Research Article
BibTex RIS Cite

Generalized Quaternions Serret-Frenet and Bishop Frames

Year 2012, Issue: 029, 29 - 38, 12.12.2012

Abstract

Serret-Frenet and
Parallel-Transport frame are produced with the help of the generalized
quaternions again by the method in [4].

References

  • [1] Inoguchi, J., ”Timelike surfaces of constant mean curvature in Minkowski 3- space”, Tokyo J. Math. 21(1) 141-152, 1998.
  • [2] Niven, I., ”The roots of a quaternion”, Amer. Math. Monthly 449(6) 386-388, 1942.
  • [3] Özdemir, M., Ergin A. A., ”Rotations with timelike quaternions in Minkowski 3-space”, J. Geom. Phys. 56 322-336, 2006
  • [4] Hanson, A. J., ”Quaternion Frenet Frames: Making Optimal Tubes and Ribbons from Curves”, Tech. Rep. 407, Indiana Unv. Computer Science Dep., 1994.
  • [5] Eisenhart, L. P., ”A Treatise on the Differential Geometry of Curves and Surfaces”, Dover, New York, 1960, Originally published in 1909.
  • [6] Flanders, H., Differential Forms with Applications to Physical Sciences”, Academic Press, New York, 1963.
  • [7] Gray, A., ”Modern Differential Geometry of Curves and Surfaces”, CRC Press, Inc., Boca Raton, FL, 1993.
  • [8] Struik, D. J., ”Lectures on Classical Differential Geometry”, Addison-Wesley, 1961
  • [9] Öztürk, U., Hacısalihoğlu, H. H., Yaylı, Y., Koç Öztürk, E. B. ,”Dual Quaternion Frames”, Commun. Fac. Sci. Univ. Ank. Series A1 59(2) 41–50, 2010
  • [10] Bishop, R. L., ”There is more than one way to frame a curve”, Amer. Math. Monthly 82(3) , 246-251, March 1975.

GENELLEŞTİRİLMİŞ KUATERNİYONLARIN SERRET-FRENET VE BISHOP ÇATILARI

Year 2012, Issue: 029, 29 - 38, 12.12.2012

Abstract

Serret-Frenet
ve Paralel taşıma çatıları, genelleştirilmiş kuaterniyonlar yardımıyla yine
[4]te verilen metot ile oluşturulmuştur.

References

  • [1] Inoguchi, J., ”Timelike surfaces of constant mean curvature in Minkowski 3- space”, Tokyo J. Math. 21(1) 141-152, 1998.
  • [2] Niven, I., ”The roots of a quaternion”, Amer. Math. Monthly 449(6) 386-388, 1942.
  • [3] Özdemir, M., Ergin A. A., ”Rotations with timelike quaternions in Minkowski 3-space”, J. Geom. Phys. 56 322-336, 2006
  • [4] Hanson, A. J., ”Quaternion Frenet Frames: Making Optimal Tubes and Ribbons from Curves”, Tech. Rep. 407, Indiana Unv. Computer Science Dep., 1994.
  • [5] Eisenhart, L. P., ”A Treatise on the Differential Geometry of Curves and Surfaces”, Dover, New York, 1960, Originally published in 1909.
  • [6] Flanders, H., Differential Forms with Applications to Physical Sciences”, Academic Press, New York, 1963.
  • [7] Gray, A., ”Modern Differential Geometry of Curves and Surfaces”, CRC Press, Inc., Boca Raton, FL, 1993.
  • [8] Struik, D. J., ”Lectures on Classical Differential Geometry”, Addison-Wesley, 1961
  • [9] Öztürk, U., Hacısalihoğlu, H. H., Yaylı, Y., Koç Öztürk, E. B. ,”Dual Quaternion Frames”, Commun. Fac. Sci. Univ. Ank. Series A1 59(2) 41–50, 2010
  • [10] Bishop, R. L., ”There is more than one way to frame a curve”, Amer. Math. Monthly 82(3) , 246-251, March 1975.
There are 10 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Erhan Ata

Yasemin Kemer This is me

Ali Atasoy This is me

Publication Date December 12, 2012
Published in Issue Year 2012 Issue: 029

Cite

APA Ata, E., Kemer, Y., & Atasoy, A. (2012). Generalized Quaternions Serret-Frenet and Bishop Frames. Journal of Science and Technology of Dumlupınar University(029), 29-38.

HAZİRAN 2020'den itibaren Journal of Scientific Reports-A adı altında ingilizce olarak yayın hayatına devam edecektir.