Research Article
BibTex RIS Cite

Fosfat Çinko Tellürit Camlarda ZnO/In2O3 Yer Değişimi Sonucu Fiziksel, Optik ve Radyasyon Zırhlama Yetenekleri Üzerine Bir Çalışma

Year 2023, , 1686 - 1699, 24.10.2023
https://doi.org/10.29130/dubited.1160535

Abstract

Eritme-tavlama yöntemi ile sentezlenen yeni In2O3 katkılı çinko fosfat tellürit camların özellikleri incelenmiştir. Sentezlenen camların saydam oldukları gözlemlenmiştir. Sentezlenen cam yoğunlukları, In2O3’ün katkı oranına bağlı olarak önemli ölçüde değişmiştir. Bu da radyasyon koruma yeteneklerinin geliştirilebileceği anlamına gelir. Öte yandan, molar hacim değerlerindeki neredeyse lineer artış, ZnO/In2O3 yer değişimi sonucunda cam ağının genişlediğini göstermektedir. In2O3 katkı oranı arttıkça optik bant aralığı değeri 2,96 eV’den 3,47 eV’ye yükselirken, Urbach enerjileri 0,350 eV’den 0,180 eV’ye düşmektedir. In2O3 katkısının fosfat çinko tellürit camlarının yapısını düzenleyici etkisi vardır. Radyasyon zırhlama özellikleri açısından değerlendirilen fosfat çinko tellürit camlarda In2O3 katkısının bu özelliklere önemli katkı sağladığı ve en iyi radyasyon zırhlama özelliğine sahip camın %6 mol In2O3 katkılı cam olduğu görülmüştür. Fosfat çinko tellürit camlarındaki ZnO/In2O3 yer değiştirmesi ile üretilen camların yoğunluk değerlerinin arttırılarak radyasyon zırhlama özelliklerinin geliştirilebildiği söylenebilir.

References

  • [1] M. Uo, M. Mizuno, Y. Kuboki, A. Makishima, and F. Watari, “Properties and cytotoxicity of water soluble Na2O–CaO–P2O5 glasses”, Biomaterials, vol. 19, no. 24, pp. 2277–2284, 1998.
  • [2] K. El-Egili, H. Doweidar, Y.M. Moustafa, and I. Abbas, “Structure and some physical properties of PbO–P2O5 glasses”, Physica B: Condensed Matter, vol. 339, no. 4, pp. 237–245, 2003.
  • [3] M. A. Lopes, R. F. Silva, F. J. Monteiro, and J. D. Santos, “Microstructural dependence of Young's and shear moduli of P2O5 glass reinforced hydroxyapatite for biomedical applications”, Biomaterials, vol. 21, no. 7, pp. 749–754, 2000.
  • [4] Z. Chen, X. Chen, W. Zhang, H. Mao, and F. Wang, “Sintering behavior and dielectric properties of La2O3–B2O3–CaO–P2O5 glass/Al2O3 composites for LTCC applications”, Journal of Materials Science: Materials in Electronics, vol. 31, no. 21, pp. 18581–18589, 2020.
  • [5] H. A. Abo-Mosallam and E. A. Mahdy, “Effect of strontium on crystallization characteristics and properties of ZnO-Fe2O3-B2O3-P2O5 glass-ceramics for biomedical applications”, Journal of Non-Crystalline Solids, vol. 583, 121467(pp. 1–7), 2022.
  • [6] Y. Zhou, Y. Yang, F. Huang, J. Ren, S. Yuan, and G. Chen, “Characterization of new tellurite glasses and crystalline phases in the TeO2–PbO–Bi2O3–B2O3 system”, Journal of Non-Crystalline Solids, vol. 386, pp. 90–94, 2014.
  • [7] M. Farahmandjou and S. A. Salehizadeh, “The optical band gap and the tailing states determination in glasses of TeO2-V2O5-K2O system”, Glass Physics and Chemistry, vol. 39, no. 5, pp. 473–479, 2013.
  • [8] K. Kato, T. Hayakawa, Y. Kasuya, and P. Thomas, “Influence of Al2O3 incorporation on the third-order nonlinear optical properties of Ag2O–TeO2 glasses”, Journal of Non-Crystalline Solids, vol. 431, pp. 97–102, 2016.
  • [9] N. S. Tagiara, D. Palles, E. D. Simandiras, V. Psycharis, A. Kyritsis, and E. I. Kamitsos, “Synthesis, thermal and structural properties of pure TeO2 glass and zinc-tellurite glasses”, Journal of Non-Crystalline Solids, vol. 457, pp. 116–125, 2017.
  • [10] A. Mori, “Tellurite-based fibers and their applications to optical communication networks”, Journal of the Ceramic Society of Japan, vol. 116, no. 1358, pp. 1040–1051, 2008.
  • [11] A. Lin, A. Zhang, E. J. Bushong, and J. Toulouse, “Solid-core tellurite glass fiber for infrared and nonlinear applications”, Optics express, vol. 17, no. 19, pp. 16716–16721, 2009.
  • [12] P. Froidevaux, A. Lemière, B. Kibler, F. Désévédavy, P. Mathey, G. Gadret, J-C. Jules, K. Nagasaki, T. Suzuki, Y. Ohishi, and F. Smektala, “Dispersion-engineered step-index tellurite fibers for mid-infrared coherent supercontinuum generation from 1.5 to 4.5 μm with sub-nanojoule femtosecond pump pulses. Applied Sciences, vol. 8, no. 10, 1875(pp. 1–13), 2018.
  • [13] E. A. Abou Neel, L. A. O’Dell, M. E. Smith, and J. C. Knowles, “Processing, characterisation, and biocompatibility of zinc modified metaphosphate based glasses for biomedical applications”, Journal of Materials Science: Materials in Medicine, vol. 19, no. 4, pp. 1669–1679, 2008.
  • [14] G. Kilic, E. Ilik, S. A. Issa, B. Issa, U. G. Issever, H. M. Zakaly, and H. O. Tekin, “Fabrication, structural, optical, physical and radiation shielding characterization of indium (III) oxide reinforced 85TeO2-(15–x)ZnO-xIn2O3 glass system”, Ceramics International, vol. 47, no. 19, pp. 27305–27315, 2021.
  • [15] Y. Meng, X. L. Yang, H. X. Chen, J. Shen, Y. M. Jiang, Z. J. Zhang, and Z. Y. Hua, “A new transparent conductive thin film In2O3: Mo”, Thin Solid Films, vol. 394, no. 1–2, pp. 218–222, 2001.
  • [16] A. El Hichou, A. Kachouane, J. L. Bubendorff, M. Addou, J. Ebothe, M. Troyon, and A. Bougrine, “Effect of substrate temperature on electrical, structural, optical and cathodoluminescent properties of In2O3-Sn thin films prepared by spray pyrolysis”, Thin Solid Films, vol. 458, no. 1–2, pp. 263–268, 2004.
  • [17] P. Chen, Y. Mao, S. Hou, Y. Chen, X. Liu, Y. Lou, A. Chen, L. Yang, N. Li, and N. Dai, (2019). Effects of In2O3 nanoparticles doping on the photoluminescent properties of Eu2+/Eu3+ ions in silica glasses”, Ceramics International, vol. 45, no. 1, pp. 233–238, 2019.
  • [18] T. Konishi, T. Hondo, T. Araki, K. Nishio, T. Tsuchiya, T. Matsumoto, S. Suehara, S. Todoroki, and S. Inoue, “Investigation of glass formation and color properties in the P2O5–TeO2–ZnO system”, Journal of Non-Crystalline Solids, vol. 324, no. 1–2, pp. 58–66, 2003.
  • [19] E. Kavaz, E. Ilik, G. Kilic, G. ALMisned, and H. O. Tekin, “Synthesis and experimental characterization on fast neutron and gamma-ray attenuation properties of high-dense and transparent Cadmium oxide (CdO) glasses for shielding purposes”, Ceramics International, vol. 48, no. 16, pp. 23444–23451, 2022.
  • [20] G. Kilic, E. Kavaz, E. Ilik, G. ALMisned, and H. O. Tekin, “CdO-rich quaternary tellurite glasses for nuclear safety purposes: Synthesis and experimental gamma-ray and neutron radiation assessment of high-density and transparent samples”, Optical Materials, vol. 129, 112512, pp. 1–10, 2022.
  • [21] R. Garkova, G. Völksch, and C. Rüssel, “In2O3 and tin-doped In2O3 nanocrystals prepared by glass crystallization”, Journal of Non-Crystalline Solids, vol. 352, no. 50–51, pp. 5265–5270, 2006.
  • [22] L. Gerward, N. Guilbert, K. B. Jensen, and H. Levring, (2004). “WinXCom—a program for calculating X-ray attenuation coefficients” Radiation Physics and Chemistry, vol. 71, no. 3-4, pp. 653–654, 2004.
  • [23] E. Ilik, “Effect of heavy rare-earth element oxides on physical, optical and gamma-ray protection abilities of zinc-borate glasses”, Applied Physics A, vol. 128, no. 6, pp. 1–10, 2022.
  • [24] G. Kilic, E. Ilik, U. G. Issever, and M. Peker, “The effect of B2O3/CdO substitution on structural, thermal, and optical properties of new black PVB/Cd semiconducting oxide glasses”, Applied Physics A, vol. 126, no. 7, pp. 1-12, 2020.
  • [25] J. Gouteron, D. Michel, A. M. Lejus, and J. Zarembowitch, “Raman spectra of lanthanide sesquioxide single crystals: Correlation between A and B-type structures”, Journal of Solid State Chemistry, vol. 38, no 3, pp. 288–296, 1981.
  • [26] G. Kilic, E. Ilik, S. A. Issa, and H. O. Tekin, “Synthesis and structural, optical, physical properties of Gadolinium (III) oxide reinforced TeO2–B2O3–(20-x) Li2O-xGd2O3 glass system”, Journal of Alloys and Compounds, vol. 877, 160302, pp. 1–12, 2021.
  • [27] E. Kavaz, H. O. Tekin, G. Kilic, and G. Susoy, “Newly developed Zinc-Tellurite glass system: an experimental investigation on impact of Ta2O5 on nuclear radiation shielding ability”, Journal of Non-Crystalline Solids, vol. 544, 120169, pp. 1–11, 2020.
  • [28] E. Kavaz, “An experimental study on gamma ray shielding features of lithium borate glasses doped with dolomite, hematite and goethite minerals”, Radiation Physics and Chemistry, vol. 160, pp. 112–123, 2019.
  • [29] O. Olarinoye, “Variation of effective atomic numbers of some thermoluminescence and phantom materials with photon energies”, Research Journal of Chemical Sciences, vol. 1, no. 2, pp. 64–69, 2011.

A Study on the Physical, Optical and Radiation Shielding Capabilities of Phosphate Zinc Telluride Glasses as a Result of ZnO/In2O3 Translocation

Year 2023, , 1686 - 1699, 24.10.2023
https://doi.org/10.29130/dubited.1160535

Abstract

New In2O3-doped phosphate zinc tellurite glasses synthesized using melt-quenching method were investigated. It was observed that the synthesized glasses exhibit transparent properties. Densities of synthesized glasses changed significantly related to the doping ratio of In2O3. This implies that radiation shielding abilities can be enhanced. In other respects, the almost linear elevation in molar volume values indicated that the glass network expanded as a result of the ZnO/In2O3 translocation. As the additive ratio increases, the optical band gap value increases from 2.96 eV to 3.47 eV, while the Urbach energies decrease from 0.350 eV to 0.180 eV. In2O3 contribution has a regulatory effect on the structure of phosphate zinc tellurite glasses. In phosphate zinc tellurite glasses evaluated in terms of radiation shielding properties, it was observed that the In2O3 additive contributed significantly to the shielding properties and the glass with the best radiation shielding was 6 mol% In2O3 doped glass. It is obvious that by raising the density values of the produced glasses, the ZnO/In2O3 translocation in phosphate zinc tellurite glasses enhanced their radiation shielding properties.

References

  • [1] M. Uo, M. Mizuno, Y. Kuboki, A. Makishima, and F. Watari, “Properties and cytotoxicity of water soluble Na2O–CaO–P2O5 glasses”, Biomaterials, vol. 19, no. 24, pp. 2277–2284, 1998.
  • [2] K. El-Egili, H. Doweidar, Y.M. Moustafa, and I. Abbas, “Structure and some physical properties of PbO–P2O5 glasses”, Physica B: Condensed Matter, vol. 339, no. 4, pp. 237–245, 2003.
  • [3] M. A. Lopes, R. F. Silva, F. J. Monteiro, and J. D. Santos, “Microstructural dependence of Young's and shear moduli of P2O5 glass reinforced hydroxyapatite for biomedical applications”, Biomaterials, vol. 21, no. 7, pp. 749–754, 2000.
  • [4] Z. Chen, X. Chen, W. Zhang, H. Mao, and F. Wang, “Sintering behavior and dielectric properties of La2O3–B2O3–CaO–P2O5 glass/Al2O3 composites for LTCC applications”, Journal of Materials Science: Materials in Electronics, vol. 31, no. 21, pp. 18581–18589, 2020.
  • [5] H. A. Abo-Mosallam and E. A. Mahdy, “Effect of strontium on crystallization characteristics and properties of ZnO-Fe2O3-B2O3-P2O5 glass-ceramics for biomedical applications”, Journal of Non-Crystalline Solids, vol. 583, 121467(pp. 1–7), 2022.
  • [6] Y. Zhou, Y. Yang, F. Huang, J. Ren, S. Yuan, and G. Chen, “Characterization of new tellurite glasses and crystalline phases in the TeO2–PbO–Bi2O3–B2O3 system”, Journal of Non-Crystalline Solids, vol. 386, pp. 90–94, 2014.
  • [7] M. Farahmandjou and S. A. Salehizadeh, “The optical band gap and the tailing states determination in glasses of TeO2-V2O5-K2O system”, Glass Physics and Chemistry, vol. 39, no. 5, pp. 473–479, 2013.
  • [8] K. Kato, T. Hayakawa, Y. Kasuya, and P. Thomas, “Influence of Al2O3 incorporation on the third-order nonlinear optical properties of Ag2O–TeO2 glasses”, Journal of Non-Crystalline Solids, vol. 431, pp. 97–102, 2016.
  • [9] N. S. Tagiara, D. Palles, E. D. Simandiras, V. Psycharis, A. Kyritsis, and E. I. Kamitsos, “Synthesis, thermal and structural properties of pure TeO2 glass and zinc-tellurite glasses”, Journal of Non-Crystalline Solids, vol. 457, pp. 116–125, 2017.
  • [10] A. Mori, “Tellurite-based fibers and their applications to optical communication networks”, Journal of the Ceramic Society of Japan, vol. 116, no. 1358, pp. 1040–1051, 2008.
  • [11] A. Lin, A. Zhang, E. J. Bushong, and J. Toulouse, “Solid-core tellurite glass fiber for infrared and nonlinear applications”, Optics express, vol. 17, no. 19, pp. 16716–16721, 2009.
  • [12] P. Froidevaux, A. Lemière, B. Kibler, F. Désévédavy, P. Mathey, G. Gadret, J-C. Jules, K. Nagasaki, T. Suzuki, Y. Ohishi, and F. Smektala, “Dispersion-engineered step-index tellurite fibers for mid-infrared coherent supercontinuum generation from 1.5 to 4.5 μm with sub-nanojoule femtosecond pump pulses. Applied Sciences, vol. 8, no. 10, 1875(pp. 1–13), 2018.
  • [13] E. A. Abou Neel, L. A. O’Dell, M. E. Smith, and J. C. Knowles, “Processing, characterisation, and biocompatibility of zinc modified metaphosphate based glasses for biomedical applications”, Journal of Materials Science: Materials in Medicine, vol. 19, no. 4, pp. 1669–1679, 2008.
  • [14] G. Kilic, E. Ilik, S. A. Issa, B. Issa, U. G. Issever, H. M. Zakaly, and H. O. Tekin, “Fabrication, structural, optical, physical and radiation shielding characterization of indium (III) oxide reinforced 85TeO2-(15–x)ZnO-xIn2O3 glass system”, Ceramics International, vol. 47, no. 19, pp. 27305–27315, 2021.
  • [15] Y. Meng, X. L. Yang, H. X. Chen, J. Shen, Y. M. Jiang, Z. J. Zhang, and Z. Y. Hua, “A new transparent conductive thin film In2O3: Mo”, Thin Solid Films, vol. 394, no. 1–2, pp. 218–222, 2001.
  • [16] A. El Hichou, A. Kachouane, J. L. Bubendorff, M. Addou, J. Ebothe, M. Troyon, and A. Bougrine, “Effect of substrate temperature on electrical, structural, optical and cathodoluminescent properties of In2O3-Sn thin films prepared by spray pyrolysis”, Thin Solid Films, vol. 458, no. 1–2, pp. 263–268, 2004.
  • [17] P. Chen, Y. Mao, S. Hou, Y. Chen, X. Liu, Y. Lou, A. Chen, L. Yang, N. Li, and N. Dai, (2019). Effects of In2O3 nanoparticles doping on the photoluminescent properties of Eu2+/Eu3+ ions in silica glasses”, Ceramics International, vol. 45, no. 1, pp. 233–238, 2019.
  • [18] T. Konishi, T. Hondo, T. Araki, K. Nishio, T. Tsuchiya, T. Matsumoto, S. Suehara, S. Todoroki, and S. Inoue, “Investigation of glass formation and color properties in the P2O5–TeO2–ZnO system”, Journal of Non-Crystalline Solids, vol. 324, no. 1–2, pp. 58–66, 2003.
  • [19] E. Kavaz, E. Ilik, G. Kilic, G. ALMisned, and H. O. Tekin, “Synthesis and experimental characterization on fast neutron and gamma-ray attenuation properties of high-dense and transparent Cadmium oxide (CdO) glasses for shielding purposes”, Ceramics International, vol. 48, no. 16, pp. 23444–23451, 2022.
  • [20] G. Kilic, E. Kavaz, E. Ilik, G. ALMisned, and H. O. Tekin, “CdO-rich quaternary tellurite glasses for nuclear safety purposes: Synthesis and experimental gamma-ray and neutron radiation assessment of high-density and transparent samples”, Optical Materials, vol. 129, 112512, pp. 1–10, 2022.
  • [21] R. Garkova, G. Völksch, and C. Rüssel, “In2O3 and tin-doped In2O3 nanocrystals prepared by glass crystallization”, Journal of Non-Crystalline Solids, vol. 352, no. 50–51, pp. 5265–5270, 2006.
  • [22] L. Gerward, N. Guilbert, K. B. Jensen, and H. Levring, (2004). “WinXCom—a program for calculating X-ray attenuation coefficients” Radiation Physics and Chemistry, vol. 71, no. 3-4, pp. 653–654, 2004.
  • [23] E. Ilik, “Effect of heavy rare-earth element oxides on physical, optical and gamma-ray protection abilities of zinc-borate glasses”, Applied Physics A, vol. 128, no. 6, pp. 1–10, 2022.
  • [24] G. Kilic, E. Ilik, U. G. Issever, and M. Peker, “The effect of B2O3/CdO substitution on structural, thermal, and optical properties of new black PVB/Cd semiconducting oxide glasses”, Applied Physics A, vol. 126, no. 7, pp. 1-12, 2020.
  • [25] J. Gouteron, D. Michel, A. M. Lejus, and J. Zarembowitch, “Raman spectra of lanthanide sesquioxide single crystals: Correlation between A and B-type structures”, Journal of Solid State Chemistry, vol. 38, no 3, pp. 288–296, 1981.
  • [26] G. Kilic, E. Ilik, S. A. Issa, and H. O. Tekin, “Synthesis and structural, optical, physical properties of Gadolinium (III) oxide reinforced TeO2–B2O3–(20-x) Li2O-xGd2O3 glass system”, Journal of Alloys and Compounds, vol. 877, 160302, pp. 1–12, 2021.
  • [27] E. Kavaz, H. O. Tekin, G. Kilic, and G. Susoy, “Newly developed Zinc-Tellurite glass system: an experimental investigation on impact of Ta2O5 on nuclear radiation shielding ability”, Journal of Non-Crystalline Solids, vol. 544, 120169, pp. 1–11, 2020.
  • [28] E. Kavaz, “An experimental study on gamma ray shielding features of lithium borate glasses doped with dolomite, hematite and goethite minerals”, Radiation Physics and Chemistry, vol. 160, pp. 112–123, 2019.
  • [29] O. Olarinoye, “Variation of effective atomic numbers of some thermoluminescence and phantom materials with photon energies”, Research Journal of Chemical Sciences, vol. 1, no. 2, pp. 64–69, 2011.
There are 29 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Erkan İlik 0000-0003-2986-0015

Publication Date October 24, 2023
Published in Issue Year 2023

Cite

APA İlik, E. (2023). A Study on the Physical, Optical and Radiation Shielding Capabilities of Phosphate Zinc Telluride Glasses as a Result of ZnO/In2O3 Translocation. Duzce University Journal of Science and Technology, 11(4), 1686-1699. https://doi.org/10.29130/dubited.1160535
AMA İlik E. A Study on the Physical, Optical and Radiation Shielding Capabilities of Phosphate Zinc Telluride Glasses as a Result of ZnO/In2O3 Translocation. DÜBİTED. October 2023;11(4):1686-1699. doi:10.29130/dubited.1160535
Chicago İlik, Erkan. “A Study on the Physical, Optical and Radiation Shielding Capabilities of Phosphate Zinc Telluride Glasses As a Result of ZnO/In2O3 Translocation”. Duzce University Journal of Science and Technology 11, no. 4 (October 2023): 1686-99. https://doi.org/10.29130/dubited.1160535.
EndNote İlik E (October 1, 2023) A Study on the Physical, Optical and Radiation Shielding Capabilities of Phosphate Zinc Telluride Glasses as a Result of ZnO/In2O3 Translocation. Duzce University Journal of Science and Technology 11 4 1686–1699.
IEEE E. İlik, “A Study on the Physical, Optical and Radiation Shielding Capabilities of Phosphate Zinc Telluride Glasses as a Result of ZnO/In2O3 Translocation”, DÜBİTED, vol. 11, no. 4, pp. 1686–1699, 2023, doi: 10.29130/dubited.1160535.
ISNAD İlik, Erkan. “A Study on the Physical, Optical and Radiation Shielding Capabilities of Phosphate Zinc Telluride Glasses As a Result of ZnO/In2O3 Translocation”. Duzce University Journal of Science and Technology 11/4 (October 2023), 1686-1699. https://doi.org/10.29130/dubited.1160535.
JAMA İlik E. A Study on the Physical, Optical and Radiation Shielding Capabilities of Phosphate Zinc Telluride Glasses as a Result of ZnO/In2O3 Translocation. DÜBİTED. 2023;11:1686–1699.
MLA İlik, Erkan. “A Study on the Physical, Optical and Radiation Shielding Capabilities of Phosphate Zinc Telluride Glasses As a Result of ZnO/In2O3 Translocation”. Duzce University Journal of Science and Technology, vol. 11, no. 4, 2023, pp. 1686-99, doi:10.29130/dubited.1160535.
Vancouver İlik E. A Study on the Physical, Optical and Radiation Shielding Capabilities of Phosphate Zinc Telluride Glasses as a Result of ZnO/In2O3 Translocation. DÜBİTED. 2023;11(4):1686-99.