Research Article
BibTex RIS Cite

Yüksek Dayanımlı Betonların Yarmada Çekme Dayanımlarının TYM Tabanlı Tahmini

Year 2023, , 1136 - 1150, 31.07.2023
https://doi.org/10.29130/dubited.1052806

Abstract

Bu çalışmada yüksek dayanımlı betonların erken yaş yarmada çekme dayanım sonuçlarının kapsamlı değerlendirilmesi sunulmaktadır. Bunun için çimento ile hacimce %5, %10 ve 15 oranlarında silis dumanı ve ince agrega ile hacimce %8, %10 ve %12 oranlarında mermer tozu yer değiştirilerek 72 seri beton karışımı hazırlanmıştır. Hazırlanan bu karışımlarda Su/Çimento (S/C) oranları 0.20-0.25-0.30 ve çimento dozajı ise 400-450-500 kg/m3 olarak seçilmiştir. Elde edilen numunelere 3. ve 7. günlerde yarmada çekme dayanımı testi uygulanmıştır. Bu testler sonucunda alınan veriler tepki yüzeyi metodu (TYM) kullanılarak analiz edilmiştir. Analiz sonucunda yarmada çekme dayanımını tahmin eden matematiksel modeller geliştirilmiştir. Geliştirilen matematiksel modellerin doğruluğunun tespiti için 9 adet kontrol serisi hazırlanmış ve modelin tahmin sonuçları ile karşılaştırılmıştır. Bunun sonucunda bağıl hata oranları (BHO) hesaplanarak geliştirilen matematiksel model doğrulanmıştır.

References

  • [1] H. T. N. Le, L. H. Poh, S. Wang, and M.-H. Zhang, “Critical parameters for the compressive strength of high-strength concrete,” Cem. Concr. Compos., vol. 82, pp. 202–216, 2017.
  • [2] A. C. I. C. 363, Report on High-Strength Concrete (ACI 363R-10). ACI, 2010.
  • [3] S. Ahmad, I. Hakeem, and M. Maslehuddin, “Development of an optimum mixture of ultra-high performance concrete,” Eur. J. Environ. Civ. Eng., vol. 20, no. 9, 2016.
  • [4] T. Erdogan, Beton. Ankara: METU Press, 2003.
  • [5] Y. Zhong, Y. Sun, K. H. Tan, and O. Zhao, “Testing, modelling and design of high strength concrete-filled high strength steel tube (HCFHST) stub columns under combined compression and bending,” Eng. Struct., vol. 241, p. 112334, 2021.
  • [6] S. Chithra, S. R. R. Senthil Kumar, and K. Chinnaraju, “The effect of Colloidal Nano-silica on workability, mechanical and durability properties of High Performance Concrete with Copper slag as partial fine aggregate,” Constr. Build. Mater., vol. 113, 2016.
  • [7] A. Khaloo, M. H. Mobini, and P. Hosseini, “Influence of different types of nano-SiO2 particles on properties of high-performance concrete,” Constr. Build. Mater., 2016.
  • [8] S. Y. Çetin and İ. Ragıp, “Küp numunelerin yarmada-çekme dayanımında agrega granülometrisinin boyut değişimi üzerine etkisi,” Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Derg., vol. 8, no. 3, pp. 443–451, 2016.
  • [9] S. Ray, M. Haque, M. M. Rahman, M. N. Sakib, and K. Al Rakib, “Experimental investigation and SVM-based prediction of compressive and splitting tensile strength of ceramic waste aggregate concrete,” J. King Saud Univ. Sci., 2021.
  • [10] R. Siddique, M. Singh, S. Mehta, and R. Belarbi, “Utilization of treated saw dust in concrete as partial replacement of natural sand,” J. Clean. Prod., vol. 261, p. 121226, 2020.
  • [11] H. Constantinescu, O. Gherman, C. Negrutiu, and S. P. Ioan, “Mechanical properties of hardened high strength concrete,” Procedia Technol., vol. 22, pp. 219–226, 2016.
  • [12] X. Zhou et al., “DEM analysis of the effect of interface transition zone on dynamic splitting tensile behavior of high-strength concrete based on multi-phase model,” Cem. Concr. Res., vol. 149, p. 106577, 2021.
  • [13] H. Taghaddos, F. Mahmoudzadeh, A. Pourmoghaddam, and M. Shekarchizadeh, “Prediction of compressive strength behaviour in RPC with applying an adaptive network-based fuzzy interface system,” in Proceedings of the International Symposium on Ultra High Performance Concrete, Kassel, Germany, 2004, pp. 273–284.
  • [14] A. M. Neville, Properties of concrete, vol. 4. Longman London, 1995.
  • [15] V. Kadleček and S. Modrý, “Size effect of test specimens on tensile splitting strength of concrete: general relation,” Mater. Struct., vol. 35, no. 1, pp. 28–34, 2002.
  • [16] D. J. Hannant, K. J. Buckley, and J. Croft, “The effect of aggregate size on the use of the cylinder splitting test as a measure of tensile strength,” Matériaux Constr., vol. 6, no. 1, pp. 15–21, 1973.
  • [17] F. Bin Ahmed, K. A. Ahsan, T. Shariff, and S. R. Meem, “Formulation of polynomial equation predicting the splitting tensile strength of concrete,” Mater. Today Proc., vol. 38, pp. 3269–3278, 2021.
  • [18] P. and C. C. Cement - Part 1: General Cements, Composition, “TS EN 197-1,” Turkey, 2012.
  • [19] O. Soykan, Ö. Cengiz, and Ö. Cenk, “Investigation of the Usability of Slate and Andesite as Concrete Aggregate,” J. Suleyman Demirel Univ. Grad. Sch. Nat. Appl. Sci., vol. 19, no. 1, 2015.
  • [20] T. S. EN, “12390-6 (2010),” Test. hardened Concr. tensile strength test specimens. Turkish Stand. Institute, TSE, Ankara, Turkey.
  • [21] R. H. Myers, D. C. Montgomery, and C. M. Anderson-Cook, Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons, 2016.
  • [22] K. E. Alyamac, E. Ghafari, and R. Ince, “Development of eco-efficient self-compacting concrete with waste marble powder using the response surface method,” J. Clean. Prod., vol. 144, pp. 192–202, 2017.
  • [23] “Design-expert software.” Inc., S.-E, Minneapolis, MN, USA., 2016.
  • [24] S. Pyo and H. K. Kim, “Fresh and hardened properties of ultra-high performance concrete incorporating coal bottom ash and slag powder,” Constr. Build. Mater., vol. 131, 2017.
  • [25] İ. B. Topçu and A. Uğurlu, “TS 500/2000 Standardının Beton Açısından İncelenmesi,” ECAS2002 Uluslararası Yapı ve Deprem Mühendisliği Sempozyumu, vol. 14, pp. 492–499, 2002.
  • [26] K. E. Alyamac and A. B. Aydin, “Concrete properties containing fine aggregate marble powder,” KSCE J. Civ. Eng., vol. 19, no. 7, pp. 2208–2216, 2015.

Estimation of Splitting Tensile Strength of High Strength Concretes by RSM-Based

Year 2023, , 1136 - 1150, 31.07.2023
https://doi.org/10.29130/dubited.1052806

Abstract

In this study, a comprehensive evaluation of the early age splitting tensile strength results of high strength concretes is presented. For this, 72 series concrete mix was prepared by replacing 5%, 10% and 15% silica fume by volume with cement and marble powder at 8%, 10% and 12% volume by volume. In these prepared mixtures, water/cement (W/C) ratios were chosen as 0.20-0.25-0.30 and cement dosage as 400-450-500 kg/m3. Splitting tensile strength test was applied to the samples obtained on the 3rd and 7th days. The data obtained as a result of these tests were analyzed using the response surface method (RSM). As a result of the analysis, mathematical models were developed that predict the splitting tensile strength. In order to determine the accuracy of the developed mathematical models, 9 control series were prepared and compared with the prediction results of the model. As a result, the mathematical model developed by calculating the relative error rates (ARD) was verified.

References

  • [1] H. T. N. Le, L. H. Poh, S. Wang, and M.-H. Zhang, “Critical parameters for the compressive strength of high-strength concrete,” Cem. Concr. Compos., vol. 82, pp. 202–216, 2017.
  • [2] A. C. I. C. 363, Report on High-Strength Concrete (ACI 363R-10). ACI, 2010.
  • [3] S. Ahmad, I. Hakeem, and M. Maslehuddin, “Development of an optimum mixture of ultra-high performance concrete,” Eur. J. Environ. Civ. Eng., vol. 20, no. 9, 2016.
  • [4] T. Erdogan, Beton. Ankara: METU Press, 2003.
  • [5] Y. Zhong, Y. Sun, K. H. Tan, and O. Zhao, “Testing, modelling and design of high strength concrete-filled high strength steel tube (HCFHST) stub columns under combined compression and bending,” Eng. Struct., vol. 241, p. 112334, 2021.
  • [6] S. Chithra, S. R. R. Senthil Kumar, and K. Chinnaraju, “The effect of Colloidal Nano-silica on workability, mechanical and durability properties of High Performance Concrete with Copper slag as partial fine aggregate,” Constr. Build. Mater., vol. 113, 2016.
  • [7] A. Khaloo, M. H. Mobini, and P. Hosseini, “Influence of different types of nano-SiO2 particles on properties of high-performance concrete,” Constr. Build. Mater., 2016.
  • [8] S. Y. Çetin and İ. Ragıp, “Küp numunelerin yarmada-çekme dayanımında agrega granülometrisinin boyut değişimi üzerine etkisi,” Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Derg., vol. 8, no. 3, pp. 443–451, 2016.
  • [9] S. Ray, M. Haque, M. M. Rahman, M. N. Sakib, and K. Al Rakib, “Experimental investigation and SVM-based prediction of compressive and splitting tensile strength of ceramic waste aggregate concrete,” J. King Saud Univ. Sci., 2021.
  • [10] R. Siddique, M. Singh, S. Mehta, and R. Belarbi, “Utilization of treated saw dust in concrete as partial replacement of natural sand,” J. Clean. Prod., vol. 261, p. 121226, 2020.
  • [11] H. Constantinescu, O. Gherman, C. Negrutiu, and S. P. Ioan, “Mechanical properties of hardened high strength concrete,” Procedia Technol., vol. 22, pp. 219–226, 2016.
  • [12] X. Zhou et al., “DEM analysis of the effect of interface transition zone on dynamic splitting tensile behavior of high-strength concrete based on multi-phase model,” Cem. Concr. Res., vol. 149, p. 106577, 2021.
  • [13] H. Taghaddos, F. Mahmoudzadeh, A. Pourmoghaddam, and M. Shekarchizadeh, “Prediction of compressive strength behaviour in RPC with applying an adaptive network-based fuzzy interface system,” in Proceedings of the International Symposium on Ultra High Performance Concrete, Kassel, Germany, 2004, pp. 273–284.
  • [14] A. M. Neville, Properties of concrete, vol. 4. Longman London, 1995.
  • [15] V. Kadleček and S. Modrý, “Size effect of test specimens on tensile splitting strength of concrete: general relation,” Mater. Struct., vol. 35, no. 1, pp. 28–34, 2002.
  • [16] D. J. Hannant, K. J. Buckley, and J. Croft, “The effect of aggregate size on the use of the cylinder splitting test as a measure of tensile strength,” Matériaux Constr., vol. 6, no. 1, pp. 15–21, 1973.
  • [17] F. Bin Ahmed, K. A. Ahsan, T. Shariff, and S. R. Meem, “Formulation of polynomial equation predicting the splitting tensile strength of concrete,” Mater. Today Proc., vol. 38, pp. 3269–3278, 2021.
  • [18] P. and C. C. Cement - Part 1: General Cements, Composition, “TS EN 197-1,” Turkey, 2012.
  • [19] O. Soykan, Ö. Cengiz, and Ö. Cenk, “Investigation of the Usability of Slate and Andesite as Concrete Aggregate,” J. Suleyman Demirel Univ. Grad. Sch. Nat. Appl. Sci., vol. 19, no. 1, 2015.
  • [20] T. S. EN, “12390-6 (2010),” Test. hardened Concr. tensile strength test specimens. Turkish Stand. Institute, TSE, Ankara, Turkey.
  • [21] R. H. Myers, D. C. Montgomery, and C. M. Anderson-Cook, Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons, 2016.
  • [22] K. E. Alyamac, E. Ghafari, and R. Ince, “Development of eco-efficient self-compacting concrete with waste marble powder using the response surface method,” J. Clean. Prod., vol. 144, pp. 192–202, 2017.
  • [23] “Design-expert software.” Inc., S.-E, Minneapolis, MN, USA., 2016.
  • [24] S. Pyo and H. K. Kim, “Fresh and hardened properties of ultra-high performance concrete incorporating coal bottom ash and slag powder,” Constr. Build. Mater., vol. 131, 2017.
  • [25] İ. B. Topçu and A. Uğurlu, “TS 500/2000 Standardının Beton Açısından İncelenmesi,” ECAS2002 Uluslararası Yapı ve Deprem Mühendisliği Sempozyumu, vol. 14, pp. 492–499, 2002.
  • [26] K. E. Alyamac and A. B. Aydin, “Concrete properties containing fine aggregate marble powder,” KSCE J. Civ. Eng., vol. 19, no. 7, pp. 2208–2216, 2015.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Tuba Demir 0000-0003-2092-1029

Muhammed Ulucan 0000-0001-7629-6846

Kürşat Esat Alyamaç 0000-0002-3226-4073

Publication Date July 31, 2023
Published in Issue Year 2023

Cite

APA Demir, T., Ulucan, M., & Alyamaç, K. E. (2023). Yüksek Dayanımlı Betonların Yarmada Çekme Dayanımlarının TYM Tabanlı Tahmini. Duzce University Journal of Science and Technology, 11(3), 1136-1150. https://doi.org/10.29130/dubited.1052806
AMA Demir T, Ulucan M, Alyamaç KE. Yüksek Dayanımlı Betonların Yarmada Çekme Dayanımlarının TYM Tabanlı Tahmini. DÜBİTED. July 2023;11(3):1136-1150. doi:10.29130/dubited.1052806
Chicago Demir, Tuba, Muhammed Ulucan, and Kürşat Esat Alyamaç. “Yüksek Dayanımlı Betonların Yarmada Çekme Dayanımlarının TYM Tabanlı Tahmini”. Duzce University Journal of Science and Technology 11, no. 3 (July 2023): 1136-50. https://doi.org/10.29130/dubited.1052806.
EndNote Demir T, Ulucan M, Alyamaç KE (July 1, 2023) Yüksek Dayanımlı Betonların Yarmada Çekme Dayanımlarının TYM Tabanlı Tahmini. Duzce University Journal of Science and Technology 11 3 1136–1150.
IEEE T. Demir, M. Ulucan, and K. E. Alyamaç, “Yüksek Dayanımlı Betonların Yarmada Çekme Dayanımlarının TYM Tabanlı Tahmini”, DÜBİTED, vol. 11, no. 3, pp. 1136–1150, 2023, doi: 10.29130/dubited.1052806.
ISNAD Demir, Tuba et al. “Yüksek Dayanımlı Betonların Yarmada Çekme Dayanımlarının TYM Tabanlı Tahmini”. Duzce University Journal of Science and Technology 11/3 (July 2023), 1136-1150. https://doi.org/10.29130/dubited.1052806.
JAMA Demir T, Ulucan M, Alyamaç KE. Yüksek Dayanımlı Betonların Yarmada Çekme Dayanımlarının TYM Tabanlı Tahmini. DÜBİTED. 2023;11:1136–1150.
MLA Demir, Tuba et al. “Yüksek Dayanımlı Betonların Yarmada Çekme Dayanımlarının TYM Tabanlı Tahmini”. Duzce University Journal of Science and Technology, vol. 11, no. 3, 2023, pp. 1136-50, doi:10.29130/dubited.1052806.
Vancouver Demir T, Ulucan M, Alyamaç KE. Yüksek Dayanımlı Betonların Yarmada Çekme Dayanımlarının TYM Tabanlı Tahmini. DÜBİTED. 2023;11(3):1136-50.