Research Article
BibTex RIS Cite

Kendiliğinden Kanal Oluşturmalı Karbon Tabanlı Memristörler İçin DC Dirençlerini Okuyarak Yapılan Bir Sağlamlık Testinin Güvenilirliğinin İncelenmesi

Year 2023, , 1715 - 1724, 24.10.2023
https://doi.org/10.29130/dubited.1084460

Abstract

Neredeyse yarım yüzyıl önce varlığı teorik olarak tahmin edilen ideal memristör, doğrusal olmayan ve güç tüketen bir devre elemanıdır. Günümüzde, ideal memristör olmayan ince filmler gibi memristif sistemler de memristör olarak isimlendirilmektedir. Bu tür sistemler akıma bağlı davranışa ve doğrusal olmayan yüke bağlı elektrik direncine sahiptir. Kendiliğinden kanal oluşturmalı (KKO) Karbon, Tungsten, Krom ve Kalay tabanlı memristörler günümüzde ticari olarak temin edilebilir hale gelmiştir ve araştırma amacıyla kullanılmaktadır. Tüm devre elemanları kullanılmadan önce test edilmelidir. Gelecekte memristörlerin elektronik devrelerde yaygınca kullanılması beklenmektedir. Bununla birlikte, literatürde rapor edilmiş az sayıda memristör testi mevcuttur. Bildiğimiz kadarıyla, literatürde Kendiliğinden Kanal Oluşturmalı Karbon Tabanlı memristörler için önerilmiş bir sağlamlık testi yoktur. Bu çalışmada yakın zamanda önerilen sadece bir multimetre kullanılarak yapılabilen bir memristör sağlamlık testi bir seri direnç kullanılarak modifiye edilmiştir. Bu test Kendiliğinden Kanal Oluşturmalı Karbon Tabanlı memristörler üzerinde denenmiştir. Ne yazık ki, bu test Kendiliğinden Kanal Oluşturmalı Karbon Tabanlı memristörler için güvenilmez ve geçersiz bulunmuştur.

References

  • [1] L. O. Chua, “Memristor - The Missing Circuit Element,” IEEE Trans.Circuit Theory, Vol. 18, pp. 507-519, 1971.
  • [2] L. O. Chua, and S. M. Kang, “Memrisive devices and systems,” Proc.IEEE, Vol. 64, pp. 209-223, 1976.
  • [3] D. B.Strukov, G. S. Snider., D. R. Stewart, and R. S. Williams, “The missing memristor found,” Nature (London), Vol. 453, pp. 80-83, 2008.
  • [4] S. Vongehr, and M. Xiangkang “The missing memristor has not been found,” Scientific reports 5, 2015.
  • [5] T. Prodromakis, and C. Toumazou, “A review on memristive devices and applications,” 17th IEEE International Conference on Electronics, Circuits and Systems, Inspec Accession Number: 11861759, 2010.
  • [6] Y. V. Pershin, J. Martinez-Rincon, and M. Di Ventra, “Memory circuit elements: from systems to applications,” Journal of Computational and Theoretical Nanoscience 8.3: 441-448, 2011.
  • [7] Y. V. Pershin and M. Di Ventra, “Memory effects in complex materials and nanoscale systems,” Adv. Phys., vol. 60, pp. 145–227, 2011.
  • [8] L. O. Chua, “Resistance switching memories are memristors,” Appl. Phys. A, vol. 102, pp. 765–783, 2011.
  • [9] M. Roberto, G. Gelao,and A. G. Perri, “A Review on Memristor Applications,” International Journal of Advances in Engineering & Technology 8.3: 294, 2015.
  • [10] Y. V. Pershin, and M. Di Ventra, “Practical approach to programmable analog circuits with Memristors,” IEEE Transactions on Circuits and Systems I: Regular Papers, 57(8), 1857-1864, 2010.
  • [11] InformationWeek. Memristor Developer, http://www.informationweek.com/desktop/hp-hynix-to-collaborate-on-memristormemory- technology/d/did/1092114. (Date of access: 10.02.2021).
  • [12] Knowm, Self Directed Channel Memristors Datasheet, https://knowm.org/downloads/Knowm_Memristors.pdf. (Date of access: 10.02.2021), 2019.
  • [13] C. Volos, V. T. Pham, H. E. Nistazakis, and I. N. Stouboulos, “A Dream that has Come True: Chaos from a Nonlinear Circuit with a Real Memristor,” International Journal of Bifurcation and Chaos 30(13):2030036, 2020.
  • [14] S. Majzoub, A. S. Elwakil, C. Psychalinos, and B. J. Maundy, “On the mechanism of creating pinched hysteresis loops using a commercial memristor device,” AEU- International Journal of Electronics and Communications, Volume 111, 152923, 2019.
  • [15] L. Minati, L. V. Gambuzza, W. J. Thio, J. C. Sprott, and M. Frasca, “A chaotic circuit based on a physical memristor,” Chaos, Solitons & Fractals, Elsevier, vol. 138(C), 2020.
  • [16] Ş.Ç. Yener, R. Mutlu ve H. Kuntman, “Memristor Temelli Sallen-key Süzgeçler,” Journal of the Faculty of Engineering and Architecture of Gazi University, 30 (2), 173-184, 2015.
  • [17] S. Hamdioui, A. Hassan and G. Ch. Sirakoulis. “Memristor based memories: Technology, design and test,” 2014 9th IEEE International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS). IEEE, Inspec Accession Number: 14447109, 2014.
  • [18] Y. V. Pershin, and M. Di Ventra, “A simple test for ideal memristors,” Journal of Physics D: Applied Physics, Volume 52, Number 1, 2018.
  • [19] R. Mutlu ve E. Karakulak, “A Simple Test for Non-ideal Memristor with High ROFF/RON Ratio,” European Journal of Engineering and Applied Sciences 2 (1), 1-5, 2019.
  • [20] F. Gul, and H. Efeoglu, “Bipolar resistive switching and conduction mechanism of an Al/ZnO/Al-base memristor,” Superlattices and Microstructures, 101, 172-179, 2017.
  • [21] E. Linn, R. Rosezin, C. Kügeler, and R. Waser, “Complementary resistive switches for passive nanocrossbar memories,” Nature Mater; 9: 403–406, 2010.
  • [22] R. Rosezin, E. Linn, C. Kügeler, R. Bruchhaus, and R. Waser, “Crossbar Logic Using Bipolar and Complementary Resistive Switches,” Electron Device Letters; 32: 710–712, 2011.
  • [23] R. Rosezin, E. Linn, L. Nielen, C. Kügeler, R. Bruchhaus, and R. Waser, “Integrated Complementary Resistive Switches for Passive High-Density Nanocrossbar Arrays,” Electron Device Letters; 32: 191–193, 2011.
  • [24] D. Lin, R. Hui SY, and L. O. Chua, “Gas discharge lamps are volatile memristors,” IEEE Transactions on Circuits and Systems I: Regular Papers, Volume: 61, Issue: 7, 2066-2073, 2014.
  • [25] C. P. Uzunoğlu, Y. Babacan, F. Kaçar, and M. Uğur, “Modeling of discharge lamp characteristics by using floating memristor circuit emulator with tunable threshold,” Electric Power Components and Systems, 48(1-2), 138-147, 2020.
  • [26] E. Karakulak, R. Mutlu, and E. Uçar, “Reconstructive sensing circuit for complementary resistive switches-based crossbar memories,” Turkish Journal of Electrical Engineering & Computer Sciences, 24.3: 1371-1383, 2016.
  • [27] E. Karakulak, and R. Mutlu, “The memristive system behavior of a diac,” Journal of Computational Electronics, 19(3), 1344-1355, 2020.
  • [28] F.Z. Wang, N. Helian, S. Wu, M.G. Lim, Y. Guo, and M.A. Parker, “Delayed switching in memristors and memristive systems,” Electron Device Letters, Vol. 31, pp. 755–757, 2010.
  • [29] R. Mutlu, and E. Karakulak, “A methodology for memristance calculation,” Turkish Journal of Electrical Engineering & Computer Sciences, 22(1), 121-131, 2014.
  • [30] Z. Biolek, D. Biolek, and V. Biolkova, “SPICE Model of Memristor with Nonlinear Dopant Drift,” Radioengineering, 18.2, 210-214, 2009.
  • [31] Y. N. Joglekar, and S. J. Wolf, “The elusive memristor: properties of basic electrical circuits.” European Journal of Physics, 30.4: 661, 2009.
  • [32] T. Prodromakis, B. P. Peh, C. Papavassiliou, and C. Toumazou, “A versatile memristor model with nonlinear dopant kinetics,” IEEE transactions on electron devices, 58.9: 3099-3105, 2011.
  • [33] Y. Yang, J. Mathew, D. K. Pradhan, M. Ottavi, and S. Pontarelli, “Complementary resistive switch based stateful logic operations using material implication,” In 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE) IEEE, pp. 1-4, 2014.
  • [34] K. A. Ali, M. Rizk, A. Baghdadi, J. P. Diguet, J. Jomaah, N. Onizawa, and T. Hanyu, “Memristive computational memory using memristor overwrite logic (MOL),” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 28(11), 2370-2382, 2020.

Examination of the Reliability of a Robustness Test for the Self-Directed Channel Carbon-Based Memristors by Reading Their DC Resistance

Year 2023, , 1715 - 1724, 24.10.2023
https://doi.org/10.29130/dubited.1084460

Abstract

An ideal memristor that has been theoretically predicted almost a half-century ago is a nonlinear power dissipating circuit element. Nowadays, memristive systems such as thin films which are not ideal memristors are also called memristors. Such systems have current-dependent behavior and nonlinear charge-dependent electrical resistance. Self-directed channel Carbon-, Tungsten-, Chrome-, and Tin-based memristors have become commercially available nowadays and they are used for research purposes. All circuit components must be tested before their usage. It is expected that memristors will become commonly used in electronic circuits in the future. However, the literature has just a few memristor tests reported. To the best of our knowledge, there is not a suggested robustness test for the self-directed channel Carbon-based memristors in the literature. In this study, A recently suggested memristor robustness test which could be made using just a multimeter is modified using a series resistor. The test is tried on the Self-Directed Channel Carbon-Based memristors. Unfortunately, the test is found unreliable and invalid for the self-Directed Channel Carbon-Based memristors.

References

  • [1] L. O. Chua, “Memristor - The Missing Circuit Element,” IEEE Trans.Circuit Theory, Vol. 18, pp. 507-519, 1971.
  • [2] L. O. Chua, and S. M. Kang, “Memrisive devices and systems,” Proc.IEEE, Vol. 64, pp. 209-223, 1976.
  • [3] D. B.Strukov, G. S. Snider., D. R. Stewart, and R. S. Williams, “The missing memristor found,” Nature (London), Vol. 453, pp. 80-83, 2008.
  • [4] S. Vongehr, and M. Xiangkang “The missing memristor has not been found,” Scientific reports 5, 2015.
  • [5] T. Prodromakis, and C. Toumazou, “A review on memristive devices and applications,” 17th IEEE International Conference on Electronics, Circuits and Systems, Inspec Accession Number: 11861759, 2010.
  • [6] Y. V. Pershin, J. Martinez-Rincon, and M. Di Ventra, “Memory circuit elements: from systems to applications,” Journal of Computational and Theoretical Nanoscience 8.3: 441-448, 2011.
  • [7] Y. V. Pershin and M. Di Ventra, “Memory effects in complex materials and nanoscale systems,” Adv. Phys., vol. 60, pp. 145–227, 2011.
  • [8] L. O. Chua, “Resistance switching memories are memristors,” Appl. Phys. A, vol. 102, pp. 765–783, 2011.
  • [9] M. Roberto, G. Gelao,and A. G. Perri, “A Review on Memristor Applications,” International Journal of Advances in Engineering & Technology 8.3: 294, 2015.
  • [10] Y. V. Pershin, and M. Di Ventra, “Practical approach to programmable analog circuits with Memristors,” IEEE Transactions on Circuits and Systems I: Regular Papers, 57(8), 1857-1864, 2010.
  • [11] InformationWeek. Memristor Developer, http://www.informationweek.com/desktop/hp-hynix-to-collaborate-on-memristormemory- technology/d/did/1092114. (Date of access: 10.02.2021).
  • [12] Knowm, Self Directed Channel Memristors Datasheet, https://knowm.org/downloads/Knowm_Memristors.pdf. (Date of access: 10.02.2021), 2019.
  • [13] C. Volos, V. T. Pham, H. E. Nistazakis, and I. N. Stouboulos, “A Dream that has Come True: Chaos from a Nonlinear Circuit with a Real Memristor,” International Journal of Bifurcation and Chaos 30(13):2030036, 2020.
  • [14] S. Majzoub, A. S. Elwakil, C. Psychalinos, and B. J. Maundy, “On the mechanism of creating pinched hysteresis loops using a commercial memristor device,” AEU- International Journal of Electronics and Communications, Volume 111, 152923, 2019.
  • [15] L. Minati, L. V. Gambuzza, W. J. Thio, J. C. Sprott, and M. Frasca, “A chaotic circuit based on a physical memristor,” Chaos, Solitons & Fractals, Elsevier, vol. 138(C), 2020.
  • [16] Ş.Ç. Yener, R. Mutlu ve H. Kuntman, “Memristor Temelli Sallen-key Süzgeçler,” Journal of the Faculty of Engineering and Architecture of Gazi University, 30 (2), 173-184, 2015.
  • [17] S. Hamdioui, A. Hassan and G. Ch. Sirakoulis. “Memristor based memories: Technology, design and test,” 2014 9th IEEE International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS). IEEE, Inspec Accession Number: 14447109, 2014.
  • [18] Y. V. Pershin, and M. Di Ventra, “A simple test for ideal memristors,” Journal of Physics D: Applied Physics, Volume 52, Number 1, 2018.
  • [19] R. Mutlu ve E. Karakulak, “A Simple Test for Non-ideal Memristor with High ROFF/RON Ratio,” European Journal of Engineering and Applied Sciences 2 (1), 1-5, 2019.
  • [20] F. Gul, and H. Efeoglu, “Bipolar resistive switching and conduction mechanism of an Al/ZnO/Al-base memristor,” Superlattices and Microstructures, 101, 172-179, 2017.
  • [21] E. Linn, R. Rosezin, C. Kügeler, and R. Waser, “Complementary resistive switches for passive nanocrossbar memories,” Nature Mater; 9: 403–406, 2010.
  • [22] R. Rosezin, E. Linn, C. Kügeler, R. Bruchhaus, and R. Waser, “Crossbar Logic Using Bipolar and Complementary Resistive Switches,” Electron Device Letters; 32: 710–712, 2011.
  • [23] R. Rosezin, E. Linn, L. Nielen, C. Kügeler, R. Bruchhaus, and R. Waser, “Integrated Complementary Resistive Switches for Passive High-Density Nanocrossbar Arrays,” Electron Device Letters; 32: 191–193, 2011.
  • [24] D. Lin, R. Hui SY, and L. O. Chua, “Gas discharge lamps are volatile memristors,” IEEE Transactions on Circuits and Systems I: Regular Papers, Volume: 61, Issue: 7, 2066-2073, 2014.
  • [25] C. P. Uzunoğlu, Y. Babacan, F. Kaçar, and M. Uğur, “Modeling of discharge lamp characteristics by using floating memristor circuit emulator with tunable threshold,” Electric Power Components and Systems, 48(1-2), 138-147, 2020.
  • [26] E. Karakulak, R. Mutlu, and E. Uçar, “Reconstructive sensing circuit for complementary resistive switches-based crossbar memories,” Turkish Journal of Electrical Engineering & Computer Sciences, 24.3: 1371-1383, 2016.
  • [27] E. Karakulak, and R. Mutlu, “The memristive system behavior of a diac,” Journal of Computational Electronics, 19(3), 1344-1355, 2020.
  • [28] F.Z. Wang, N. Helian, S. Wu, M.G. Lim, Y. Guo, and M.A. Parker, “Delayed switching in memristors and memristive systems,” Electron Device Letters, Vol. 31, pp. 755–757, 2010.
  • [29] R. Mutlu, and E. Karakulak, “A methodology for memristance calculation,” Turkish Journal of Electrical Engineering & Computer Sciences, 22(1), 121-131, 2014.
  • [30] Z. Biolek, D. Biolek, and V. Biolkova, “SPICE Model of Memristor with Nonlinear Dopant Drift,” Radioengineering, 18.2, 210-214, 2009.
  • [31] Y. N. Joglekar, and S. J. Wolf, “The elusive memristor: properties of basic electrical circuits.” European Journal of Physics, 30.4: 661, 2009.
  • [32] T. Prodromakis, B. P. Peh, C. Papavassiliou, and C. Toumazou, “A versatile memristor model with nonlinear dopant kinetics,” IEEE transactions on electron devices, 58.9: 3099-3105, 2011.
  • [33] Y. Yang, J. Mathew, D. K. Pradhan, M. Ottavi, and S. Pontarelli, “Complementary resistive switch based stateful logic operations using material implication,” In 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE) IEEE, pp. 1-4, 2014.
  • [34] K. A. Ali, M. Rizk, A. Baghdadi, J. P. Diguet, J. Jomaah, N. Onizawa, and T. Hanyu, “Memristive computational memory using memristor overwrite logic (MOL),” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 28(11), 2370-2382, 2020.
There are 34 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ceylan Dalmış Ercan 0000-0001-9638-6654

Ertuğrul Karakulak 0000-0001-5937-2114

Reşat Mutlu 0000-0003-0030-7136

Publication Date October 24, 2023
Published in Issue Year 2023

Cite

APA Dalmış Ercan, C., Karakulak, E., & Mutlu, R. (2023). Examination of the Reliability of a Robustness Test for the Self-Directed Channel Carbon-Based Memristors by Reading Their DC Resistance. Duzce University Journal of Science and Technology, 11(4), 1715-1724. https://doi.org/10.29130/dubited.1084460
AMA Dalmış Ercan C, Karakulak E, Mutlu R. Examination of the Reliability of a Robustness Test for the Self-Directed Channel Carbon-Based Memristors by Reading Their DC Resistance. DÜBİTED. October 2023;11(4):1715-1724. doi:10.29130/dubited.1084460
Chicago Dalmış Ercan, Ceylan, Ertuğrul Karakulak, and Reşat Mutlu. “Examination of the Reliability of a Robustness Test for the Self-Directed Channel Carbon-Based Memristors by Reading Their DC Resistance”. Duzce University Journal of Science and Technology 11, no. 4 (October 2023): 1715-24. https://doi.org/10.29130/dubited.1084460.
EndNote Dalmış Ercan C, Karakulak E, Mutlu R (October 1, 2023) Examination of the Reliability of a Robustness Test for the Self-Directed Channel Carbon-Based Memristors by Reading Their DC Resistance. Duzce University Journal of Science and Technology 11 4 1715–1724.
IEEE C. Dalmış Ercan, E. Karakulak, and R. Mutlu, “Examination of the Reliability of a Robustness Test for the Self-Directed Channel Carbon-Based Memristors by Reading Their DC Resistance”, DÜBİTED, vol. 11, no. 4, pp. 1715–1724, 2023, doi: 10.29130/dubited.1084460.
ISNAD Dalmış Ercan, Ceylan et al. “Examination of the Reliability of a Robustness Test for the Self-Directed Channel Carbon-Based Memristors by Reading Their DC Resistance”. Duzce University Journal of Science and Technology 11/4 (October 2023), 1715-1724. https://doi.org/10.29130/dubited.1084460.
JAMA Dalmış Ercan C, Karakulak E, Mutlu R. Examination of the Reliability of a Robustness Test for the Self-Directed Channel Carbon-Based Memristors by Reading Their DC Resistance. DÜBİTED. 2023;11:1715–1724.
MLA Dalmış Ercan, Ceylan et al. “Examination of the Reliability of a Robustness Test for the Self-Directed Channel Carbon-Based Memristors by Reading Their DC Resistance”. Duzce University Journal of Science and Technology, vol. 11, no. 4, 2023, pp. 1715-24, doi:10.29130/dubited.1084460.
Vancouver Dalmış Ercan C, Karakulak E, Mutlu R. Examination of the Reliability of a Robustness Test for the Self-Directed Channel Carbon-Based Memristors by Reading Their DC Resistance. DÜBİTED. 2023;11(4):1715-24.