Research Article
BibTex RIS Cite

Factors Affectıng the Housing Demand: A Comparison of Logıstics Regression and Support Vector Machines

Year 2019, Issue: 62, 184 - 199, 17.10.2019

Abstract

The main purpose of this study
is; to compare two different econometric methodologies within the framework of
the factors affecting households' decision to become a homeowner. The data set
used in the study obtained from the “Household Budget Survey” which is created
by TurkStat and has an observation value of about ten thousand. Using this data
set, the study primarily investigates the importance of the factors that are
likely to affect the decision to host. Additionally, with the traditional
Logistic Regression, Support Vector Machines (SVM) algorithm is compared in
terms of the accuracy of classification. Accordingly, it is seen that SVM is
better predicting the possibility of ownership and non-ownership decisions.

References

  • Aldrich, J. H., Nelson, F. D., & Adler, E. S. (1984). Linear probability, logit, and probit models (No. 45). Sage.
  • Aydın, Ü., & Ağan, B. (2016). Rasyonel olmayan kararların finansal yatırım tercihleri üzerindeki etkisi: Davranışsal finans çerçevesinde bir uygulama. Ekonomik ve Sosyal Araştırmalar Dergisi, 12(2), 95-112.
  • Aydın, S. (2003). Türkiye’de konut sorununun ekonomik boyutları. Yayınlanmamış doktora tezi, Ankara Üniversitesi Sosyal Bilimler Enstitüsü, Ankara.
  • Ayhan, S., & Erdoğmuş, Ş. (2014). Destek vektör makineleriyle sınıflandırma problemlerinin çözümü için çekirdek fonksiyonu seçimi. Eskişehir Osmangazi Üniversitesi İktisadi ve İdari Bilimler Dergisi, 9(1), 175-201
  • Bon, R. (1992). The future of ınternational construction: Secular patterns of growth and decline. Habitat International, 16(3), 119-128.
  • Carliner, G. (1973). Income elasticity of housing demand. The Review of Economics and Statistics, 55(4), 528-532.
  • Clark, W. A. V., Deurloo, M. C., & Dieleman, F. M. (2003). Housing careers in the United States, 1968-93: Modelling the sequencing of housing states. Urban Studies, 40(1), 143–160.
  • Ermisch, J. F., Findlay, J., & Gibb, K. (1996). The price elasticity of housing demand in Britain: Issues of sample selection. Journal of Housing Economics, 5(1), 64–86.
  • Fair, R. C., & Jaffee, D. M. (1972). The implications of the proposals of the Hunt Commission for the mortgage and housing markets: An empirical study. In Conference Series (No. 8).
  • Foody, G. M., & Mathur, A. (2004). A relative evaluation of multiclass image classification by support vector machines. IEEE Transactions on geoscience and remote sensing, 42(6), 1335-1343.
  • Giang, D. T. H., & Sui Pheng, L. (2011). Role of construction in economic development: Review of key concepts in the past 40 years. Habitat International, 35(2), 118-125.
  • Goodchild, B. (2001). Applying theories of social communication to housing law: Towards a workable framework. Housing Studies, 16(1), 75-95.
  • Green, R. K., & Hendershott, P. H. (2001). Home-ownership and unemployment in the U.S. Urban Studies, 38(9), 75-98.
  • Gunn, S. R. (1998). Support vector machines for classification and regression. ISIS technical report, 14(1), 5-16.
  • Gül, Z. B., & Çakaloğlu, M. (2017). İnşaat sektörünün dinamikleri: Türkiye için 2000-2014 girdi-çıktı analizi. Akdeniz Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 17(36), 130-155.
  • Güriş, S., Çağlayan, E., & Ün, T. (2011). Estimating of probability of homeownership in rural and urban areas: Logit, probit and gompit model. European Journal of Social Sciences, 21(3), 405-411.
  • GYODER Gösterge, Türkiye Gayrimenkul Sektörü 2018 1. Çeyrek Raporu, Sayı 12, 21 Mayıs 2018 http://www.gyoder.org.tr/yayinlar/gyoder-gosterge , Erişim Tarihi: 27.06.2018.
  • GYODER Gösterge, Türkiye Gayrimenkul Sektörü 4. Çeyrek 2016 Raporu, Sayı 7, 20 Şubat 2017, http://www.gyoder.org.tr/yayinlar/ceyrek-donemle, Erişim Tarihi: 16.08.2017
  • Halicioglu, F. (2007). The demand for new housing in Turkey: An application of ARDL model. Global Business and Economics Review, 9(1), 62-74.
  • Hosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic regression (Vol. 398). John Wiley & Sons.
  • Jin, Y., & Zeng, Z. (2007). Real estate and optimal public policy in a credit-constrained economy. Journal of Housing Economics, 16(2), 143-166.
  • Kendig, H. L. (1984). Housing careers, life cycle and residential mobility: Implications for the housing market. Urban Studies, 21(3), 271-283.
  • Lebe, F., & Akbaş, Y. E. (2014). Türkiye’nin konut talebinin analizi: 1970-2011. Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 28(1),57-83.
  • Lebe, F., & Yiğit, B. (2009). Analysis of the short and long run housing demand in Turkey. In The 7th International Symposium of The Romanian Regional Science Association (pp. 12-13).
  • Lewis, T. M. (2008). Quantifying the GDP–construction relationship. In Economics for the modern built environment (pp. 54-79). Routledge.
  • Liao, T. F. (1994). Interpreting probability models: Logit, probit, and other generalized linear models (No. 101). Sage.
  • Mayer, C. J., & Somerville, C. T. (2000). Residential construction: Using the urban growth model to estimate housing supply. Journal of Urban Economics, 48(1), 85-109.
  • McDonald, J. F. (1979). An empirical test of a theory of the urban housing market. Urban Studies, 16(3), 291-297.
  • Melvin, J. (2005). Value: Culture and commerce. The Architectural Review, 218(1302), 87-94.
  • Miron, J. R. (1995). Private rental housing: The Canadian experience. Urban Studies, 32(3), 579-604.
  • Nitze, I., Schulthess, U., & Asche, H. (2012). Comparison of machine learning algorithms random forest, artificial neural network and support vector machine to maximum likelihood for supervised crop type classification. Proceedings of the 4th GEOBIA, Rio de Janeiro, Brazil, 79, 3540.
  • Özdemir, A. K., Tolun, S. & Demirci, E. (2011). Endeks getirisi yönünün ikili sınıflandırma yöntemiyle tahmin edilmesi: IMKB-100 endeksi örneği. Niğde Üniversitesi İİBF Dergisi, 4(2), 45-59.
  • Öztürk, N., & Fitöz, E. (2012). Türkiye’de konut piyasasının belirleyicileri: Ampirik bir uygulama. Uluslararası Yönetim İktisat ve İşletme Dergisi, 5(10), 21-46.
  • Painter, G., & Redfearn, C. L. (2002). The role of interest rates in influencing long-run homeownership rates. The Journal of Real Estate Finance and Economics, 25(2-3), 243-267.
  • Pampel, F. C. (2000). Logistic regression: A primer. Sage.
  • Rapoport, A. (2000). Theory, culture and housing. Housing, Theory and Society, 17(4), 145-165.
  • Rosen, H. S. (1979). Housing decisions and the US income tax: An econometric analysis. Journal of Public Economics, 11(1), 1-23.
  • Settles, B. H. (2001). Being at home in a global society: A model for families' mobility and immigration decisions. Journal of Comparative Family Studies, 627-645.
  • Strassmann, W. P. (1970). The construction sector in economic development. Scottish Journal of Political Economy, 17(3), 391-409.
  • Tan, W. (2002). Construction and economic development in selected LDCs: Past, present and future. Construction Management & Economics, 20(7), 593-599.
  • TÜİK, Hanehalkı Tüketim Harcaması 2016, Sayı: 24576, 28 Temmuz 2017, http://www.tuik.gov.tr/PreHaberBultenleri.do?id=24576, Erişim Tarihi: 16.08.2017.
  • Uysal, D., & Yiğit, M. (2016). Türkiye’de konut talebinin belirleyicileri (1970-2015): Ampirik bir çalışma. Selçuk Üniversitesi Sosyal Bilimler Meslek Yüksek Okulu Dergisi, 19(1), 185-209.
  • Ustuner, M., Sanli, F. B., & Dixon, B. (2015). Application of support vector machines for landuse classification using high-resolution RapidEye images: A sensitivity analysis. European Journal of Remote Sensing, 48(1), 403-422.
  • Verplancke, T., Van Looy, S., Benoit, D., Vansteelandt, S., Depuydt, P., De Turck, F., & Decruyenaere, J. (2008). Support vector machine versus logistic regression modeling for prediction of hospital mortality in critically ill patients with haematological malignancies. BMC Medical Informatics and Decision Making, 8(1), 56.
  • Westreich, D., Lessler, J., & Funk, M. J. (2010). Propensity score estimation: Neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression. Journal of Clinical Epidemiology, 63(8), 826-833.

Konut Sahibi Olma Kararlarını Etkileyen Faktörler: Lojistik Regresyon Ve Destek Vektör Makinelerinin Karşılaştırılması

Year 2019, Issue: 62, 184 - 199, 17.10.2019

Abstract

Bu çalışmanın temel
amacı; hane halkının konut sahibi olma kararlarını etkileyen faktörler
çerçevesinde, iki farklı ekonometrik metodolojiyi karşılaştırmaktır. Çalışmada
kullanılan veri seti, TÜİK tarafından oluşturulan ve yaklaşık 10 bin gözlem
değerine sahip “Hane Halkı Bütçe Anketi”nden elde edilmiştir. Ele alınan veri
seti çerçevesinde çalışmada ilk olarak hane halkının ev sahibi olma kararını
etkileyen faktörlerin etkileme gücü ve yönü belirlenmektedir. Bununla birlikte,
geleneksel lojistik regresyon yaklaşımı ile makine öğrenmesi temelli Destek
Vektör Makineleri (DVM) yöntemi tahmin gücü açısından karşılaştırılmaktadır.
Buna göre, DVM’nin konut sahibi olma ve olmama yönünde ihtimaliyetleri daha iyi
tahmin ettği görülmektedir.

References

  • Aldrich, J. H., Nelson, F. D., & Adler, E. S. (1984). Linear probability, logit, and probit models (No. 45). Sage.
  • Aydın, Ü., & Ağan, B. (2016). Rasyonel olmayan kararların finansal yatırım tercihleri üzerindeki etkisi: Davranışsal finans çerçevesinde bir uygulama. Ekonomik ve Sosyal Araştırmalar Dergisi, 12(2), 95-112.
  • Aydın, S. (2003). Türkiye’de konut sorununun ekonomik boyutları. Yayınlanmamış doktora tezi, Ankara Üniversitesi Sosyal Bilimler Enstitüsü, Ankara.
  • Ayhan, S., & Erdoğmuş, Ş. (2014). Destek vektör makineleriyle sınıflandırma problemlerinin çözümü için çekirdek fonksiyonu seçimi. Eskişehir Osmangazi Üniversitesi İktisadi ve İdari Bilimler Dergisi, 9(1), 175-201
  • Bon, R. (1992). The future of ınternational construction: Secular patterns of growth and decline. Habitat International, 16(3), 119-128.
  • Carliner, G. (1973). Income elasticity of housing demand. The Review of Economics and Statistics, 55(4), 528-532.
  • Clark, W. A. V., Deurloo, M. C., & Dieleman, F. M. (2003). Housing careers in the United States, 1968-93: Modelling the sequencing of housing states. Urban Studies, 40(1), 143–160.
  • Ermisch, J. F., Findlay, J., & Gibb, K. (1996). The price elasticity of housing demand in Britain: Issues of sample selection. Journal of Housing Economics, 5(1), 64–86.
  • Fair, R. C., & Jaffee, D. M. (1972). The implications of the proposals of the Hunt Commission for the mortgage and housing markets: An empirical study. In Conference Series (No. 8).
  • Foody, G. M., & Mathur, A. (2004). A relative evaluation of multiclass image classification by support vector machines. IEEE Transactions on geoscience and remote sensing, 42(6), 1335-1343.
  • Giang, D. T. H., & Sui Pheng, L. (2011). Role of construction in economic development: Review of key concepts in the past 40 years. Habitat International, 35(2), 118-125.
  • Goodchild, B. (2001). Applying theories of social communication to housing law: Towards a workable framework. Housing Studies, 16(1), 75-95.
  • Green, R. K., & Hendershott, P. H. (2001). Home-ownership and unemployment in the U.S. Urban Studies, 38(9), 75-98.
  • Gunn, S. R. (1998). Support vector machines for classification and regression. ISIS technical report, 14(1), 5-16.
  • Gül, Z. B., & Çakaloğlu, M. (2017). İnşaat sektörünün dinamikleri: Türkiye için 2000-2014 girdi-çıktı analizi. Akdeniz Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 17(36), 130-155.
  • Güriş, S., Çağlayan, E., & Ün, T. (2011). Estimating of probability of homeownership in rural and urban areas: Logit, probit and gompit model. European Journal of Social Sciences, 21(3), 405-411.
  • GYODER Gösterge, Türkiye Gayrimenkul Sektörü 2018 1. Çeyrek Raporu, Sayı 12, 21 Mayıs 2018 http://www.gyoder.org.tr/yayinlar/gyoder-gosterge , Erişim Tarihi: 27.06.2018.
  • GYODER Gösterge, Türkiye Gayrimenkul Sektörü 4. Çeyrek 2016 Raporu, Sayı 7, 20 Şubat 2017, http://www.gyoder.org.tr/yayinlar/ceyrek-donemle, Erişim Tarihi: 16.08.2017
  • Halicioglu, F. (2007). The demand for new housing in Turkey: An application of ARDL model. Global Business and Economics Review, 9(1), 62-74.
  • Hosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic regression (Vol. 398). John Wiley & Sons.
  • Jin, Y., & Zeng, Z. (2007). Real estate and optimal public policy in a credit-constrained economy. Journal of Housing Economics, 16(2), 143-166.
  • Kendig, H. L. (1984). Housing careers, life cycle and residential mobility: Implications for the housing market. Urban Studies, 21(3), 271-283.
  • Lebe, F., & Akbaş, Y. E. (2014). Türkiye’nin konut talebinin analizi: 1970-2011. Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 28(1),57-83.
  • Lebe, F., & Yiğit, B. (2009). Analysis of the short and long run housing demand in Turkey. In The 7th International Symposium of The Romanian Regional Science Association (pp. 12-13).
  • Lewis, T. M. (2008). Quantifying the GDP–construction relationship. In Economics for the modern built environment (pp. 54-79). Routledge.
  • Liao, T. F. (1994). Interpreting probability models: Logit, probit, and other generalized linear models (No. 101). Sage.
  • Mayer, C. J., & Somerville, C. T. (2000). Residential construction: Using the urban growth model to estimate housing supply. Journal of Urban Economics, 48(1), 85-109.
  • McDonald, J. F. (1979). An empirical test of a theory of the urban housing market. Urban Studies, 16(3), 291-297.
  • Melvin, J. (2005). Value: Culture and commerce. The Architectural Review, 218(1302), 87-94.
  • Miron, J. R. (1995). Private rental housing: The Canadian experience. Urban Studies, 32(3), 579-604.
  • Nitze, I., Schulthess, U., & Asche, H. (2012). Comparison of machine learning algorithms random forest, artificial neural network and support vector machine to maximum likelihood for supervised crop type classification. Proceedings of the 4th GEOBIA, Rio de Janeiro, Brazil, 79, 3540.
  • Özdemir, A. K., Tolun, S. & Demirci, E. (2011). Endeks getirisi yönünün ikili sınıflandırma yöntemiyle tahmin edilmesi: IMKB-100 endeksi örneği. Niğde Üniversitesi İİBF Dergisi, 4(2), 45-59.
  • Öztürk, N., & Fitöz, E. (2012). Türkiye’de konut piyasasının belirleyicileri: Ampirik bir uygulama. Uluslararası Yönetim İktisat ve İşletme Dergisi, 5(10), 21-46.
  • Painter, G., & Redfearn, C. L. (2002). The role of interest rates in influencing long-run homeownership rates. The Journal of Real Estate Finance and Economics, 25(2-3), 243-267.
  • Pampel, F. C. (2000). Logistic regression: A primer. Sage.
  • Rapoport, A. (2000). Theory, culture and housing. Housing, Theory and Society, 17(4), 145-165.
  • Rosen, H. S. (1979). Housing decisions and the US income tax: An econometric analysis. Journal of Public Economics, 11(1), 1-23.
  • Settles, B. H. (2001). Being at home in a global society: A model for families' mobility and immigration decisions. Journal of Comparative Family Studies, 627-645.
  • Strassmann, W. P. (1970). The construction sector in economic development. Scottish Journal of Political Economy, 17(3), 391-409.
  • Tan, W. (2002). Construction and economic development in selected LDCs: Past, present and future. Construction Management & Economics, 20(7), 593-599.
  • TÜİK, Hanehalkı Tüketim Harcaması 2016, Sayı: 24576, 28 Temmuz 2017, http://www.tuik.gov.tr/PreHaberBultenleri.do?id=24576, Erişim Tarihi: 16.08.2017.
  • Uysal, D., & Yiğit, M. (2016). Türkiye’de konut talebinin belirleyicileri (1970-2015): Ampirik bir çalışma. Selçuk Üniversitesi Sosyal Bilimler Meslek Yüksek Okulu Dergisi, 19(1), 185-209.
  • Ustuner, M., Sanli, F. B., & Dixon, B. (2015). Application of support vector machines for landuse classification using high-resolution RapidEye images: A sensitivity analysis. European Journal of Remote Sensing, 48(1), 403-422.
  • Verplancke, T., Van Looy, S., Benoit, D., Vansteelandt, S., Depuydt, P., De Turck, F., & Decruyenaere, J. (2008). Support vector machine versus logistic regression modeling for prediction of hospital mortality in critically ill patients with haematological malignancies. BMC Medical Informatics and Decision Making, 8(1), 56.
  • Westreich, D., Lessler, J., & Funk, M. J. (2010). Propensity score estimation: Neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression. Journal of Clinical Epidemiology, 63(8), 826-833.
There are 45 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Mustafa Bilik 0000-0003-4425-9316

Üzeyir Aydın 0000-0003-2777-6450

Publication Date October 17, 2019
Published in Issue Year 2019 Issue: 62

Cite

APA Bilik, M., & Aydın, Ü. (2019). Konut Sahibi Olma Kararlarını Etkileyen Faktörler: Lojistik Regresyon Ve Destek Vektör Makinelerinin Karşılaştırılması. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi(62), 184-199.
AMA Bilik M, Aydın Ü. Konut Sahibi Olma Kararlarını Etkileyen Faktörler: Lojistik Regresyon Ve Destek Vektör Makinelerinin Karşılaştırılması. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi. October 2019;(62):184-199.
Chicago Bilik, Mustafa, and Üzeyir Aydın. “Konut Sahibi Olma Kararlarını Etkileyen Faktörler: Lojistik Regresyon Ve Destek Vektör Makinelerinin Karşılaştırılması”. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, no. 62 (October 2019): 184-99.
EndNote Bilik M, Aydın Ü (October 1, 2019) Konut Sahibi Olma Kararlarını Etkileyen Faktörler: Lojistik Regresyon Ve Destek Vektör Makinelerinin Karşılaştırılması. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi 62 184–199.
IEEE M. Bilik and Ü. Aydın, “Konut Sahibi Olma Kararlarını Etkileyen Faktörler: Lojistik Regresyon Ve Destek Vektör Makinelerinin Karşılaştırılması”, Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, no. 62, pp. 184–199, October 2019.
ISNAD Bilik, Mustafa - Aydın, Üzeyir. “Konut Sahibi Olma Kararlarını Etkileyen Faktörler: Lojistik Regresyon Ve Destek Vektör Makinelerinin Karşılaştırılması”. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi 62 (October 2019), 184-199.
JAMA Bilik M, Aydın Ü. Konut Sahibi Olma Kararlarını Etkileyen Faktörler: Lojistik Regresyon Ve Destek Vektör Makinelerinin Karşılaştırılması. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi. 2019;:184–199.
MLA Bilik, Mustafa and Üzeyir Aydın. “Konut Sahibi Olma Kararlarını Etkileyen Faktörler: Lojistik Regresyon Ve Destek Vektör Makinelerinin Karşılaştırılması”. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, no. 62, 2019, pp. 184-99.
Vancouver Bilik M, Aydın Ü. Konut Sahibi Olma Kararlarını Etkileyen Faktörler: Lojistik Regresyon Ve Destek Vektör Makinelerinin Karşılaştırılması. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi. 2019(62):184-99.

Dergimiz EBSCOhost, ULAKBİM/Sosyal Bilimler Veri Tabanında, SOBİAD ve Türk Eğitim İndeksi'nde yer alan uluslararası hakemli bir dergidir.