Research Article
BibTex RIS Cite

NON-ISOTHERMAL FLOW MODELS WITH MASS DIFFUSION FOR A STATIONARY POROUS MEDIA BY EMPLOYING REPRESENTATIVE ELEMENTARY VOLUME

Year 2010, Issue: 023, 49 - 58, 15.12.2010

Abstract

Nowadays, in many industrial
applications, porous materials play an important
role in the design
and development processes. For instance, in alloy solidification, between
the solid and the fluid phases there is a region called mushy zone which
contains both fluid
and solid. Its structure is very complicated but can
be handled as an anisotropic porous
medium with directional variation in
permeability. Other industrial applications such as
flow over heat
exchanger matrices, flow through turbo-machines, primary and secondary oil
recoveries etc. can very well be approximated as porous media. Finally, it seems appropriate to mention that cooling of electronic
micro systems is
becoming more and more important as much of our modern
day equipment contains more
and more electronic circuits. In order to
increase their performance and life, it is essential
to have proper
cooling arrangement. A reliable flow and heat transfer prediction in these
arrangements is always difficult due to the complexity of flow
structure. However, a porous
medium approximation to such problems can be
efficient. The generalized procedure
described in this study is a good approximation
for these structures.

References

  • [1] H. Darcy. Les fontaines publiques de la ville de dijon. 1856.
  • [2] J. Bear. Dynamics of Fluids in Porous Materials. American Elsevier, 1972.
  • [3] D.A. Nield and A. Bejan. Convection in Porous Media. Springer—Verlag, New York, 1992.
  • [4] M. Kaviany. Principles of Heat Transfer in Porous Media. Springer—Verlag, New York, 1991. [14] A.Z. Barak. Comments on ’high velocity flow in porous media’ by hassanizadeh and gray. Trans. Porous Media, 2:533—535, 1987.
  • [5] D.K. Gartling, C. E. Hickox, and R.C. Givler. Simulation of coupled viscous and porous flow problems. Comp. Fluid Dyn., 7:23—48, 1996.
  • [6] H.C. Brinkmann. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res., A1:27—34, 1947.
  • [7] H.C. Brinkmann. On the permeability of media consisting of closely packed porous particles. Appl.Sci.Res. A1:81—86, 1948.
  • [8] P. Nithiarasu, K.N. Seetharamu, and T. Sundararajan. Double-diffusive natural convection in an enclosure filled with saturated porous medium - a generalized non-Darcy approach. Num. Heat Transfer, Part A, 30:413—426, 1996.
  • [9] P. Nithiarasu, K.N. Seetharamu, and T. Sundararajan. Natural convective heat transfer in an enclosure filled with fluid saturated variable porosity medium. Int. J. Heat Mass Transfer, 40:3955—3967, 1997.
  • [10] C.T. Hsu and P. Cheng. Thermal dispersion in a porous medium. Int. J. Heat Mass Transfer, 33:1587—1597, 1990.
  • [11] K. Vafai and S.J. Kim. Forced convection in a channel filled with a porous medium: an exact solution. ASME J. Heat Transfer, 111:1103—1106, 1989.
  • [12] P. Nithiarasu, K.N. Seetharamu, and T. Sundararajan. Effects of porosity on natural convective heat transfer in a fluid saturated porous medium. Int. J. Heat Fluid Flow, 19:56—58, 1998.
  • [13] P. Nithiarasu, K.N. Seetharamu, and T. Sundararajan. Double-di usive natural convection in a fluid saturated porous cavity with a freely convecting wall. Int. Comm. Heat Mass Transfer, 24:1121—1130, 1997.
  • [14] J. Bear and Y. Bachmat. Introduction to Modeling Transport Phenomena in Porous Media. Kluwer Acad. Publ., 1990.
  • [15] S. Whitaker. Di usion and dispersion in porous media. A.I.Ch.E. J., 13:420—427, 1961.
  • [16] D.A. Nield. The limitations of the Brinkmann-Forchheimer equation in modeling flow in a saturated porous medium and at an interface. Int. J. Heat and Fluid Flow, 12:269—272, 1991.
  • [17] B. Alazmi and K. Vafai. Analysis of variants within the porous media transport models. ASME J. Heat Transfer, 122:303—326, 2000.
  • [18] S. Whitaker. Flow in porous media i: A theoretical derivation of the Darcy’s law. Transp. Porous media, 1:3—25, 1986.
  • [19] S. Ergun. Fluid flow through packed column. Che. Eng. Pro, 48:89—94, 1952.
  • [20] N. Martys, D.P. Bentz, and J. Garboczi. Computer simulation study of the effective viscosity in Brinkman’s equation. Phys. Fluids, 6:1434—39, 1994.
  • [21] B. Alazmi and K. Vafai. Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer. Int. J. Heat Mass Transfer, 44:1735—1749, 2001.
  • [22] P. Nithiarasu, K.N. Seetharamu, and T. Sundararajan. Numerical investigation of buoyancy driven flow in a fluid saturated non-Darcian porous medium. Int. J. Heat Mass Transfer, 42:1205—1215, 1999.
  • [23] C.L. Tien and K. Vafai. Convective and radiative heat transfer in porous media. Adv. Appl. Mech., 27:225—281, 1990.
  • [24] P.J. Prescott, F.P. Incropera, and D.R. Gaskell. Convective transport phenomena and macro segregation during solidification of a binary metal alloy: Ii-experiments and comparison with numerical predictions. J. Heat Transfer, 116:742—749, 1994.
  • [25] P.J. Prescott and F.P. Incropera. Convective transport phenomena and macro segregation during solidification of a binary metal alloy: I-numerical predictions. J. Heat Transfer, 116:735—741, 1994.
  • [26] S. Ostrach. Natural convection in enclosures. Adv. Heat Transfer, 8:161—227, 1972.
  • [27] A. Bejan. Convective heat transfer in porous media. In W. Aung S. Kakac, R.K. Shah, editor, Handbook of Single-Phase Convective Heat Transfer, chapter 16. John Wiley & Sons, New York, 1987.

İZOTERMAL OLMAYAN VE KÜTLESEL DİFÜZYONUN MEVCUT OLDUĞU DURGUN BİR GÖZENEKLİ ORTAM İÇERİSİNDEKİ AKIŞKAN AKIŞININ TEMSİLİ BİR TEMEL HACİM KULLANILARAK MODELLENMESİ

Year 2010, Issue: 023, 49 - 58, 15.12.2010

Abstract

Günümüz
teknolojisinde, birçok endüstriyel uygulamada gözenekli materyaller dizayn ve
geliştirmede önemli bir rol oynar. Örneğin, katılaşma problemindeki katılaşma
esnasında oluşan katı ve akışkan bölgeleri bu ortama bir örnektir. Bu problem
çok zor bir problem olmakla birlikte, gözenekli ortam akış modeli kullanılarak
çözülebilir. Birkaç diğer uygulama örnekleri ise ısı değiştirgeçleri, termik-turbu
makinalardaki akışlar, petrol çıkarılması ve proseslere tabi tutulması  sayılabilir. Son bir örnek olarak, performans
ve ömürlerinin arttırılması için, elektronik mikro sistemlerin soğutulması bu
akış modeli kullanılarak yapılabilir. Bu çalışmada tanımlanan prosedüre ve
model, bu türlü problemlerin çözümünde iyi 
ve güvenilir sonuçlar verir.

References

  • [1] H. Darcy. Les fontaines publiques de la ville de dijon. 1856.
  • [2] J. Bear. Dynamics of Fluids in Porous Materials. American Elsevier, 1972.
  • [3] D.A. Nield and A. Bejan. Convection in Porous Media. Springer—Verlag, New York, 1992.
  • [4] M. Kaviany. Principles of Heat Transfer in Porous Media. Springer—Verlag, New York, 1991. [14] A.Z. Barak. Comments on ’high velocity flow in porous media’ by hassanizadeh and gray. Trans. Porous Media, 2:533—535, 1987.
  • [5] D.K. Gartling, C. E. Hickox, and R.C. Givler. Simulation of coupled viscous and porous flow problems. Comp. Fluid Dyn., 7:23—48, 1996.
  • [6] H.C. Brinkmann. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res., A1:27—34, 1947.
  • [7] H.C. Brinkmann. On the permeability of media consisting of closely packed porous particles. Appl.Sci.Res. A1:81—86, 1948.
  • [8] P. Nithiarasu, K.N. Seetharamu, and T. Sundararajan. Double-diffusive natural convection in an enclosure filled with saturated porous medium - a generalized non-Darcy approach. Num. Heat Transfer, Part A, 30:413—426, 1996.
  • [9] P. Nithiarasu, K.N. Seetharamu, and T. Sundararajan. Natural convective heat transfer in an enclosure filled with fluid saturated variable porosity medium. Int. J. Heat Mass Transfer, 40:3955—3967, 1997.
  • [10] C.T. Hsu and P. Cheng. Thermal dispersion in a porous medium. Int. J. Heat Mass Transfer, 33:1587—1597, 1990.
  • [11] K. Vafai and S.J. Kim. Forced convection in a channel filled with a porous medium: an exact solution. ASME J. Heat Transfer, 111:1103—1106, 1989.
  • [12] P. Nithiarasu, K.N. Seetharamu, and T. Sundararajan. Effects of porosity on natural convective heat transfer in a fluid saturated porous medium. Int. J. Heat Fluid Flow, 19:56—58, 1998.
  • [13] P. Nithiarasu, K.N. Seetharamu, and T. Sundararajan. Double-di usive natural convection in a fluid saturated porous cavity with a freely convecting wall. Int. Comm. Heat Mass Transfer, 24:1121—1130, 1997.
  • [14] J. Bear and Y. Bachmat. Introduction to Modeling Transport Phenomena in Porous Media. Kluwer Acad. Publ., 1990.
  • [15] S. Whitaker. Di usion and dispersion in porous media. A.I.Ch.E. J., 13:420—427, 1961.
  • [16] D.A. Nield. The limitations of the Brinkmann-Forchheimer equation in modeling flow in a saturated porous medium and at an interface. Int. J. Heat and Fluid Flow, 12:269—272, 1991.
  • [17] B. Alazmi and K. Vafai. Analysis of variants within the porous media transport models. ASME J. Heat Transfer, 122:303—326, 2000.
  • [18] S. Whitaker. Flow in porous media i: A theoretical derivation of the Darcy’s law. Transp. Porous media, 1:3—25, 1986.
  • [19] S. Ergun. Fluid flow through packed column. Che. Eng. Pro, 48:89—94, 1952.
  • [20] N. Martys, D.P. Bentz, and J. Garboczi. Computer simulation study of the effective viscosity in Brinkman’s equation. Phys. Fluids, 6:1434—39, 1994.
  • [21] B. Alazmi and K. Vafai. Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer. Int. J. Heat Mass Transfer, 44:1735—1749, 2001.
  • [22] P. Nithiarasu, K.N. Seetharamu, and T. Sundararajan. Numerical investigation of buoyancy driven flow in a fluid saturated non-Darcian porous medium. Int. J. Heat Mass Transfer, 42:1205—1215, 1999.
  • [23] C.L. Tien and K. Vafai. Convective and radiative heat transfer in porous media. Adv. Appl. Mech., 27:225—281, 1990.
  • [24] P.J. Prescott, F.P. Incropera, and D.R. Gaskell. Convective transport phenomena and macro segregation during solidification of a binary metal alloy: Ii-experiments and comparison with numerical predictions. J. Heat Transfer, 116:742—749, 1994.
  • [25] P.J. Prescott and F.P. Incropera. Convective transport phenomena and macro segregation during solidification of a binary metal alloy: I-numerical predictions. J. Heat Transfer, 116:735—741, 1994.
  • [26] S. Ostrach. Natural convection in enclosures. Adv. Heat Transfer, 8:161—227, 1972.
  • [27] A. Bejan. Convective heat transfer in porous media. In W. Aung S. Kakac, R.K. Shah, editor, Handbook of Single-Phase Convective Heat Transfer, chapter 16. John Wiley & Sons, New York, 1987.
There are 27 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Bayram Alakuş This is me

Publication Date December 15, 2010
Published in Issue Year 2010 Issue: 023

Cite

APA Alakuş, B. (2010). NON-ISOTHERMAL FLOW MODELS WITH MASS DIFFUSION FOR A STATIONARY POROUS MEDIA BY EMPLOYING REPRESENTATIVE ELEMENTARY VOLUME. Journal of Science and Technology of Dumlupınar University(023), 49-58.

HAZİRAN 2020'den itibaren Journal of Scientific Reports-A adı altında ingilizce olarak yayın hayatına devam edecektir.