Salp Swarm Algorithm (SSA) is one of the latest swarm intelligence algorithms, it has a simple structure, and its usage rate is increasing. The most important reason for the increase in the usage rate is the success of this algorithm in solving problems. However, the performance of the SSA algorithm may deteriorate as the problem types change. This study addresses this situation and proposes an enhanced variant called Cauchy Salp Swarm Algorithm (caSSA) for global optimization problem types. The proposed algorithm replaces the position update equation used by the original Salp Swarm Algorithm with a new equation based on the Cauchy distribution. With this change, it is aimed to increase the search capabilities of the algorithm. The performance of the caSSA algorithm has been tested with the benchmark set of the Soft Computing journal special issue. This benchmark set, which includes 19 difficult test functions, has been solved for 50, 100, and 200 dimensions. In addition, the results of caSSA were compared with three enhanced Salp Swarm algorithm variants in the literature. In the experiments, the algorithms were run 25 times for each test function. Algorithms were compared according to the median error values obtained as a result of the runs. The results of the proposed Cauchy distribution based
Salp Swarm algorithm were found to be better than the three algorithms.
Salp Sürü Algoritması (SSA) son dönem sürü zekâsı algoritmalarından olup, basit yapılıdır ve kullanımı oranı artan bir algoritmadır. Kullanım oranındaki artışın en önemli sebebi, bu algoritmanın problem çözmede gösterdiği başarıdır. Buna karşın, SSA algoritmasının performansı problem türleri değiştikçe kötüleşebilmektedir. Bu çalışma, bu durumu ele almakta olup global optimizasyon problem türleri için Cauchy Salp Sürü Algoritması (caSSA) adında gelişmiş bir varyant önermektedir. Önerilen algoritma, Orijinal Salp Sürü Algoritmasının kullandığı pozisyon güncelleme denklemini Cauchy dağılım temelli yeni bir denklemi ile değiştirmektedir. Bu değişim ile algoritmanın arama yeteneklerinin artırılması amaçlanmıştır. caSSA algoritmasının performansı, Soft Computing dergisi özel sayısına ait ölçüt seti ile test edilmiştir. 19 adet birbirinden zor test fonksiyonu içeren bu ölçüt seti 50, 100 ve 200 boyut için çözülmüştür. Ayrıca, caSSA’nın sonuçları literatürde yer alan üç tane gelişmiş Salp Sürü algoritması varyantı ile karşılaştırılmıştır. Deneylerde algoritmalar her test fonksiyonu için 25 defa çalıştırılmıştır. Algoritmalar, çalıştırmalar sonucunda elde ettikleri ortanca hata değerlerine göre kıyaslanmıştır. Önerilen Cauchy dağılım temelli Salp Sürü algoritmasının sonuçları üç algoritmadan daha iyi olduğu görülmüştür.
Primary Language | Turkish |
---|---|
Subjects | Engineering |
Journal Section | Articles |
Authors | |
Publication Date | April 30, 2023 |
Published in Issue | Year 2023 |