Review
BibTex RIS Cite

Doku Mühendisliğinde Yeni Tip Grafen Esaslı Kemik İskelesi

Year 2022, , 1890 - 1909, 25.10.2022
https://doi.org/10.29130/dubited.1079780

Abstract

Biyoimplant mühendisliği hasarlı dokuları ve organları onarmak, tamir etmek ya da korumayı amaçlamaktadır. Her yıl çok sayıda insan kaza ya da çeşitli hastalıklardan kaynaklı olan iskelet kusurlarındaki kemikleri onarmak/tamir etmek istemektedir. Bu nedenle üzerinde yeni kemik büyümesinin oluşabileceği iskeleleri oluşturabilmek çok farklı biyomalzeme türleri kullanılmıştır. Hidroksiapatit, apatit wollostonit ve karbon temelli biyomalzemeler bu amaçla kullanılmıştır. Karbon nanomateryal baskılı iskeleler ticari olarak ulaşılabilirlik, mekanik stabilite, biyolojik uyumluluk özelliklerinden dolayı kullanımı oldukça yaygın biyomalzeme grubudur. Karbon esaslı iskeleler osteojenikfarklılaşma, kemik doku yenilenmesi, etkili hücre çoğalması özelliği göstermektedir. Kemik iskeleleri doku mühendisliğinde kemik büyümesi, yenilenmesi, tamiri, kemik dokusu hücrelerinde farklılaşma, adhezyon için temel yapı taşı olarak görülmektedir. Kemik iskeleleri gibi hareket eden çok sayıda karbon nanomateryali mevcuttur. Karbon nanotüpler, grafen ve fulleren kemik iskelesi olarak kullanılabilen karbon esaslı malzemelerin başlıcalarıdır. Grafen ve türevleri dikkat çekici fiziksel, kimyasal ve biyolojik özelliklere sahip 2D karbon esaslı bir malzemedir. Grafen mükemmel elektriksel iletkenliği, biyouyumluluğu, yüzey alanı ve termal özellikleri yüzünden bilim dünyası tarafından ilgi görmektedir. Grafenin tabakaları yüksek mekanik dirence ve yüksek spesifik yüzey alanına sahiptir. Dahası grafenin kök hücre farklılaşmasını ve biyomateryal özelliklerini geliştirdiği literatürde raporlanmıştır. Gerçekleştirilen çalışmada grafenin biyouyumluluk özellikleri, grafenin biyomateryal olarak kullanımına dair son çalışmalar ve karbon temelli maddelerin klinik olarak uygulanabilmesi amacıyla biyogüvenlik tartışmaları incelenmiştir.

References

  • [1]Y. Liu, L. Shi, L. Su, H.C. van der Mei, P.C. Jutte, Y. Ren, H.J. Busscher, “Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control,” Chem. Soc. Rev., vol.48, no.2, pp. 428–446, 2019.
  • [2]G. Kaur, S.K. Mehta, S. Kumar, G. Bhanjana, N. Dilbaghi, “Coencapsulation of hydrophobic and hydrophilic antituberculosis drugs in synergistic Brij 96 microemulsions: a biophysical characterization,” J. Pharm. Sci., vol.104, no.7, pp.2203–2212, 2015.
  • [3]PA. Gunatillake, R. Adhikari, “Biodegradable synthetic polymers for tissue engineering,” Eur Cell Mater, vol. 20, no.5, pp. 1–16, 2003.
  • [4]V. Rosa, B. Della, BN. Cavalcanti, JE. Nör, “Tissue engineering: from research to dental clinics,” Dent Mater, vol. 28, no.4, pp. 341–8, 2012.
  • [5]KB. Armstrong, LG. Bevan, WF. Cole, “Care and repair of advanced composites,” SAE International; 2005.
  • [6]R.Y. Basha, K.Sampath, M. Doble, “Design of biocomposite materials for bone tissue regeneration,” Mater Sci Eng C Mater Biol Appl, vol. 57, pp.452–63, 2015.
  • [7]A. Khademhosseini, R. Langer, “A decade of progress in tissue engineering,” Nat Protocol,vol. 11, no. 10, pp. 1775–81,2016.
  • [8]S. V. Vlierberghe, P. Dubruel, E. Schacht, “ Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review,” Biomacromolecules, vol.12, no. 5, pp.1387–408, 2011.
  • [9]A. H. Pearce, Y. S. Kim, L.D.Gomez, A. G.Mikos, “Tissue engineering scaffolds,” , pp 1317-1334, 2020.
  • [10]N. Krishnamoorthy, YT. Tseng, P. Gajendrarao, P. Sarathchandra, A. McCormack , I. Carubelli, “A novel strategy to enhance secretion of ECM components by stem cells: relevance to tissue engineering,” Tissue Eng, vol. 24, no. 1-2, pp. 145–56, 2017.
  • [11]ME. Gome, MT. Rodrigues, RMA. Domingues, RL. Reis. “Tissue engineering and regenerative medicine: new trends and directions-a year in review,” Tissue Eng Part B Rev vol. 23, no. 3, pp. 211–24, 2017.
  • [12]B. Sitharaman, X. Shi, XF. Walboomers, H. Liao, V. Cuijpers, LJ. Wilson, A. G. Mikos, J.A. Jansen “In vivo biocompatibility of ultra-short single-walled carbon nanotube/ biodegradable polymer nanocomposites for bone tissue engineering,” Bone, vol. 43, no.2, pp. 362–70, 2008.
  • [13]T. Umeyama, H. Imahor, “Photofunctional hybrid nanocarbon materials,” J Phys Chem C, vol. 117, no.7, pp.3195–209, 2012.
  • [14]X. Yu, X. Tang , SV. Gohil, CT. Laurencin, “ Biomaterials for bone regenerative engineering”, Adv Health Mater, vol.4, no.9, pp.1268–85, 2015.
  • [15]S. W. Hong, J. H. Lee, S. H. Kang, E. Y. Hwang, Y. S. Hwang, M. H. Lee, J. C. Park, “Enhanced neural cell adhesion and neurite outgrowth on graphene-based biomimetic substrates,” Biomed Res Int, vol. 212149, no. 16, 2014.
  • [16]C. Lee, X. Wei , JW. Kysar, J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science, vol. 321, no.5887, pp.385–8, 2008.
  • [17]V. Rosa, H. Xie, N. Dubey, TT. Madanagopal, SS. Rajan, JL. Morin, “Graphene oxide-based substrate: physical and surface characterization, cytocompatibility and differentiation potential of dental pulp stem cells,” Dent Mater, vol.32, no.8, pp.1019–1025, 2016.
  • [18]S. Pei, H-M. Cheng, “The reduction of graphene oxide,” Carbon, vol.50, no.9, pp. 3210–3228, 2012.
  • [19]DR. Dreyer, S. Park, CW. Bielawski, RS. Ruoff, “The chemistry of graphene oxide,” Chem Soc Rev, vol. 39, no.1, pp. 228–40, 2010.
  • [20]J. Morin, N. Dubey, F. Decroix, E. Luong-Van, AH. Castro Neto, V. Rosa, “Graphene transfer to 3-dimensional surfaces: a vacuum-assisted dry transfer method,” 2D Mater, vol.4, no.2, pp.025060, 2017.
  • [21]A.K. Geim, K.S. Novoselov, “The rise of graphene", Nat. Mater. vol.6, pp.183–191, 2007.
  • [22]L. Brown, R. Hovden, P. Huang, M. Wojcik, D.A. Muller, J. Park, “Twinning and twisting of tri-and bilayer graphene,” Nano Lett., vol. 12, no.3, pp.1609–1615, 2012.
  • [23]C. Gardin, A. Piattelli, B. Zavan, “ Graphene in regenerative medicine: focus on stem cells and neuronal differentiation,” Trends in biotechnology, vol.34, no.6, pp.435-437, 2016.
  • [24]D.Galpaya, “Synthesis, Charactesization and Application of Graphene Oxide-Polymer Nanocomposites ,” Master of Polymer Engineering ,Queensland University of Technology, 2015.
  • [25]E. R. Susan, “Synthesis of graphene platelets,” Durhan Thesis, Department of Chemistry, Durham University, 2015.
  • [26]S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, S. Iijima, “Rollto- roll production of 30-inch graphene films for transparent electrodes,” Nature Nanotechnology, vol.5, no.8, pp.574–578, 2010.
  • [27]R. O. Brennan, “The Interlayer Binding in Graphite,” The Journal of Chemical Physics, vol. 20, no.1, pp. 40–48, 1952.
  • [28]A.Dimiev, D.V. Kosynkin, L.B. Alemany, P. Chaguine, J.M. Tour, “ Pristine Graphite Oxide,” Journal of the American Chemical Society, vol.134, no.5, pp. 2815–2822, 2012.
  • [29]C. Mattevi, H. Kim, M. Chhowalla, “A review of chemical vapour deposition of graphene on copper,” Journal of Materials Chemistry, vol. 21, no. 10, pp. 3324-3334, 2011.
  • [30]A.N. Obraztsov, “Chemıcal vapour deposıtıon making graphene on a large scale,” Nature Nanotechnology, vol. 4, no. 4, pp. 212-213, 2009.
  • [31]E. Bressan, L. Ferroni, C. Gardin, L. Sbricoli, L.Gobbato, F.S. Ludovichetti, B. Zavan, “Graphene based scaffolds effects on stem cells commitment,” Journal of translational medicine, vol. 12, pp.296, 2014.
  • [32]F. Menaa, A. Abdelghani, ve B. Menaa, “Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells: impact for tissue engineering and regenerative medicine,” J Tissue Eng Regen Med, vol. 9, no. 12, pp. 1321-1338, 2014. [33]L. Cao, F. Zhang, Q. Wang, X. Wu, “Fabrication of chitosan/graphene oxide polymer nanofiber and its biocompatibility for cartilage tissue engineering,” Materials Science and Engineering: C, vol. 79, pp. 697-701, 2017.
  • [34]K. Hu, D.D. Kulkarni, I. Choi, V.V. Tsukruk, “Graphene-polymer nanocomposites for structural and functional applications,” Progress in Polymer Science, vol. 39, no. 11, pp.1934-1972, 2014.
  • [35]E. Murray, S. Sayyar, B.C. Thompson, R. Gorkin, D.L. Officer, ve G.G. Wallace, “A bio-friendly, green route to processable, biocompatible graphene/polymer composites,” RSC Advances, vol. 5, no. 56, pp. 45284-45290, 2015.
  • [36]A. Tonetto, PW. Lago, M. Borba, V. Rosa, “Effects of chrondro-osseous regenerative compound associated with local treatments in the regeneration of bone defects around implants: an in vivo study,” Clin Oral Investig, vol. 20, no.1–8, 2016.
  • [37]H. Porwal, R. Saggar, “Ceramic matrix nanocomposites. In: Beaumont PWR, Zweben CH, editors,” Compr Compos Mater II. Oxford: Elsevier, pp.138–61, 2018.
  • [38]C. Shuai, P. Feng, P. Wu, Y. Liu, X. Liu, D. Lai, “A combined nanostructure constructed by graphene and boron nitride nanotubes reinforces ceramic scaffolds,” Chem Eng J, v.313, pp.487–497, 2017.
  • [39]Y. Fan, L.Wang, J. Li, S. Sun, F. Chen, “Preparation and electrical properties of graphene nanosheet/Al2O3 composites,” Carbon, vol.48, no.6, pp.1743–1749, 2010.
  • [40]H. Porwal, P. Tatarko, S. Grasso, C. Hu, AR. Boccaccini, I. Dlouhý, “Toughened and machinable glass matrix composites reinforced with graphene and grapheneoxide nano platelets,” Sci Technol Adv Mater, vol.14, no. 5, pp. 055007, 2013.
  • [41]A. Rahman, S. Singh, S. Karumuri, S.P. Harimkar, K.A. Kalkan, R.P. Singh, “Graphene reinforced silicon carbide nanocomposites: processing and properties,” Spr Inte Publing, vol.4, pp. 165–176,2015.
  • [42]X. Wang, M. Lu, L. Qiu, H. Huang, D.Li, H. Wang, “Graphene/titanium carbide composites prepared by sol–gel infiltration and spark plasma sintering,” Ceramic International, vol. 42, no.1, pp.122–31, 2016.
  • [43]H. Porwal, S. Grasso, M.J. Reece, “Review of graphene–ceramic matrix composites,” Adv Appl Ceram, vol. 112, no.8, pp.443–54, 2014.
  • [44]Z. Zeng, Y. Liu, W. Chen, X.Li, Q. Zheng, K.Li, “Fabrication and properties of in situ reduced graphene oxide-toughened zirconia composite ceramics,” American Ceramic Society, vol. 101, no. 8, pp.3498–3507, 2018.
  • [45]F. Inam, T. Vo, BR. Bhar, “Structural stability studies of graphene in sintered ceramic nanocomposites,” Ceramic International, vol. 40, no.10, pp.16227–16233, 2014.
  • [46]H. Yan, MJ. Reece, T. Peijs, “Structural and chemical stability of multiwall carbon nanotubes in sintered ceramic nanocomposite,”Advances in Applied Ceramics, vol. 109, no. 4, pp. 240–247, 2010.
  • [47]M.A. Mazo, C. Palencia, A. Nistal, F. Rubio, J. Rubio, J.L. Oteo, “Dense bulk silicon oxycarbide glasses obtained by spark plasma sintering,” Journal of the European Ceramic Society, vol. 32, no. 12, pp. 3369–3378, 2012.
  • [48]H. Porwal, S. Grasso, M.K. Mani, M.J. Reece, “In situ reduction of graphene oxide nanoplatelet during spark plasma sintering of a silica matrix composite,” Journal of the European Ceramic Society, vol. 34, no. 14, pp.3357–3364, 2014.
  • [49]C. Shuai, C. Gao, P. Feng, S.Peng, “Graphene-reinforced mechanical properties of calcium silicate scaffolds by laser sintering,” RSC Advances, vol.4, no. 25, pp. 12782–12788, 2014.
  • [50]D.A. Wahl, J.T. Czernuszka, “Collagen-Hydroxyapatite composite for hard tissue repair,” Eur. Cells Mater., vol.28, no.11, pp.44-55, 2006.
  • [51]Y.P. Lu, M.S. Li, S.T. Li, Z.G. Wang and R.F. Zhu, “Plasma sprayed hydroxyapatite - titania composite bond coat for hydroxyapatite coating on titanium substrate,” Biomaterial, vol. 25, no.18, pp. 4393-4403, 2004.
  • [52]M. N. Özder, “Graphene Oxide/Hydroxyapatite Nanocomposite,” Thesis, İstanbul, 2018.
  • [53]M. Li, Y. Wang, Q. Liu, Y. Cheng, Y. Zheng, S. Wei, “In situ synthesis and biocompatibility of nano hydroxyapatite on pristine and chitosan functionalized graphene oxide,” Materials Chemıstry B, vol.1, no.4, pp. 478-484, 2013.
  • [54]L. Zhang, W. Liu, C. Yue, T. Zhang, P. Li, Z. Xing, Y. Chen, “A tough graphene nanosheet/hydroxyapatite composite with improved in vitro biocompatibility,” Carbon, vol. 61, no. 11, pp. 105-115, 2013.
  • [55]K. Yang, S. Zhang, G. Zhang, X. Sun, S.T. Lee, Z. Liu, Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Letters , vol.10, no. 9, pp. 3318-3323,2010.
  • [56]P. Fabbri, L. Valentini, J. Hum, R. Detsch, AR. Boccaccini, “45S5 Bioglass®-derived scaffolds coated with organic–inorganic hybrids containing graphene,” Mater Sci Eng C, vol. 33, no.7, pp.3592–3600, 2013.
  • [57]R. Wafi, S.F. Mansour, M.S. AlHammad, M.K. Ahmed, “Biological response, antibacterial properties of ZrO2/hydroxyapatite/ graphene oxide encapsulated into nanofibrous scaffolds of polylactic acid for wound healing applications,” International Journal of Pharmaceutics, vol.601, pp.. 120517, 2021.
  • [58]B.Jayavardhinia, Y. R. Pravin, C.Kumar, R.Murugesana, S. WeslenVedakumari, “Graphene oxide impregnated sericin/collagen scaffolds – Fabrication and characterization,” Materials Letters, vol.307, pp.131060, 2022.
  • [59]E. Pinar, A. Sahin, S. Unal, O. Gunduz, F. Harman, E. Kaptanoglu, “The effect of polycaprolactone/graphene oxide electrospun scaffolds on the neurogenic behavior of adipose stem cells,” European Polymer Journal, vol.165, pp.111000, 2022.
  • [60]F. Shadianlou, A. Foorginejad, Y. Yaghoubinezhad, “Hydrothermal synthesis of zirconia-based nanocomposite powder reinforced by graphene and its application for bone scaffold with 3D printing,” Advanced Powder Technology, vol. 33,no. 2, pp.103406, 2022. [61] Y. Lia, L. Huangb, G. Tai, F. Yan, L. Caid, C. Xin, S.Al Islam, “Graphene Oxide-loaded magnetic nanoparticles within 3D hydrogel form High-performance scaffolds for bone regeneration and tumour treatment,” Composites Part A: Applied Science and Manufacturing, vol.152, pp.106672, 2022.
  • [62]A. Sharma, S. Gupta, T.S.Sampathkumar, R. S.Verma, “Modified graphene oxide nanoplates reinforced 3D printed multifunctional scaffold for bone tissue engineering,” Materials Science and Engineering: C, vol.134, pp. 112587, 2021.

A New Type Of Graphene Based Bone Scaffold In Tissue Engineering

Year 2022, , 1890 - 1909, 25.10.2022
https://doi.org/10.29130/dubited.1079780

Abstract

The aim of bioimplant technology is to repair, repair or preserve damaged tissues and organs. Every year, many people want to fix/repair bones in skeletal defects caused by accidents or various diseases. For this reason, many different types of biomaterials have been used to create scaffolds on which new bone growth can take place. Hydroxyapatite, apatite-wollostonite, and carbon-based biomaterials have been used for this purpose. Scaffolds printed with carbon nanomaterials are a widely used group of biomaterials because of their commercial availability, mechanical stability, and biocompatibility.Carbon-based scaffolds demonstrate osteogenic differentiation, bone tissue regeneration, and efficient cell proliferation. Bone scaffolds are considered to be the basic building blocks for bone growth, regeneration, repair, differentiation, and adhesion in bone tissue cells in tissue engineering. Many carbon nanomaterials are available that act as skeletons. Carbon nanotubes, graphene, and fullerene are the main carbon-based materials that can be used as skeletons. Graphene and its derivatives are a 2D carbon-based material with remarkable physical, chemical, and biological properties. Graphene is of interest to the scientific community because of its excellent electrical conductivity, biocompatibility, surface area, and thermal properties. Graphene sheets have high mechanical strength and large specific surface area. In addition, it has been reported in the literature that graphene enhances stem cell differentiation and biomaterial properties. The conducted study examined the biocompatibility properties of graphene, current studies on the use of graphene as a biomaterial, and biosafety discussions for the clinical application of carbon-based materials. 

References

  • [1]Y. Liu, L. Shi, L. Su, H.C. van der Mei, P.C. Jutte, Y. Ren, H.J. Busscher, “Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control,” Chem. Soc. Rev., vol.48, no.2, pp. 428–446, 2019.
  • [2]G. Kaur, S.K. Mehta, S. Kumar, G. Bhanjana, N. Dilbaghi, “Coencapsulation of hydrophobic and hydrophilic antituberculosis drugs in synergistic Brij 96 microemulsions: a biophysical characterization,” J. Pharm. Sci., vol.104, no.7, pp.2203–2212, 2015.
  • [3]PA. Gunatillake, R. Adhikari, “Biodegradable synthetic polymers for tissue engineering,” Eur Cell Mater, vol. 20, no.5, pp. 1–16, 2003.
  • [4]V. Rosa, B. Della, BN. Cavalcanti, JE. Nör, “Tissue engineering: from research to dental clinics,” Dent Mater, vol. 28, no.4, pp. 341–8, 2012.
  • [5]KB. Armstrong, LG. Bevan, WF. Cole, “Care and repair of advanced composites,” SAE International; 2005.
  • [6]R.Y. Basha, K.Sampath, M. Doble, “Design of biocomposite materials for bone tissue regeneration,” Mater Sci Eng C Mater Biol Appl, vol. 57, pp.452–63, 2015.
  • [7]A. Khademhosseini, R. Langer, “A decade of progress in tissue engineering,” Nat Protocol,vol. 11, no. 10, pp. 1775–81,2016.
  • [8]S. V. Vlierberghe, P. Dubruel, E. Schacht, “ Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review,” Biomacromolecules, vol.12, no. 5, pp.1387–408, 2011.
  • [9]A. H. Pearce, Y. S. Kim, L.D.Gomez, A. G.Mikos, “Tissue engineering scaffolds,” , pp 1317-1334, 2020.
  • [10]N. Krishnamoorthy, YT. Tseng, P. Gajendrarao, P. Sarathchandra, A. McCormack , I. Carubelli, “A novel strategy to enhance secretion of ECM components by stem cells: relevance to tissue engineering,” Tissue Eng, vol. 24, no. 1-2, pp. 145–56, 2017.
  • [11]ME. Gome, MT. Rodrigues, RMA. Domingues, RL. Reis. “Tissue engineering and regenerative medicine: new trends and directions-a year in review,” Tissue Eng Part B Rev vol. 23, no. 3, pp. 211–24, 2017.
  • [12]B. Sitharaman, X. Shi, XF. Walboomers, H. Liao, V. Cuijpers, LJ. Wilson, A. G. Mikos, J.A. Jansen “In vivo biocompatibility of ultra-short single-walled carbon nanotube/ biodegradable polymer nanocomposites for bone tissue engineering,” Bone, vol. 43, no.2, pp. 362–70, 2008.
  • [13]T. Umeyama, H. Imahor, “Photofunctional hybrid nanocarbon materials,” J Phys Chem C, vol. 117, no.7, pp.3195–209, 2012.
  • [14]X. Yu, X. Tang , SV. Gohil, CT. Laurencin, “ Biomaterials for bone regenerative engineering”, Adv Health Mater, vol.4, no.9, pp.1268–85, 2015.
  • [15]S. W. Hong, J. H. Lee, S. H. Kang, E. Y. Hwang, Y. S. Hwang, M. H. Lee, J. C. Park, “Enhanced neural cell adhesion and neurite outgrowth on graphene-based biomimetic substrates,” Biomed Res Int, vol. 212149, no. 16, 2014.
  • [16]C. Lee, X. Wei , JW. Kysar, J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science, vol. 321, no.5887, pp.385–8, 2008.
  • [17]V. Rosa, H. Xie, N. Dubey, TT. Madanagopal, SS. Rajan, JL. Morin, “Graphene oxide-based substrate: physical and surface characterization, cytocompatibility and differentiation potential of dental pulp stem cells,” Dent Mater, vol.32, no.8, pp.1019–1025, 2016.
  • [18]S. Pei, H-M. Cheng, “The reduction of graphene oxide,” Carbon, vol.50, no.9, pp. 3210–3228, 2012.
  • [19]DR. Dreyer, S. Park, CW. Bielawski, RS. Ruoff, “The chemistry of graphene oxide,” Chem Soc Rev, vol. 39, no.1, pp. 228–40, 2010.
  • [20]J. Morin, N. Dubey, F. Decroix, E. Luong-Van, AH. Castro Neto, V. Rosa, “Graphene transfer to 3-dimensional surfaces: a vacuum-assisted dry transfer method,” 2D Mater, vol.4, no.2, pp.025060, 2017.
  • [21]A.K. Geim, K.S. Novoselov, “The rise of graphene", Nat. Mater. vol.6, pp.183–191, 2007.
  • [22]L. Brown, R. Hovden, P. Huang, M. Wojcik, D.A. Muller, J. Park, “Twinning and twisting of tri-and bilayer graphene,” Nano Lett., vol. 12, no.3, pp.1609–1615, 2012.
  • [23]C. Gardin, A. Piattelli, B. Zavan, “ Graphene in regenerative medicine: focus on stem cells and neuronal differentiation,” Trends in biotechnology, vol.34, no.6, pp.435-437, 2016.
  • [24]D.Galpaya, “Synthesis, Charactesization and Application of Graphene Oxide-Polymer Nanocomposites ,” Master of Polymer Engineering ,Queensland University of Technology, 2015.
  • [25]E. R. Susan, “Synthesis of graphene platelets,” Durhan Thesis, Department of Chemistry, Durham University, 2015.
  • [26]S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, S. Iijima, “Rollto- roll production of 30-inch graphene films for transparent electrodes,” Nature Nanotechnology, vol.5, no.8, pp.574–578, 2010.
  • [27]R. O. Brennan, “The Interlayer Binding in Graphite,” The Journal of Chemical Physics, vol. 20, no.1, pp. 40–48, 1952.
  • [28]A.Dimiev, D.V. Kosynkin, L.B. Alemany, P. Chaguine, J.M. Tour, “ Pristine Graphite Oxide,” Journal of the American Chemical Society, vol.134, no.5, pp. 2815–2822, 2012.
  • [29]C. Mattevi, H. Kim, M. Chhowalla, “A review of chemical vapour deposition of graphene on copper,” Journal of Materials Chemistry, vol. 21, no. 10, pp. 3324-3334, 2011.
  • [30]A.N. Obraztsov, “Chemıcal vapour deposıtıon making graphene on a large scale,” Nature Nanotechnology, vol. 4, no. 4, pp. 212-213, 2009.
  • [31]E. Bressan, L. Ferroni, C. Gardin, L. Sbricoli, L.Gobbato, F.S. Ludovichetti, B. Zavan, “Graphene based scaffolds effects on stem cells commitment,” Journal of translational medicine, vol. 12, pp.296, 2014.
  • [32]F. Menaa, A. Abdelghani, ve B. Menaa, “Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells: impact for tissue engineering and regenerative medicine,” J Tissue Eng Regen Med, vol. 9, no. 12, pp. 1321-1338, 2014. [33]L. Cao, F. Zhang, Q. Wang, X. Wu, “Fabrication of chitosan/graphene oxide polymer nanofiber and its biocompatibility for cartilage tissue engineering,” Materials Science and Engineering: C, vol. 79, pp. 697-701, 2017.
  • [34]K. Hu, D.D. Kulkarni, I. Choi, V.V. Tsukruk, “Graphene-polymer nanocomposites for structural and functional applications,” Progress in Polymer Science, vol. 39, no. 11, pp.1934-1972, 2014.
  • [35]E. Murray, S. Sayyar, B.C. Thompson, R. Gorkin, D.L. Officer, ve G.G. Wallace, “A bio-friendly, green route to processable, biocompatible graphene/polymer composites,” RSC Advances, vol. 5, no. 56, pp. 45284-45290, 2015.
  • [36]A. Tonetto, PW. Lago, M. Borba, V. Rosa, “Effects of chrondro-osseous regenerative compound associated with local treatments in the regeneration of bone defects around implants: an in vivo study,” Clin Oral Investig, vol. 20, no.1–8, 2016.
  • [37]H. Porwal, R. Saggar, “Ceramic matrix nanocomposites. In: Beaumont PWR, Zweben CH, editors,” Compr Compos Mater II. Oxford: Elsevier, pp.138–61, 2018.
  • [38]C. Shuai, P. Feng, P. Wu, Y. Liu, X. Liu, D. Lai, “A combined nanostructure constructed by graphene and boron nitride nanotubes reinforces ceramic scaffolds,” Chem Eng J, v.313, pp.487–497, 2017.
  • [39]Y. Fan, L.Wang, J. Li, S. Sun, F. Chen, “Preparation and electrical properties of graphene nanosheet/Al2O3 composites,” Carbon, vol.48, no.6, pp.1743–1749, 2010.
  • [40]H. Porwal, P. Tatarko, S. Grasso, C. Hu, AR. Boccaccini, I. Dlouhý, “Toughened and machinable glass matrix composites reinforced with graphene and grapheneoxide nano platelets,” Sci Technol Adv Mater, vol.14, no. 5, pp. 055007, 2013.
  • [41]A. Rahman, S. Singh, S. Karumuri, S.P. Harimkar, K.A. Kalkan, R.P. Singh, “Graphene reinforced silicon carbide nanocomposites: processing and properties,” Spr Inte Publing, vol.4, pp. 165–176,2015.
  • [42]X. Wang, M. Lu, L. Qiu, H. Huang, D.Li, H. Wang, “Graphene/titanium carbide composites prepared by sol–gel infiltration and spark plasma sintering,” Ceramic International, vol. 42, no.1, pp.122–31, 2016.
  • [43]H. Porwal, S. Grasso, M.J. Reece, “Review of graphene–ceramic matrix composites,” Adv Appl Ceram, vol. 112, no.8, pp.443–54, 2014.
  • [44]Z. Zeng, Y. Liu, W. Chen, X.Li, Q. Zheng, K.Li, “Fabrication and properties of in situ reduced graphene oxide-toughened zirconia composite ceramics,” American Ceramic Society, vol. 101, no. 8, pp.3498–3507, 2018.
  • [45]F. Inam, T. Vo, BR. Bhar, “Structural stability studies of graphene in sintered ceramic nanocomposites,” Ceramic International, vol. 40, no.10, pp.16227–16233, 2014.
  • [46]H. Yan, MJ. Reece, T. Peijs, “Structural and chemical stability of multiwall carbon nanotubes in sintered ceramic nanocomposite,”Advances in Applied Ceramics, vol. 109, no. 4, pp. 240–247, 2010.
  • [47]M.A. Mazo, C. Palencia, A. Nistal, F. Rubio, J. Rubio, J.L. Oteo, “Dense bulk silicon oxycarbide glasses obtained by spark plasma sintering,” Journal of the European Ceramic Society, vol. 32, no. 12, pp. 3369–3378, 2012.
  • [48]H. Porwal, S. Grasso, M.K. Mani, M.J. Reece, “In situ reduction of graphene oxide nanoplatelet during spark plasma sintering of a silica matrix composite,” Journal of the European Ceramic Society, vol. 34, no. 14, pp.3357–3364, 2014.
  • [49]C. Shuai, C. Gao, P. Feng, S.Peng, “Graphene-reinforced mechanical properties of calcium silicate scaffolds by laser sintering,” RSC Advances, vol.4, no. 25, pp. 12782–12788, 2014.
  • [50]D.A. Wahl, J.T. Czernuszka, “Collagen-Hydroxyapatite composite for hard tissue repair,” Eur. Cells Mater., vol.28, no.11, pp.44-55, 2006.
  • [51]Y.P. Lu, M.S. Li, S.T. Li, Z.G. Wang and R.F. Zhu, “Plasma sprayed hydroxyapatite - titania composite bond coat for hydroxyapatite coating on titanium substrate,” Biomaterial, vol. 25, no.18, pp. 4393-4403, 2004.
  • [52]M. N. Özder, “Graphene Oxide/Hydroxyapatite Nanocomposite,” Thesis, İstanbul, 2018.
  • [53]M. Li, Y. Wang, Q. Liu, Y. Cheng, Y. Zheng, S. Wei, “In situ synthesis and biocompatibility of nano hydroxyapatite on pristine and chitosan functionalized graphene oxide,” Materials Chemıstry B, vol.1, no.4, pp. 478-484, 2013.
  • [54]L. Zhang, W. Liu, C. Yue, T. Zhang, P. Li, Z. Xing, Y. Chen, “A tough graphene nanosheet/hydroxyapatite composite with improved in vitro biocompatibility,” Carbon, vol. 61, no. 11, pp. 105-115, 2013.
  • [55]K. Yang, S. Zhang, G. Zhang, X. Sun, S.T. Lee, Z. Liu, Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Letters , vol.10, no. 9, pp. 3318-3323,2010.
  • [56]P. Fabbri, L. Valentini, J. Hum, R. Detsch, AR. Boccaccini, “45S5 Bioglass®-derived scaffolds coated with organic–inorganic hybrids containing graphene,” Mater Sci Eng C, vol. 33, no.7, pp.3592–3600, 2013.
  • [57]R. Wafi, S.F. Mansour, M.S. AlHammad, M.K. Ahmed, “Biological response, antibacterial properties of ZrO2/hydroxyapatite/ graphene oxide encapsulated into nanofibrous scaffolds of polylactic acid for wound healing applications,” International Journal of Pharmaceutics, vol.601, pp.. 120517, 2021.
  • [58]B.Jayavardhinia, Y. R. Pravin, C.Kumar, R.Murugesana, S. WeslenVedakumari, “Graphene oxide impregnated sericin/collagen scaffolds – Fabrication and characterization,” Materials Letters, vol.307, pp.131060, 2022.
  • [59]E. Pinar, A. Sahin, S. Unal, O. Gunduz, F. Harman, E. Kaptanoglu, “The effect of polycaprolactone/graphene oxide electrospun scaffolds on the neurogenic behavior of adipose stem cells,” European Polymer Journal, vol.165, pp.111000, 2022.
  • [60]F. Shadianlou, A. Foorginejad, Y. Yaghoubinezhad, “Hydrothermal synthesis of zirconia-based nanocomposite powder reinforced by graphene and its application for bone scaffold with 3D printing,” Advanced Powder Technology, vol. 33,no. 2, pp.103406, 2022. [61] Y. Lia, L. Huangb, G. Tai, F. Yan, L. Caid, C. Xin, S.Al Islam, “Graphene Oxide-loaded magnetic nanoparticles within 3D hydrogel form High-performance scaffolds for bone regeneration and tumour treatment,” Composites Part A: Applied Science and Manufacturing, vol.152, pp.106672, 2022.
  • [62]A. Sharma, S. Gupta, T.S.Sampathkumar, R. S.Verma, “Modified graphene oxide nanoplates reinforced 3D printed multifunctional scaffold for bone tissue engineering,” Materials Science and Engineering: C, vol.134, pp. 112587, 2021.
There are 60 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Mine Kırkbınar 0000-0001-8703-1421

Erhan İbrahimoğlu 0000-0002-8073-5570

Fatih Çalışkan 0000-0002-9568-7049

Publication Date October 25, 2022
Published in Issue Year 2022

Cite

APA Kırkbınar, M., İbrahimoğlu, E., & Çalışkan, F. (2022). Doku Mühendisliğinde Yeni Tip Grafen Esaslı Kemik İskelesi. Duzce University Journal of Science and Technology, 10(4), 1890-1909. https://doi.org/10.29130/dubited.1079780
AMA Kırkbınar M, İbrahimoğlu E, Çalışkan F. Doku Mühendisliğinde Yeni Tip Grafen Esaslı Kemik İskelesi. DÜBİTED. October 2022;10(4):1890-1909. doi:10.29130/dubited.1079780
Chicago Kırkbınar, Mine, Erhan İbrahimoğlu, and Fatih Çalışkan. “Doku Mühendisliğinde Yeni Tip Grafen Esaslı Kemik İskelesi”. Duzce University Journal of Science and Technology 10, no. 4 (October 2022): 1890-1909. https://doi.org/10.29130/dubited.1079780.
EndNote Kırkbınar M, İbrahimoğlu E, Çalışkan F (October 1, 2022) Doku Mühendisliğinde Yeni Tip Grafen Esaslı Kemik İskelesi. Duzce University Journal of Science and Technology 10 4 1890–1909.
IEEE M. Kırkbınar, E. İbrahimoğlu, and F. Çalışkan, “Doku Mühendisliğinde Yeni Tip Grafen Esaslı Kemik İskelesi”, DÜBİTED, vol. 10, no. 4, pp. 1890–1909, 2022, doi: 10.29130/dubited.1079780.
ISNAD Kırkbınar, Mine et al. “Doku Mühendisliğinde Yeni Tip Grafen Esaslı Kemik İskelesi”. Duzce University Journal of Science and Technology 10/4 (October 2022), 1890-1909. https://doi.org/10.29130/dubited.1079780.
JAMA Kırkbınar M, İbrahimoğlu E, Çalışkan F. Doku Mühendisliğinde Yeni Tip Grafen Esaslı Kemik İskelesi. DÜBİTED. 2022;10:1890–1909.
MLA Kırkbınar, Mine et al. “Doku Mühendisliğinde Yeni Tip Grafen Esaslı Kemik İskelesi”. Duzce University Journal of Science and Technology, vol. 10, no. 4, 2022, pp. 1890-09, doi:10.29130/dubited.1079780.
Vancouver Kırkbınar M, İbrahimoğlu E, Çalışkan F. Doku Mühendisliğinde Yeni Tip Grafen Esaslı Kemik İskelesi. DÜBİTED. 2022;10(4):1890-909.