In this paper, we obtained the distribution parameter of a
timelike ruled surface generated by a timelike straight line in Frenet
trihedron moving along a space-like curve. We show that the timelike
ruled surface is developable if and only if the base curve is a helix
(inclened curve). Furthermore, some theorems are given for the special
cases which the line is being the principal normal and binormal of the
base curve. In addition, it is shown that when the base curve is the same
as the striction curve, the ruled surface is not developable.
Bu caltsmada bir space-like egri boyunca, Frenet iif yialusunde
altnan sabit bir dogrunun hareketiyle olusan time-like regle yiizeyin
dagilma parametresi hesaplandt. Regie yuzeyin dayanak egrisinin
helis olmasi halinde yuzeyin actlabilir oldugunu gosterdik. Ayrtca, sabit
dogrunun; dayanak egrisinin tegeti, normali, binormali v.s. olmasi
halinde bazt teoremler verdik. Daha fazlast, dayanak egrisinin,
striksiyon cizgisi olmast halinde, regIe yuzeyinin acilabilir olmadigtni
gosterdik.
Primary Language | English |
---|---|
Subjects | Mathematical Sciences |
Journal Section | Articles |
Authors | |
Publication Date | January 15, 2000 |
Published in Issue | Year 2000 Issue: 001 |
HAZİRAN 2020'den itibaren Journal of Scientific Reports-A adı altında ingilizce olarak yayın hayatına devam edecektir.