Generalized Quaternions Serret-Frenet and Bishop Frames
Year 2012,
Issue: 029, 29 - 38, 12.12.2012
Erhan Ata
,
Yasemin Kemer
Ali Atasoy
Abstract
Serret-Frenet and
Parallel-Transport frame are produced with the help of the generalized
quaternions again by the method in [4].
References
- [1] Inoguchi, J., ”Timelike surfaces of constant mean curvature in Minkowski 3- space”, Tokyo J. Math. 21(1) 141-152, 1998.
- [2] Niven, I., ”The roots of a quaternion”, Amer. Math. Monthly 449(6) 386-388, 1942.
- [3] Özdemir, M., Ergin A. A., ”Rotations with timelike quaternions in Minkowski 3-space”, J. Geom. Phys. 56 322-336, 2006
- [4] Hanson, A. J., ”Quaternion Frenet Frames: Making Optimal Tubes and Ribbons from Curves”, Tech. Rep. 407, Indiana Unv. Computer Science Dep., 1994.
- [5] Eisenhart, L. P., ”A Treatise on the Differential Geometry of Curves and Surfaces”, Dover, New York, 1960, Originally published in 1909.
- [6] Flanders, H., Differential Forms with Applications to Physical Sciences”, Academic Press, New York, 1963.
- [7] Gray, A., ”Modern Differential Geometry of Curves and Surfaces”, CRC Press, Inc., Boca Raton, FL, 1993.
- [8] Struik, D. J., ”Lectures on Classical Differential Geometry”, Addison-Wesley, 1961
- [9] Öztürk, U., Hacısalihoğlu, H. H., Yaylı, Y., Koç Öztürk, E. B. ,”Dual Quaternion Frames”, Commun. Fac. Sci. Univ. Ank. Series A1 59(2) 41–50, 2010
- [10] Bishop, R. L., ”There is more than one way to frame a curve”, Amer. Math. Monthly 82(3) , 246-251, March 1975.
GENELLEŞTİRİLMİŞ KUATERNİYONLARIN SERRET-FRENET VE BISHOP ÇATILARI
Year 2012,
Issue: 029, 29 - 38, 12.12.2012
Erhan Ata
,
Yasemin Kemer
Ali Atasoy
Abstract
Serret-Frenet
ve Paralel taşıma çatıları, genelleştirilmiş kuaterniyonlar yardımıyla yine
[4]te verilen metot ile oluşturulmuştur.
References
- [1] Inoguchi, J., ”Timelike surfaces of constant mean curvature in Minkowski 3- space”, Tokyo J. Math. 21(1) 141-152, 1998.
- [2] Niven, I., ”The roots of a quaternion”, Amer. Math. Monthly 449(6) 386-388, 1942.
- [3] Özdemir, M., Ergin A. A., ”Rotations with timelike quaternions in Minkowski 3-space”, J. Geom. Phys. 56 322-336, 2006
- [4] Hanson, A. J., ”Quaternion Frenet Frames: Making Optimal Tubes and Ribbons from Curves”, Tech. Rep. 407, Indiana Unv. Computer Science Dep., 1994.
- [5] Eisenhart, L. P., ”A Treatise on the Differential Geometry of Curves and Surfaces”, Dover, New York, 1960, Originally published in 1909.
- [6] Flanders, H., Differential Forms with Applications to Physical Sciences”, Academic Press, New York, 1963.
- [7] Gray, A., ”Modern Differential Geometry of Curves and Surfaces”, CRC Press, Inc., Boca Raton, FL, 1993.
- [8] Struik, D. J., ”Lectures on Classical Differential Geometry”, Addison-Wesley, 1961
- [9] Öztürk, U., Hacısalihoğlu, H. H., Yaylı, Y., Koç Öztürk, E. B. ,”Dual Quaternion Frames”, Commun. Fac. Sci. Univ. Ank. Series A1 59(2) 41–50, 2010
- [10] Bishop, R. L., ”There is more than one way to frame a curve”, Amer. Math. Monthly 82(3) , 246-251, March 1975.