SELECTING DEA MODEL SPECIFICATIONS AND RANKING UNITS VIA PRINCIPAL COMPONENT ANALYSIS: A APPLICATION OF ECONOMIC PERFORMANCE OF CITIES
Year 2016,
ICEBSS Special Issue, 125 - 135, 06.11.2016
Hasan Bal
,
Volkan Soner Özsoy
Abstract
Data Envelopment Analysis (DEA) is non-parametric
mathematical tool a linear programming-based approach for measuring the
relative efficiency of decision makin gunits (DMUs). DEA is becoming widely
used to evaluate the efficiency of organizations with multiple homogeneous DMUs
such as universities, hospitals, and banks that produce several outputs with a
variety of inputs. Different model selection methods have been suggested for
DEA in the literature. Model selection in DEA is a very important problem.
Efficiency score of DMU takes different values based on input and output.
Variable selection is crucial to the process as the omission of some of the
inputs can have a large effect on efficiency score. In this study, an example deals
with the efficiency in the economic performance of 28 Chinese cities.
Efficiency scores are calculated for all possible DEA model specifications. The
results are analyzed using Principal Component Analysis and a new method for
model selection is proposed in this paper.
References
- Adler N and Golany B (2001). Evaluation of deregulated airline networks using data envelopment analysis combined with principal components analysis with an application to Western Europe. Eur J Opl Res 132: 260–273.
- Bal, H., Örkcü, H.H., “Temel Bileşenler ile Veri Zarflama Analizinin Karar Verme Birimlerinin Sıralanmasında kullanılması”, TUIK 15. İstatistik Araştırma Sempozyumu, Türkiye İstatistik Kurumu, Ankara, 2006.
- Charnes, A., Cooper, W. W., & Li, S. (1989). Using data envelopment analysis to evaluate efficiency in the economic performance of Chinese cities. Socio-Economic Planning Sciences, 23(6), 325-344.
- Cinca, C. S., & Molinero, C. M. (2004). Selecting DEA specifications and ranking units via PCA.Journal of the Operational Research Society, 55(5), 521-528.
- Cinca, C. S., Callén, Y. F., & Molinero, C. M. (2003). An approach to the measurement of intangible assets in dot com. The International Journal of Digital Accounting Research, 3(5), 1-32.
- Doyle, J., & Green, R. (1994). Efficiency and cross-efficiency in DEA: Derivations, meanings and uses. Journal of the operational research society, 45(5), 567-578.
- Lovell, C. K., & Pastor, J. T. (1997). Target setting: An application to a bank branch network.
European Journal of Operational Research, 98(2), 290-299.
- Mancebon, M. J., & Molinero, C. M. (2000). Performance in primary schools. Journal of the Operational Research Society, 51(7), 843-854.
- Mar-Molinero, C., & Serrano-Cinca, C. (2001). Bank failure: a multidimensional scaling approach. The European Journal of Finance, 7(2), 165-183.
- Norman M and Stocker B (1991). Data Envelopment Analysis: The Assessment of
Performance. John Wiley and Sons: Chichester, UK.
- Pastor, J. T., Ruiz, J. L., & Sirvent, I. (2002). A statistical test for nested radial DEA models.
Operations Research, 50(4), 728-735.
- Raveh, A. (2000). The Greek banking system: reanalysis of performance. European Journal of Operational Research, 120(3), 525-534.
- Sinuany-Stern, Z., & Friedman, L. (1998). DEA and the discriminant analysis of ratios for ranking units. European Journal of Operational Research, 111(3), 470-478.
- Vargas, S., & Bricker, D. (2000). Combining DEA and factor analysis to improve evaluation of academic departments given uncertainty about the output constructs. Research paper Department of Engineering, University of Iowa, Iowa City, USA.
- Zhu, J. (1998). Data envelopment analysis vs. principal component analysis: An illustrative study of economic performance of Chinese cities. European Journal of Operational Research, 111(1), 50-61.
TEMEL BİLEŞENLER ANALİZİ İLE VZA MODELLERİNİN SEÇİLMESİ VE BİRİMLERİN SIRALANMASI: ŞEHİRLERİN EKONOMİK PERFORMANSI ÜZERİNE BİR UYGULAMA
Year 2016,
ICEBSS Special Issue, 125 - 135, 06.11.2016
Hasan Bal
,
Volkan Soner Özsoy
Abstract
Veri Zarflama Analizi, karar verme birimlerinin göreli etkinliklerinin
ölçen doğrusal programlamaya dayalı bir parametrik olmayan yöntemdir. Bu yöntem
çeşitli girdilerle bazı çıktıları üreten üniversiteler, hastaneler ve bankalar
gibi homojen karar verme birimlerinin etkinliklerinin değerlendirilmesi
sıklıkla kullanılmaktadır. Etkinlik skorlarının hesaplanmasında seçilen girdi
ve çıktıların oldukça büyük öneme sahiptir. Bu yüzden doğru girdi ve çıktıları
seçmek için literatürde veri zarflama analizinin çok farklı modelleri
bulunmaktadır. Bu çalışmada 28 şehre ait veriler kullanılarak ekonomik
performanslar hesaplanmıştır. Olası bütün veri zarflama analizi modelleri
etkinlik skorları hesaplanarak sonuçlar Temel Bileşen Analizi kullanılarak
analiz edilmiştir.
References
- Adler N and Golany B (2001). Evaluation of deregulated airline networks using data envelopment analysis combined with principal components analysis with an application to Western Europe. Eur J Opl Res 132: 260–273.
- Bal, H., Örkcü, H.H., “Temel Bileşenler ile Veri Zarflama Analizinin Karar Verme Birimlerinin Sıralanmasında kullanılması”, TUIK 15. İstatistik Araştırma Sempozyumu, Türkiye İstatistik Kurumu, Ankara, 2006.
- Charnes, A., Cooper, W. W., & Li, S. (1989). Using data envelopment analysis to evaluate efficiency in the economic performance of Chinese cities. Socio-Economic Planning Sciences, 23(6), 325-344.
- Cinca, C. S., & Molinero, C. M. (2004). Selecting DEA specifications and ranking units via PCA.Journal of the Operational Research Society, 55(5), 521-528.
- Cinca, C. S., Callén, Y. F., & Molinero, C. M. (2003). An approach to the measurement of intangible assets in dot com. The International Journal of Digital Accounting Research, 3(5), 1-32.
- Doyle, J., & Green, R. (1994). Efficiency and cross-efficiency in DEA: Derivations, meanings and uses. Journal of the operational research society, 45(5), 567-578.
- Lovell, C. K., & Pastor, J. T. (1997). Target setting: An application to a bank branch network.
European Journal of Operational Research, 98(2), 290-299.
- Mancebon, M. J., & Molinero, C. M. (2000). Performance in primary schools. Journal of the Operational Research Society, 51(7), 843-854.
- Mar-Molinero, C., & Serrano-Cinca, C. (2001). Bank failure: a multidimensional scaling approach. The European Journal of Finance, 7(2), 165-183.
- Norman M and Stocker B (1991). Data Envelopment Analysis: The Assessment of
Performance. John Wiley and Sons: Chichester, UK.
- Pastor, J. T., Ruiz, J. L., & Sirvent, I. (2002). A statistical test for nested radial DEA models.
Operations Research, 50(4), 728-735.
- Raveh, A. (2000). The Greek banking system: reanalysis of performance. European Journal of Operational Research, 120(3), 525-534.
- Sinuany-Stern, Z., & Friedman, L. (1998). DEA and the discriminant analysis of ratios for ranking units. European Journal of Operational Research, 111(3), 470-478.
- Vargas, S., & Bricker, D. (2000). Combining DEA and factor analysis to improve evaluation of academic departments given uncertainty about the output constructs. Research paper Department of Engineering, University of Iowa, Iowa City, USA.
- Zhu, J. (1998). Data envelopment analysis vs. principal component analysis: An illustrative study of economic performance of Chinese cities. European Journal of Operational Research, 111(1), 50-61.