Research Article
BibTex RIS Cite

Effects of Green Light Supplementation with Red and Blue Combinations of LED Light Spectrums On The Growth of Chlamydomonas Reinhardtii (Chlorophyta)

Year 2022, , 1603 - 1614, 31.07.2022
https://doi.org/10.29130/dubited.1081185

Abstract

Light management strategy regarding optimum spectral composition is a critical factor in microalgae cultivation to improve biomass and biosynthesis of valuable bioactive compounds. Recent advance in LED light technology provides unparallel opportunity to test effects of specific wavelength on physiological response of algae. In this study, we investigated effects of white, monochromatic and combination of red (628 nm) and blue (462 nm) light in the ratio of 1: 1; 2: 1 and 1: 2 at the total light intensity of 40 μmol photons m-2 s-1 on the growth of Chlamydomonas reinhardtii. Moreover, effects of green light (518 nm) supplementation on growth of algae, green light (518 nm) was added gradually into the combination of red:blue (1:2) at the light intensity of 3, 6, 9, 12 and 15 μmol photons m-2 s-1 as an expense of red and blue light intensity at the ratio of 1:2. Results reveal that growth rate of C. reinhadhtii was found in the order of red:blue (1: 2) > red:blue (2: 1) > red:blue (1: 1) > red > white> blue. Green light supplementation applied as 3 μmol photons m-2 s-1 resulted in statistically significant higher optical density and dry weight than R:B (1: 2) used as control group in the experiment. Chlorophyll-a concentrations were found significantly higher in all green light supplementation than control group. Seems that 3 μmol photons m-2 s-1 supplementation of green light together with red:blue combination results in a significant promotion on growth rate, chlorophyll-a and dry weight of C. reinhardtii.

References

  • [1] S. Singh, B.N. Kate, U.C. Banerjee, “Bioactive compounds from cyanobacteria and microalgae: an overview". Crit Rev Biotechnol vol. 25, pp. 73–95, 2005.
  • [2] M.A. Borowitzka, “High-value products from microalgae their development and commercialization”. J. Appl. Phycol, vol. 25, pp. 743–756, 2013, doi:10.1007/s10811-013-9983-9.
  • [3] M.L. Wells, P. Potin, J.S. Craigie, J.A. Raven, S.S. Merchant, K.E. Helliwell, A.G. Smith, M.E. Camire, S.H. Brawley, “Algae as nutritional and functional food sources: revisiting our understanding”. J Appl Phycol, vol. 29, pp. 949–982, 2017.
  • [4] M.I. Khan, J.H. Shin, J.D. Kim, “The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products”. Microbial Cell Factories, vol. 17, pp. 36-57, 2018, doi:10.1186/s12934-018-0879-x.
  • [5] E.G. Nwoba, D.A. Parlevliet, D.W. Laird, K. Alameh, N.R. Moheimani, “Light management technologies for increasing algal photobioreactor efficiency”. Algal Research, vol. 39, pp. 101433, 2019.
  • [6] P.S.C. Schulze, L.A. Barreira, H.G.C. Pereira, J.A. Perales et al., “Light emitting diodes (LEDs) applied to microalgal production”. Trends Biotechnol, vol. 32, pp. 422–430, 2014, doi:10.1016/j.tibtech.
  • [7] H. Oldenhof, V. Zachleder, H. Van Den Ende, “Blue- and red-light regulation of the cell cycle in Chlamydomonas reinhardtii (Chlorophyta)”. European Journal of Phycology, vol. 41, no. 3, pp. 313-320, 2007, doi: 10.1080/09670260600699920.
  • [8] D. Petroutsos, R. Tokutsu, S. Maruyama, S. Flori, A. Greiner et al., “A blue-light photoreceptor mediates the feedback regulation of photosynthesis”. Nature, vol. 537, pp. 563–566, 2016, doi:10.1038/nature19358.
  • [9] I. Wagner, C. Steinweg, C. Posten, “Mono and dichromatic LED illumination leads to enhanced growth and energy conversion for high-efficiency cultivation of microalgae for application in space”. Biotechnol J., vol. 11, no. 8, pp. 1060-71, 2016, doi: 10.1002/biot.201500357.
  • [10] S. Baer, M. Heining, P. Schwerna, R. Buchholz, H. Hübner, “Optimization of spectral light quality for growth and product formation in different microalgae using a continuous photobioreactor”. Algal Res., vol. 14, pp. 109–115, 2016.
  • [11] A. Vadivelooa, N.R. Moheimania, J.J.Cosgroveab, P.A. Bahri, D. Parlevliet, “Effect of different light spectra on the growth and productivity of acclimated Nannochloropsis sp. (Eustigmatophyceae)”. Algal Research, vol. 8, pp. 121-127, 2015.
  • [12] S. Pereira, A. Otero, “Haematococcus pluvialis bioprocess optimization: Effect of light quality, temperature and irradiance on growth, pigment content and photosynthetic response”. Algal Research, vol. 51, pp.1020-27, 2020, https://doi.org/10.1016/j.algal.2020.102027.
  • [13] X. Li, J. Huff, D.W. Crunkleton, T.W. Johannes, “LED alternating between blue and red-orange light improved the biomass and lipid productivity of Chlamydomonas reinhardtii”. Journal of Biotechnology, vol. 341, pp. 96-102, 2021.
  • [14] Casal, “Phytochromes, Cryptochromes, Phototropin: Photoreceptor Interactions in Plants”. Photochemistry and Photobiology, vol. 71, no. 1, pp. 1–11, 2000.
  • [15] G. Kalmaoğlu, “Effects of green light spectrum on growth and gene expression profiles of green algae Haematococcus pluvialis”. M.S. thesis, Bolu Abant Izzet Baysal University Institute of Graduate Studies Department of Biology, Bolu,TURKEY, 2021.
  • [16] H.H. Kim, G.D. Goins, R.M. Wheeler, J.C. Sager, “Green-light supplementation for enhanced lettuce growth under red- and blue-light-emitting diodes”. HortScience, vol. 39, no. 7, pp. 1617-22, 2004.
  • [17] R.M. Klein, P.C. Edsall, A.C. Gentile, “Effects of near ultraviolet and green radiation on plant growth”. Plant Physiol., vol. 40, pp. 903–906, 1965.
  • [18] R.Y. Stanier, R. Kunisawa, M. Mandel, G. Cohen-Bazire, “Purification and properties of unicellular blue-green algae (order Chroococcales)”. Bacteriological Reviews, vol. 35, no. 2, pp. 171– 205, 1971, doi:10.1128/MMBR.35.2.171-205.1971 PMID:4998365.
  • [19] Seely GR, Duncan MJ, Vidaver WE (1972). Preparative and analytical extraction of pigments from brown algae with dimethyl sulfoxide. Marine Biology 12(2): 184 –188. doi:org/10.1007/BF00350754.
  • [20] X. Li, J. Manuel, D.W. Crunkleton, T.W. Johannes, “Effect of blue and red-orange LEDs on the growth and biochemical profile of Chlamydomonas reinhardtii”. Journal of Applied Phycology, vol. 33, pp. 1367–1377, 2020.
  • [21] H. Xu, X. Liu, Z. Mei, J. Lin, S. Aaron, H. Du, “Effects of Various Light-Emitting Diode (LEd) Wavelengths on the Growth of Scenedesmus Obliquus Fachb-12 and Accumulation of Astaxanthin”. Phyton, vol.88, no. 3, pp. 35-348, 2019.
  • [22] C.H. Ra, P. Sirisuk, J.H. Jung, G.T. Jeong, S.K. Kim, “Effects of light- emitting diode (LED) with a mixture of wavelengths on the growth and lipid content of microalgae”. Bioprocess Biosyst Eng., vol. 41, pp. 457–465, 2018.
  • [23] H.L. Tran, K.H. Lee, C.H. Hong, “Effects of LED irradiation on the growth and Astaxanthin Production of Haematococcus lacustris”. Biosciences Biotechnology Research Asia, vol. 12, no. 2, pp. 1167-1173, 2015.
  • [24] W. Fu, Ó. Guðmundsson, G. Paglia, G. Herjólfsson, Ó.S. Andrésson, B.Ø. Palsson, S. Brynjólfsson, “Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution”. Appl Microbiol Biotechnol., vol. 97, pp. 2395–2403, 2013.
  • [25] G.M. Lima, P.C.N. Teixeira, C.M.L.L. Teixeira, D. Filócomo, C.L.S. Lage, “Influence of spectral light quality on the pigment concentrations and biomass productivity of Arthrospira platensis”. Algal Research, vol. 31, pp. 157–166, 2018.
  • [26] A. Kianianmomeni, A. Hallmann, “Algal photoreceptors: invivo functions and potential applications”. Planta, vol. 239, pp. 1–26, 2014, doi:10.1007/s00425-013-1962-5.
  • [27] H.L. Smith, L. McAusland, E.H. Murchie, “Don’t ignore the green light: exploring diverse roles in plant processes”. Journal of Experimental Botany, vol. 68, no. 9, pp. 2099–2110, 2006, doi:10.1093/jxb/erx098.
  • [28] I. Terashima, T. Fujita, T. Inoue, W.S. Chow, R. Oguchi, “Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green”. Plant and Cell Physiology, vol. 50, pp. 684–697, 2009.
  • [29] J.N. Nishio, “Why are higher plants green? Evolution of the higher plant photosynthetic pigment complement”. Plant Cell and Environment, vol. 23, pp. 539–548, 2000.
  • [30] P.J. Walla, C.P. Holleboom, G.R. Fleming, “Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria”. in: B Demmig-Adams, G Garab, W Adams 3th eds. Dordrecht, Springer Netherlands, 2014.
  • [31] H. Hashimoto, Y. Sugai, C. Uragami, A.T. Gardiner, R.J. Cogdell, “Natural and artificial light-harvesting systems utilizing the functions of carotenoids”. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 25, pp. 46–70, 2015.
  • [32] E. Hofmann, P.M. Wrench, F.P. Sharples, R.G. Hiller, W. Welte, K. Diederichs, “Structural basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae”. Science, vol. 272, pp. 1788–1791, 1996.
  • [33] L.S. Hayley, L. McAusland, E.H. Murchie, “Don’t ignore the green light: exploring diverse roles in plant processes”. Journal of Experimental Botany, vol. 68, no. 9, pp. 2099–2110, 2017, doi:10.1093/jxb/erx098.
  • [34] B. Liu, H. Liu, D. Zhong, C. Lin, “Searching for a photocycle of the cryptochrome photoreceptors”. Current Opinion in Plant Biology, vol. 13, pp.578–586, 2010.
  • [35] R. Sellaro, M. Crepy, S.A. Trupkin, E. Karayekov, A.S. Buchovsky, C. Rossi, J.J. Casal, “Cryptochrome as a sensor of the blue/green ratio of natural radiation in Arabidopsis”. Plant Physiology, vol. 154, pp. 401–409, 2010.

Mavi ve Kırmızı Işık Spektrumları İle Birlikte Yeşil Işık Katkısının Chlamydomonas Reinhardtii (Chlorophyta) Büyümesine Olan Etkileri

Year 2022, , 1603 - 1614, 31.07.2022
https://doi.org/10.29130/dubited.1081185

Abstract

Mikroalg kültürlerinde uygulanacak optimum ışıklandırma stratejilerinin belirlenmesi, biyoaktif moleküllerin biyosentezi ve biokütle artışı sağlamada önemli bir parametredir. LED ışık teknolojilerinde son yıllarda yaşanan ilerlemeler, belirli ışık spektrumlarının ve bunların farklı karışımlarının mikro alglerin fizyolojik tepkilerine olan etkilerini araştırmak için önemli fırsatlar sağlamaktadır. Bu çalışmada, beyaz ışık, kırmızı (628 nm) ve mavi (462 nm) ışık spektrumları tek başına ve sırasıyla 1:1; 2:1 ve 1:2 oranlarında toplam ışık şiddeti 40 μmol foton m-2 s-1 olacak şekilde Chlamydomonas reinhardtii mikroalg türünün büyümesine olan etkileri araştırılmıştır. Ayrıca, yeşil ışık katkısının mikroalg büyümesine olan etkileri, kırmızı:yeşil (1:2) ışık karışımında 3, 6, 9, 12 ve 15 μmol foton m-2 s-1 şiddetindeki mavi ışık şiddeti azaltılıp yerine yeşil ışık katkısı sağlanarak araştırılmıştır. Elde edilen sonuçlara göre, C. reinhadhtii mikroalg türünün büyüme oranları büyükten küçüğe doğru sırasıyla kırmızı:mavi (1: 2) > kırmızı:mavi (2: 1) > kırmızı:mavi (1: 1) > kırmızı > beyaz> mavi ışık olarak bulunmuştur. Yeşil ışık katkısında ise, 3 μmol foton m-2 s-1 şiddetinde mavi ışıkla yer değiştirilen yeşil ışığın, mikroalg büyümesinde ve biokütle artışında kontrol grubu olarak kullanılan kırmızı:mavi (1:2) grubuna göre istatistiksel olarak kayda değer bir artış sağladığı bulunmuştur. Yeşil ışık katkısının uygulandığı tüm deneysel gruplarda kontrol grubuna oranla klorofil konsantrasyonunda kayda değer bir artış gözlemlenmiştir. Bu çalışmada 3 μmol foton m-2 s-1 şiddetindeki yeşil ışık katkısının kırımızı:mavi ışık karışımı ile birlikte mikroalg büyümesinde, klorofil-a konsantrasyonunda ve kuru ağılık eldesinde kayda değer bir artışa neden olduğu bulunmuştur.

References

  • [1] S. Singh, B.N. Kate, U.C. Banerjee, “Bioactive compounds from cyanobacteria and microalgae: an overview". Crit Rev Biotechnol vol. 25, pp. 73–95, 2005.
  • [2] M.A. Borowitzka, “High-value products from microalgae their development and commercialization”. J. Appl. Phycol, vol. 25, pp. 743–756, 2013, doi:10.1007/s10811-013-9983-9.
  • [3] M.L. Wells, P. Potin, J.S. Craigie, J.A. Raven, S.S. Merchant, K.E. Helliwell, A.G. Smith, M.E. Camire, S.H. Brawley, “Algae as nutritional and functional food sources: revisiting our understanding”. J Appl Phycol, vol. 29, pp. 949–982, 2017.
  • [4] M.I. Khan, J.H. Shin, J.D. Kim, “The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products”. Microbial Cell Factories, vol. 17, pp. 36-57, 2018, doi:10.1186/s12934-018-0879-x.
  • [5] E.G. Nwoba, D.A. Parlevliet, D.W. Laird, K. Alameh, N.R. Moheimani, “Light management technologies for increasing algal photobioreactor efficiency”. Algal Research, vol. 39, pp. 101433, 2019.
  • [6] P.S.C. Schulze, L.A. Barreira, H.G.C. Pereira, J.A. Perales et al., “Light emitting diodes (LEDs) applied to microalgal production”. Trends Biotechnol, vol. 32, pp. 422–430, 2014, doi:10.1016/j.tibtech.
  • [7] H. Oldenhof, V. Zachleder, H. Van Den Ende, “Blue- and red-light regulation of the cell cycle in Chlamydomonas reinhardtii (Chlorophyta)”. European Journal of Phycology, vol. 41, no. 3, pp. 313-320, 2007, doi: 10.1080/09670260600699920.
  • [8] D. Petroutsos, R. Tokutsu, S. Maruyama, S. Flori, A. Greiner et al., “A blue-light photoreceptor mediates the feedback regulation of photosynthesis”. Nature, vol. 537, pp. 563–566, 2016, doi:10.1038/nature19358.
  • [9] I. Wagner, C. Steinweg, C. Posten, “Mono and dichromatic LED illumination leads to enhanced growth and energy conversion for high-efficiency cultivation of microalgae for application in space”. Biotechnol J., vol. 11, no. 8, pp. 1060-71, 2016, doi: 10.1002/biot.201500357.
  • [10] S. Baer, M. Heining, P. Schwerna, R. Buchholz, H. Hübner, “Optimization of spectral light quality for growth and product formation in different microalgae using a continuous photobioreactor”. Algal Res., vol. 14, pp. 109–115, 2016.
  • [11] A. Vadivelooa, N.R. Moheimania, J.J.Cosgroveab, P.A. Bahri, D. Parlevliet, “Effect of different light spectra on the growth and productivity of acclimated Nannochloropsis sp. (Eustigmatophyceae)”. Algal Research, vol. 8, pp. 121-127, 2015.
  • [12] S. Pereira, A. Otero, “Haematococcus pluvialis bioprocess optimization: Effect of light quality, temperature and irradiance on growth, pigment content and photosynthetic response”. Algal Research, vol. 51, pp.1020-27, 2020, https://doi.org/10.1016/j.algal.2020.102027.
  • [13] X. Li, J. Huff, D.W. Crunkleton, T.W. Johannes, “LED alternating between blue and red-orange light improved the biomass and lipid productivity of Chlamydomonas reinhardtii”. Journal of Biotechnology, vol. 341, pp. 96-102, 2021.
  • [14] Casal, “Phytochromes, Cryptochromes, Phototropin: Photoreceptor Interactions in Plants”. Photochemistry and Photobiology, vol. 71, no. 1, pp. 1–11, 2000.
  • [15] G. Kalmaoğlu, “Effects of green light spectrum on growth and gene expression profiles of green algae Haematococcus pluvialis”. M.S. thesis, Bolu Abant Izzet Baysal University Institute of Graduate Studies Department of Biology, Bolu,TURKEY, 2021.
  • [16] H.H. Kim, G.D. Goins, R.M. Wheeler, J.C. Sager, “Green-light supplementation for enhanced lettuce growth under red- and blue-light-emitting diodes”. HortScience, vol. 39, no. 7, pp. 1617-22, 2004.
  • [17] R.M. Klein, P.C. Edsall, A.C. Gentile, “Effects of near ultraviolet and green radiation on plant growth”. Plant Physiol., vol. 40, pp. 903–906, 1965.
  • [18] R.Y. Stanier, R. Kunisawa, M. Mandel, G. Cohen-Bazire, “Purification and properties of unicellular blue-green algae (order Chroococcales)”. Bacteriological Reviews, vol. 35, no. 2, pp. 171– 205, 1971, doi:10.1128/MMBR.35.2.171-205.1971 PMID:4998365.
  • [19] Seely GR, Duncan MJ, Vidaver WE (1972). Preparative and analytical extraction of pigments from brown algae with dimethyl sulfoxide. Marine Biology 12(2): 184 –188. doi:org/10.1007/BF00350754.
  • [20] X. Li, J. Manuel, D.W. Crunkleton, T.W. Johannes, “Effect of blue and red-orange LEDs on the growth and biochemical profile of Chlamydomonas reinhardtii”. Journal of Applied Phycology, vol. 33, pp. 1367–1377, 2020.
  • [21] H. Xu, X. Liu, Z. Mei, J. Lin, S. Aaron, H. Du, “Effects of Various Light-Emitting Diode (LEd) Wavelengths on the Growth of Scenedesmus Obliquus Fachb-12 and Accumulation of Astaxanthin”. Phyton, vol.88, no. 3, pp. 35-348, 2019.
  • [22] C.H. Ra, P. Sirisuk, J.H. Jung, G.T. Jeong, S.K. Kim, “Effects of light- emitting diode (LED) with a mixture of wavelengths on the growth and lipid content of microalgae”. Bioprocess Biosyst Eng., vol. 41, pp. 457–465, 2018.
  • [23] H.L. Tran, K.H. Lee, C.H. Hong, “Effects of LED irradiation on the growth and Astaxanthin Production of Haematococcus lacustris”. Biosciences Biotechnology Research Asia, vol. 12, no. 2, pp. 1167-1173, 2015.
  • [24] W. Fu, Ó. Guðmundsson, G. Paglia, G. Herjólfsson, Ó.S. Andrésson, B.Ø. Palsson, S. Brynjólfsson, “Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution”. Appl Microbiol Biotechnol., vol. 97, pp. 2395–2403, 2013.
  • [25] G.M. Lima, P.C.N. Teixeira, C.M.L.L. Teixeira, D. Filócomo, C.L.S. Lage, “Influence of spectral light quality on the pigment concentrations and biomass productivity of Arthrospira platensis”. Algal Research, vol. 31, pp. 157–166, 2018.
  • [26] A. Kianianmomeni, A. Hallmann, “Algal photoreceptors: invivo functions and potential applications”. Planta, vol. 239, pp. 1–26, 2014, doi:10.1007/s00425-013-1962-5.
  • [27] H.L. Smith, L. McAusland, E.H. Murchie, “Don’t ignore the green light: exploring diverse roles in plant processes”. Journal of Experimental Botany, vol. 68, no. 9, pp. 2099–2110, 2006, doi:10.1093/jxb/erx098.
  • [28] I. Terashima, T. Fujita, T. Inoue, W.S. Chow, R. Oguchi, “Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green”. Plant and Cell Physiology, vol. 50, pp. 684–697, 2009.
  • [29] J.N. Nishio, “Why are higher plants green? Evolution of the higher plant photosynthetic pigment complement”. Plant Cell and Environment, vol. 23, pp. 539–548, 2000.
  • [30] P.J. Walla, C.P. Holleboom, G.R. Fleming, “Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria”. in: B Demmig-Adams, G Garab, W Adams 3th eds. Dordrecht, Springer Netherlands, 2014.
  • [31] H. Hashimoto, Y. Sugai, C. Uragami, A.T. Gardiner, R.J. Cogdell, “Natural and artificial light-harvesting systems utilizing the functions of carotenoids”. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 25, pp. 46–70, 2015.
  • [32] E. Hofmann, P.M. Wrench, F.P. Sharples, R.G. Hiller, W. Welte, K. Diederichs, “Structural basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae”. Science, vol. 272, pp. 1788–1791, 1996.
  • [33] L.S. Hayley, L. McAusland, E.H. Murchie, “Don’t ignore the green light: exploring diverse roles in plant processes”. Journal of Experimental Botany, vol. 68, no. 9, pp. 2099–2110, 2017, doi:10.1093/jxb/erx098.
  • [34] B. Liu, H. Liu, D. Zhong, C. Lin, “Searching for a photocycle of the cryptochrome photoreceptors”. Current Opinion in Plant Biology, vol. 13, pp.578–586, 2010.
  • [35] R. Sellaro, M. Crepy, S.A. Trupkin, E. Karayekov, A.S. Buchovsky, C. Rossi, J.J. Casal, “Cryptochrome as a sensor of the blue/green ratio of natural radiation in Arabidopsis”. Plant Physiology, vol. 154, pp. 401–409, 2010.
There are 35 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Murat Telli 0000-0001-5546-0379

Dina Nabil Mohammed Aljamili 0000-0001-7736-4310

Publication Date July 31, 2022
Published in Issue Year 2022

Cite

APA Telli, M., & Aljamili, D. N. M. (2022). Effects of Green Light Supplementation with Red and Blue Combinations of LED Light Spectrums On The Growth of Chlamydomonas Reinhardtii (Chlorophyta). Duzce University Journal of Science and Technology, 10(3), 1603-1614. https://doi.org/10.29130/dubited.1081185
AMA Telli M, Aljamili DNM. Effects of Green Light Supplementation with Red and Blue Combinations of LED Light Spectrums On The Growth of Chlamydomonas Reinhardtii (Chlorophyta). DÜBİTED. July 2022;10(3):1603-1614. doi:10.29130/dubited.1081185
Chicago Telli, Murat, and Dina Nabil Mohammed Aljamili. “Effects of Green Light Supplementation With Red and Blue Combinations of LED Light Spectrums On The Growth of Chlamydomonas Reinhardtii (Chlorophyta)”. Duzce University Journal of Science and Technology 10, no. 3 (July 2022): 1603-14. https://doi.org/10.29130/dubited.1081185.
EndNote Telli M, Aljamili DNM (July 1, 2022) Effects of Green Light Supplementation with Red and Blue Combinations of LED Light Spectrums On The Growth of Chlamydomonas Reinhardtii (Chlorophyta). Duzce University Journal of Science and Technology 10 3 1603–1614.
IEEE M. Telli and D. N. M. Aljamili, “Effects of Green Light Supplementation with Red and Blue Combinations of LED Light Spectrums On The Growth of Chlamydomonas Reinhardtii (Chlorophyta)”, DÜBİTED, vol. 10, no. 3, pp. 1603–1614, 2022, doi: 10.29130/dubited.1081185.
ISNAD Telli, Murat - Aljamili, Dina Nabil Mohammed. “Effects of Green Light Supplementation With Red and Blue Combinations of LED Light Spectrums On The Growth of Chlamydomonas Reinhardtii (Chlorophyta)”. Duzce University Journal of Science and Technology 10/3 (July 2022), 1603-1614. https://doi.org/10.29130/dubited.1081185.
JAMA Telli M, Aljamili DNM. Effects of Green Light Supplementation with Red and Blue Combinations of LED Light Spectrums On The Growth of Chlamydomonas Reinhardtii (Chlorophyta). DÜBİTED. 2022;10:1603–1614.
MLA Telli, Murat and Dina Nabil Mohammed Aljamili. “Effects of Green Light Supplementation With Red and Blue Combinations of LED Light Spectrums On The Growth of Chlamydomonas Reinhardtii (Chlorophyta)”. Duzce University Journal of Science and Technology, vol. 10, no. 3, 2022, pp. 1603-14, doi:10.29130/dubited.1081185.
Vancouver Telli M, Aljamili DNM. Effects of Green Light Supplementation with Red and Blue Combinations of LED Light Spectrums On The Growth of Chlamydomonas Reinhardtii (Chlorophyta). DÜBİTED. 2022;10(3):1603-14.