kajino, G.J. Mathews, astro-ph/0610234v1.( 2006).
- [28] F. A. Membiela, M. Bellini, “Primordial Large-Scale Electromagnetic Fields From Gravitoelectromanyetic Inflation”, gr-qc/0811.0993v1. (2008).
- [29] S. W. Hawking, W. Israel, “General Relativity: An Einstein Centenary Survay”, Cambridge University Pres, Cambridge. 277 - 291(1979).
- [30] L. D. Landau, E.M. Lifshitz, “The ClassicalTheory of Fields”, Bergamon Pres. 239 – 254 (1987).
- [31] L. P. Hungston, K. P. Tod, “An Introduction to General Relativity”, Cambridge University Pres, Cambridge. 136 – 143 (1990).
- [32] H. Stephani, Relativity: “An Introduction to Special and General Relativity”, Cambridge University Press. 233 – 248 (2004).
- [33] M. Demianski, “Physics of the Expanding Universe”, Springer-Verlag, Berlin.p. 374 (1979).
- [34] L. Marder, “Proc. Roy. Soc. Lond”, A244, 524-537 (1958a.).
- [35] L. Marder, “Proc. Roy. Soc. Lond.”, A246, 133-143 (1958b.).
- [36] M.A.H. MacCallum, “In General Relativity and Einstein Centenary Survey”, Cambridge University Press, Cambridge. 194 – 221 (1979).
- [37] Ya. B. Zel’dovich, Sov. Sci. Rev. E Astrophys. Space Phys., 5, 1-37 (1986).
- [38] D. Kramer, H. Stephani, E. Herlt, M.A.H. MacCallum, E. Schmutzer, “Exact Solutions of Einstein’s Field Equations”, Cambridge Univ. Pres. Cambridge. 356 – 384 (1980).
- [39] C.B. Collins, E.N. Class, D.A. Wilkinson, “Exact Spatially Homogeneous Cosmologies”, General Relativity
and Gravity, 12, 805 ( 1980).
- [40] S. Selak, “Astrophysics and Space Science”, 109, 123-130 (1985).