Research Article
BibTex RIS Cite

Metal (Ni) Katkılı Metal Oksit (ZnO) Heteronanoyapıların Sentezi ve Morfolojik-Optik Özelliklerinin İncelenmesi

Year 2023, , 1782 - 1793, 24.10.2023
https://doi.org/10.29130/dubited.1167452

Abstract

Bu çalışmada, hidrotermal yöntemle FTO üzerine farklı hacimlerde Nikel (Ni) katkılı Çinko oksit (ZnO) ince filmler biriktirilmiştir. Filmler SEM, EDS ve UV-Vis Spektroskopisi ile karakterize edildi. SEM görüntüleri incelendiğinde katkılı (v) nikel-ZnO miktarı katkısız nikel-ZnO'ya göre arttığı için nanoyapılar farklı morfolojik özellikler göstermiştir. Ayrıca elde edilen film yüzeyinin homojen bir dağılıma sahip olduğu gösterildi. EDS spektrumları, Ni'nin hacimce katılımı ve film bileşimindeki varlığı ile Ni miktarının arttığını tespit edilmiştir. UV-Vis Spektroskopisi sonuçları, Ni katkılamanın geçirgenlik ve bant aralığı değerlerini 2,94'ten 3,38'e değiştirebileceğini ve böylece ZnO bant boşluğunun Ni katkılaması ile ayarlanabileceğini göstermiştir. Elde edilen bulgular sonucunda ZnO-NiO ince filmler hem yüksek performanslı hetero nanoyapılar hem de pratik uygulamalar için umut verici adaylardır.

Project Number

Proje no: 2021.05.03.1250

References

  • [1] U. T. Nakate et al., “Improved selectivity and low concentration hydrogen gas sensor application of Pd sensitized heterojunction n-ZnO/p-NiO nanostructures,” J. Alloys Compd., vol. 797, pp. 456–464, 2019, doi: 10.1016/j.jallcom.2019.05.111.
  • [2] S.K. Tripathi, R. Kaur, M. Rani “Oxide Nanomaterials and their Applications as a Memristor,” Solid State Phenomena, vol. 222, pp. 67-97, 2015, doi:10.4028/www.scientific.net/SSP.222.67.
  • [3] K. Al-Mayalee, N. S. Saadi, E. Badradeen, F. Watanabe, and T. Karabacak, “Optical and Photoconductive Response of CuO Nanostructures Grown by a Simple Hot-Water Treatment Method,” J. Phys. Chem. C, 122, 41, 23312–23320, 2018, doi: 10.1021/acs.jpcc.8b06783.
  • [4] G. Neumark, Y. Gong, and I. Kuskovsky, “Doping Aspects of Zn-Based Wide-Band-Gap Semiconductors,” Springer Handbooks, vol. 3, pp. 843–854, 2007, doi: 10.1007/978-0-387-29185-7_35.
  • [5] Z. Fan and J. G. Lu, “Zinc oxide nanostructures: Synthesis and properties,” J. Nanosci. Nanotechnol., vol. 5, no. 10, pp. 1561–1573, 2005, doi: 10.1166/jnn.2005.182.
  • [6] A. Janotti and C. G. Van De Walle, “Fundamentals of zinc oxide as a semiconductor,” Reports Prog. Phys., vol. 72, no. 12, 2009, doi: 10.1088/0034-4885/72/12/126501.
  • [7] Y. Zhang, M. K. Ram, E. K. Stefanakos, and D. Y. Goswami, “Synthesis, characterization, and applications of ZnO nanowires,” J. Nanomater., vol. 2012, 2012, doi: 10.1155/2012/624520.
  • [8] J. S. Wellings, N. B. Chaure, S. N. Heavens, and I. M. Dharmadasa, “Growth and characterisation of electrodeposited ZnO thin films,” Thin Solid Films, vol. 516, no. 12, pp. 3893–3898, 2008, doi: 10.1016/j.tsf.2007.07.156.
  • [9] Z. Lin and J. Song, “Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays Author(s): Zhong Lin Wang and Jinhui Song Source:,” Science (80-. )., vol. 312, no. 5771, pp. 242–246, 2006, doi: 10.1126/science.1124005.
  • [10] L. Vayssieres, K. Keis, A. Hagfeldt, and S. E. Lindquist, “Three-dimensional array of highly oriented crystalline ZnO microtubes,” Chem. Mater., vol. 13, no. 12, pp. 4395–4398, 2001, doi: 10.1021/cm011160s.
  • [11] A. Wibowo et al., “ZnO nanostructured materials for emerging solar cell applications,” RSC Adv., vol. 10, no. 70, pp. 42838–42859, 2020, doi: 10.1039/d0ra07689a.
  • [12] M. Biçer, M. Gökçen, and E. Orhan, “Fabrication and Photoanode Performance of ZnO Nanoflowers in ZnO-Based Dye-Sensitized Solar Cells,” SSRN Electron. J., vol. 131, no. June, pp. 2–7, 2022, doi: 10.2139/ssrn.4072317.
  • [13] N. Izu et al., “Polyol synthesis of Al-doped ZnO spherical nanoparticles and their UV-vis-NIR absorption properties,” Ceram. Int., vol. 40, no. 6, pp. 8775–8781, 2014, doi: 10.1016/j.ceramint.2014.01.099.
  • [14] M. Rajalakshmi, S. Sohila, S. Ramya, R. Divakar, C. Ghosh, and S. Kalavathi, “Blue green and UV emitting ZnO nanoparticles synthesized through a non-aqueous route,” Opt. Mater. (Amst)., vol. 34, no. 8, pp. 1241–1245, 2012, doi: 10.1016/j.optmat.2012.01.021.
  • [15] C. A. Jaramillo-Páez, J. A. Navío, M. C. Hidalgo, and M. Macías, “ZnO and Pt-ZnO photocatalysts: Characterization and photocatalytic activity assessing by means of three substrates,” Catal. Today, vol. 313, no. December 2017, pp. 12–19, 2018, doi: 10.1016/j.cattod.2017.12.009.
  • [16] X. Chen, Z. Wu, D. Liu, and Z. Gao, “Preparation of ZnO Photocatalyst for the Efficient and Rapid Photocatalytic Degradation of Azo Dyes,” Nanoscale Res. Lett., vol. 12, no. 1, pp. 4–13, 2017, doi: 10.1186/s11671-017-1904-4.
  • [17] J. Xie, Y. Cao, D. Jia, Y. Li, and Y. Wang, “Solid-state synthesis of Y-doped ZnO nanoparticles with selective-detection gas-sensing performance,” Ceram. Int., vol. 42, no. 1, pp. 90–96, 2016, doi: 10.1016/j.ceramint.2015.07.135.
  • [18] J. Guo and C. Peng, “Synthesis of ZnO nanoparticles with a novel combustion method and their C2H5OH gas sensing properties,” Ceram. Int., vol. 41, no. 2, pp. 2180–2186, 2015, doi: 10.1016/j.ceramint.2014.10.017.
  • [19] M. C. Li et al., “Effect of annealing temperature on the optoelectronic properties and structure of NiO films,” Ceram. Int., vol. 48, no. 2, pp. 2820–2825, 2022, doi: 10.1016/j.ceramint.2021.10.071.
  • [20] G. T. Anand, R. Nithiyavathi, R. Ramesh, S. John Sundaram, and K. Kaviyarasu, “Structural and optical properties of nickel oxide nanoparticles: Investigation of antimicrobial applications,” Surfaces and Interfaces, vol. 18, no. February, p. 100460, 2020, doi: 10.1016/j.surfin.2020.100460.
  • [21] P. Iyyappa Rajan et al., “Green-fuel-mediated synthesis of self-assembled NiO nano-sticks for dual applications-photocatalytic activity on Rose Bengal dye and antimicrobial action on bacterial strains,” Mater. Res. Express, vol. 4, no. 8, 2017, doi: 10.1088/2053-1591/aa7e3c.
  • [22] A. A. Ezhilarasi, J. J. Vijaya, L. J. Kennedy, and K. Kaviyarasu, “Green mediated NiO nano-rods using Phoenix dactylifera (Dates) extract for biomedical and environmental applications,” Mater. Chem. Phys., vol. 241, no. November 2019, p. 122419, 2020, doi: 10.1016/j.matchemphys.2019.122419.
  • [23] S. T. Fardood, A. Ramazani, and S. Moradi, “A novel green synthesis of nickel oxide nanoparticles using arabic gum,” Chem. J. Mold., vol. 12, no. 1, pp. 115–118, 2017, doi: 10.19261/cjm.2017.383.
  • [24] A. A. Ezhilarasi, J. J. Vijaya, K. Kaviyarasu, M. Maaza, A. Ayeshamariam, and L. J. Kennedy, “Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: Cytotoxicity effect of nanoparticles against HT-29 cancer cells,” J. Photochem. Photobiol. B Biol., vol. 164, pp. 352–360, 2016, doi: 10.1016/j.jphotobiol.2016.10.003.
  • [25] M. El-Kemary, N. Nagy, and I. El-Mehasseb, “Nickel oxide nanoparticles: Synthesis and spectral studies of interactions with glucose,” Mater. Sci. Semicond. Process., vol. 16, no. 6, pp. 1747–1752, 2013, doi: 10.1016/j.mssp.2013.05.018.
  • [26] M. A. Ciolan and I. Motrescu, “Pulsed Laser Ablation: A Facile and Low-Temperature Fabrication of Highly Oriented n-Type Zinc Oxide Thin Films,” Appl. Sci., vol. 12, no. 2, 2022, doi: 10.3390/app12020917.
  • [27] T. P. Mokoena et al., “Enhanced propanol gas sensing performance of p-type NiO gas sensor induced by exceptionally large surface area and crystallinity,” Appl. Surf. Sci., vol. 571, no. April 2021, p. 151121, 2022, doi: 10.1016/j.apsusc.2021.151121.
  • [28] L. Zhu, Y. Li, and W. Zeng, “Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties,” Appl. Surf. Sci., vol. 427, no. 3, pp. 281–287, 2018, doi: 10.1016/j.apsusc.2017.08.229.
  • [29] N. D. Hoa, P. Van Tong, C. M. Hung, N. Van Duy, and N. Van Hieu, “Urea mediated synthesis of Ni(OH)2 nanowires and their conversion into NiO nanostructure for hydrogen gas-sensing application,” Int. J. Hydrogen Energy, vol. 43, no. 19, pp. 9446–9453, 2018, doi: 10.1016/j.ijhydene.2018.03.166.
  • [30] P. Dai, T. tao Yan, X. xin Yu, Z. man Bai, and M. zai Wu, “Two-Solvent Method Synthesis of NiO/ZnO Nanoparticles Embedded in Mesoporous SBA-15: Photocatalytic Properties Study,” Nanoscale Res. Lett., vol. 11, no. 1, 2016, doi: 10.1186/s11671-016-1445-2.
  • [31] J. Cai, R. Li, J. Cao, J. Liu, J. Han, and M. Huang, “Plasmonic Au-decorated hierarchical p-NiO/n-ZnO heterostructure arrays for enhanced photoelectrochemical water splitting,” Phys. E Low-Dimensional Syst. Nanostructures, vol. 135, no. September 2021, p. 114974, 2022, doi: 10.1016/j.physe.2021.114974.
  • [32] P. Sahoo, A. Sharma, S. Padhan, and R. Thangavel, “Construction of ZnO@NiO heterostructure photoelectrodes for improved photoelectrochemical performance,” Int. J. Hydrogen Energy, vol. 46, no. 73, pp. 36176–36188, 2021, doi: 10.1016/j.ijhydene.2021.08.154.
  • [33] C. Su et al., “Glucose-assisted synthesis of hierarchical NiO-ZnO heterostructure with enhanced glycol gas sensing performance,” Sensors Actuators, B Chem., vol. 329, no. March 2020, p. 129167, 2021, doi: 10.1016/j.snb.2020.129167.
  • [34] M. Biçer, “One-Step Hydrothermal Deposition of ZnO–TiO2 Heterojunction Nanostructures as Photoelectrochemical Performance for Sb2S3 Quantum-Dot-Sensitized Solar Cells by High-Efficiency Enhancement,” Crystallogr. Reports, vol. 66, no. 6, pp. 1117–1124, 2021, doi: 10.1134/S1063774521060067.
  • [35] M. Biçer, “ZnO-TiO2 Hetero Nanoyapılarının Sentezi ve Güneş Pilleri için Fotoelektrokimyasal Performansı” Düzce Üniversitesi Bilim ve Teknol. Derg., vol. 9, 262–272, 2021, doi: 10.29130/dubited.840584.
  • [36] M. A. Shafi, A. Bouich, K. Fradi, J. M. Guaita, L. Khan, and B. Mari, “Effect of deposition cycles on the properties of ZnO thin films deposited by spin coating method for CZTS-based solar cells,” Optik (Stuttg)., vol. 258, no. September 2021, p. 168854, 2022, doi: 10.1016/j.ijleo.2022.168854.
  • [37] P. K. Sharma, R. K. Dutta, and A. C. Pandey, “Effect of nickel doping concentration on structural and magnetic properties of ultrafine diluted magnetic semiconductor ZnO nanoparticles,” J. Magn. Magn. Mater., vol. 321, no. 20, pp. 3457–3461, 2009, doi: 10.1016/j.jmmm.2009.06.055.
  • [38] G. Vijayaprasath et al., “Role of nickel doping on structural, optical, magnetic properties and antibacterial activity of ZnO nanoparticles,” Mater. Res. Bull., vol. 76, pp. 48–61, 2016, doi: 10.1016/j.materresbull.2015.11.053.
  • [39] Y. Liu, G. Li, R. Mi, C. Deng, and P. Gao, “An environment-benign method for the synthesis of p-NiO/n-ZnO heterostructure with excellent performance for gas sensing and photocatalysis,” Sensors Actuators, B Chem., vol. 191, pp. 537–544, 2014, doi: 10.1016/j.snb.2013.10.068.
  • [40] A. Adachi, A. Kudo, T. Sakata, “The Optical and Photoelectrochemical Properties of Electrodeposited CdS and SnS Thin Films,” Bull. Chem. Soc. Jpn, vol. 68, pp. 3283-3288, 1995, doi: 10.1246/bcsj.68.3283.
  • [41] M. Biçer, İ. Şişman, “Electrodeposition and growth mechanism of SnSe thin films,” Appl. Surf. Sci, vol. 257, pp. 2944–2949, 2011, doi:10.1016/j.apsusc.2010.10.096.
  • [42] K. R. Rajesh, C. S. Menon, “Electrical and optical properties of vacuum deposited MnPc thin films,” Eur. Phys. J. B, vol. 47, pp. 171, 2005, doi: 10.1140/epjb/e2005-00317-x.
  • [43] G. Srinet, R. Kumar, and V. Sajal, “Structural, optical, vibrational, and magnetic properties of sol-gel derived Ni doped ZnO nanoparticles,” J. Appl. Phys., vol. 114, no. 3, 2013, doi: 10.1063/1.4813868.
  • [44] R. N. Ali, H. Naz, J. Li, X. Zhu, P. Liu, and B. Xiang, “Band gap engineering of transition metal (Ni/Co) codoped in zinc oxide (ZnO) nanoparticles,” J. Alloys Compd., vol. 744, pp. 90–95, 2018, doi: 10.1016/j.jallcom.2018.02.072.

Synthesis of Metal (Ni) Doped Metal Oxide (ZnO) Heteronanostructures and Investigation of Their Morphological-Optical Properties

Year 2023, , 1782 - 1793, 24.10.2023
https://doi.org/10.29130/dubited.1167452

Abstract

In this study, different volumes of Nickel (Ni) doped Zinc oxide (ZnO) thin films were deposited on FTO by hydrothermal method. The films were characterized by SEM, EDS, and UV-Vis Spectroscopy. When the SEM images were examined, the nanostructures showed different morphological features as the amount of doped (v) nickel-ZnO increased in comparison to undoped nickel-ZnO. Furthermore, it was demonstrated that the obtained film surface has a homogeneous distribution. EDS spectra showed the increase in Ni by volume and its presence in the film composition. The UV-Vis Spectroscopy results showed that Ni doping can change the transmittance and band gap values from 2.94 to 3.38, and thus the ZnO band gap can be adjusted by Ni doping. As a result of the findings, ZnO-NiO thin films are promising candidates for both high-performance hetero nanostructures and practical applications.

Supporting Institution

This study was supported by Düzce University Scientific Research Projects

Project Number

Proje no: 2021.05.03.1250

References

  • [1] U. T. Nakate et al., “Improved selectivity and low concentration hydrogen gas sensor application of Pd sensitized heterojunction n-ZnO/p-NiO nanostructures,” J. Alloys Compd., vol. 797, pp. 456–464, 2019, doi: 10.1016/j.jallcom.2019.05.111.
  • [2] S.K. Tripathi, R. Kaur, M. Rani “Oxide Nanomaterials and their Applications as a Memristor,” Solid State Phenomena, vol. 222, pp. 67-97, 2015, doi:10.4028/www.scientific.net/SSP.222.67.
  • [3] K. Al-Mayalee, N. S. Saadi, E. Badradeen, F. Watanabe, and T. Karabacak, “Optical and Photoconductive Response of CuO Nanostructures Grown by a Simple Hot-Water Treatment Method,” J. Phys. Chem. C, 122, 41, 23312–23320, 2018, doi: 10.1021/acs.jpcc.8b06783.
  • [4] G. Neumark, Y. Gong, and I. Kuskovsky, “Doping Aspects of Zn-Based Wide-Band-Gap Semiconductors,” Springer Handbooks, vol. 3, pp. 843–854, 2007, doi: 10.1007/978-0-387-29185-7_35.
  • [5] Z. Fan and J. G. Lu, “Zinc oxide nanostructures: Synthesis and properties,” J. Nanosci. Nanotechnol., vol. 5, no. 10, pp. 1561–1573, 2005, doi: 10.1166/jnn.2005.182.
  • [6] A. Janotti and C. G. Van De Walle, “Fundamentals of zinc oxide as a semiconductor,” Reports Prog. Phys., vol. 72, no. 12, 2009, doi: 10.1088/0034-4885/72/12/126501.
  • [7] Y. Zhang, M. K. Ram, E. K. Stefanakos, and D. Y. Goswami, “Synthesis, characterization, and applications of ZnO nanowires,” J. Nanomater., vol. 2012, 2012, doi: 10.1155/2012/624520.
  • [8] J. S. Wellings, N. B. Chaure, S. N. Heavens, and I. M. Dharmadasa, “Growth and characterisation of electrodeposited ZnO thin films,” Thin Solid Films, vol. 516, no. 12, pp. 3893–3898, 2008, doi: 10.1016/j.tsf.2007.07.156.
  • [9] Z. Lin and J. Song, “Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays Author(s): Zhong Lin Wang and Jinhui Song Source:,” Science (80-. )., vol. 312, no. 5771, pp. 242–246, 2006, doi: 10.1126/science.1124005.
  • [10] L. Vayssieres, K. Keis, A. Hagfeldt, and S. E. Lindquist, “Three-dimensional array of highly oriented crystalline ZnO microtubes,” Chem. Mater., vol. 13, no. 12, pp. 4395–4398, 2001, doi: 10.1021/cm011160s.
  • [11] A. Wibowo et al., “ZnO nanostructured materials for emerging solar cell applications,” RSC Adv., vol. 10, no. 70, pp. 42838–42859, 2020, doi: 10.1039/d0ra07689a.
  • [12] M. Biçer, M. Gökçen, and E. Orhan, “Fabrication and Photoanode Performance of ZnO Nanoflowers in ZnO-Based Dye-Sensitized Solar Cells,” SSRN Electron. J., vol. 131, no. June, pp. 2–7, 2022, doi: 10.2139/ssrn.4072317.
  • [13] N. Izu et al., “Polyol synthesis of Al-doped ZnO spherical nanoparticles and their UV-vis-NIR absorption properties,” Ceram. Int., vol. 40, no. 6, pp. 8775–8781, 2014, doi: 10.1016/j.ceramint.2014.01.099.
  • [14] M. Rajalakshmi, S. Sohila, S. Ramya, R. Divakar, C. Ghosh, and S. Kalavathi, “Blue green and UV emitting ZnO nanoparticles synthesized through a non-aqueous route,” Opt. Mater. (Amst)., vol. 34, no. 8, pp. 1241–1245, 2012, doi: 10.1016/j.optmat.2012.01.021.
  • [15] C. A. Jaramillo-Páez, J. A. Navío, M. C. Hidalgo, and M. Macías, “ZnO and Pt-ZnO photocatalysts: Characterization and photocatalytic activity assessing by means of three substrates,” Catal. Today, vol. 313, no. December 2017, pp. 12–19, 2018, doi: 10.1016/j.cattod.2017.12.009.
  • [16] X. Chen, Z. Wu, D. Liu, and Z. Gao, “Preparation of ZnO Photocatalyst for the Efficient and Rapid Photocatalytic Degradation of Azo Dyes,” Nanoscale Res. Lett., vol. 12, no. 1, pp. 4–13, 2017, doi: 10.1186/s11671-017-1904-4.
  • [17] J. Xie, Y. Cao, D. Jia, Y. Li, and Y. Wang, “Solid-state synthesis of Y-doped ZnO nanoparticles with selective-detection gas-sensing performance,” Ceram. Int., vol. 42, no. 1, pp. 90–96, 2016, doi: 10.1016/j.ceramint.2015.07.135.
  • [18] J. Guo and C. Peng, “Synthesis of ZnO nanoparticles with a novel combustion method and their C2H5OH gas sensing properties,” Ceram. Int., vol. 41, no. 2, pp. 2180–2186, 2015, doi: 10.1016/j.ceramint.2014.10.017.
  • [19] M. C. Li et al., “Effect of annealing temperature on the optoelectronic properties and structure of NiO films,” Ceram. Int., vol. 48, no. 2, pp. 2820–2825, 2022, doi: 10.1016/j.ceramint.2021.10.071.
  • [20] G. T. Anand, R. Nithiyavathi, R. Ramesh, S. John Sundaram, and K. Kaviyarasu, “Structural and optical properties of nickel oxide nanoparticles: Investigation of antimicrobial applications,” Surfaces and Interfaces, vol. 18, no. February, p. 100460, 2020, doi: 10.1016/j.surfin.2020.100460.
  • [21] P. Iyyappa Rajan et al., “Green-fuel-mediated synthesis of self-assembled NiO nano-sticks for dual applications-photocatalytic activity on Rose Bengal dye and antimicrobial action on bacterial strains,” Mater. Res. Express, vol. 4, no. 8, 2017, doi: 10.1088/2053-1591/aa7e3c.
  • [22] A. A. Ezhilarasi, J. J. Vijaya, L. J. Kennedy, and K. Kaviyarasu, “Green mediated NiO nano-rods using Phoenix dactylifera (Dates) extract for biomedical and environmental applications,” Mater. Chem. Phys., vol. 241, no. November 2019, p. 122419, 2020, doi: 10.1016/j.matchemphys.2019.122419.
  • [23] S. T. Fardood, A. Ramazani, and S. Moradi, “A novel green synthesis of nickel oxide nanoparticles using arabic gum,” Chem. J. Mold., vol. 12, no. 1, pp. 115–118, 2017, doi: 10.19261/cjm.2017.383.
  • [24] A. A. Ezhilarasi, J. J. Vijaya, K. Kaviyarasu, M. Maaza, A. Ayeshamariam, and L. J. Kennedy, “Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: Cytotoxicity effect of nanoparticles against HT-29 cancer cells,” J. Photochem. Photobiol. B Biol., vol. 164, pp. 352–360, 2016, doi: 10.1016/j.jphotobiol.2016.10.003.
  • [25] M. El-Kemary, N. Nagy, and I. El-Mehasseb, “Nickel oxide nanoparticles: Synthesis and spectral studies of interactions with glucose,” Mater. Sci. Semicond. Process., vol. 16, no. 6, pp. 1747–1752, 2013, doi: 10.1016/j.mssp.2013.05.018.
  • [26] M. A. Ciolan and I. Motrescu, “Pulsed Laser Ablation: A Facile and Low-Temperature Fabrication of Highly Oriented n-Type Zinc Oxide Thin Films,” Appl. Sci., vol. 12, no. 2, 2022, doi: 10.3390/app12020917.
  • [27] T. P. Mokoena et al., “Enhanced propanol gas sensing performance of p-type NiO gas sensor induced by exceptionally large surface area and crystallinity,” Appl. Surf. Sci., vol. 571, no. April 2021, p. 151121, 2022, doi: 10.1016/j.apsusc.2021.151121.
  • [28] L. Zhu, Y. Li, and W. Zeng, “Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties,” Appl. Surf. Sci., vol. 427, no. 3, pp. 281–287, 2018, doi: 10.1016/j.apsusc.2017.08.229.
  • [29] N. D. Hoa, P. Van Tong, C. M. Hung, N. Van Duy, and N. Van Hieu, “Urea mediated synthesis of Ni(OH)2 nanowires and their conversion into NiO nanostructure for hydrogen gas-sensing application,” Int. J. Hydrogen Energy, vol. 43, no. 19, pp. 9446–9453, 2018, doi: 10.1016/j.ijhydene.2018.03.166.
  • [30] P. Dai, T. tao Yan, X. xin Yu, Z. man Bai, and M. zai Wu, “Two-Solvent Method Synthesis of NiO/ZnO Nanoparticles Embedded in Mesoporous SBA-15: Photocatalytic Properties Study,” Nanoscale Res. Lett., vol. 11, no. 1, 2016, doi: 10.1186/s11671-016-1445-2.
  • [31] J. Cai, R. Li, J. Cao, J. Liu, J. Han, and M. Huang, “Plasmonic Au-decorated hierarchical p-NiO/n-ZnO heterostructure arrays for enhanced photoelectrochemical water splitting,” Phys. E Low-Dimensional Syst. Nanostructures, vol. 135, no. September 2021, p. 114974, 2022, doi: 10.1016/j.physe.2021.114974.
  • [32] P. Sahoo, A. Sharma, S. Padhan, and R. Thangavel, “Construction of ZnO@NiO heterostructure photoelectrodes for improved photoelectrochemical performance,” Int. J. Hydrogen Energy, vol. 46, no. 73, pp. 36176–36188, 2021, doi: 10.1016/j.ijhydene.2021.08.154.
  • [33] C. Su et al., “Glucose-assisted synthesis of hierarchical NiO-ZnO heterostructure with enhanced glycol gas sensing performance,” Sensors Actuators, B Chem., vol. 329, no. March 2020, p. 129167, 2021, doi: 10.1016/j.snb.2020.129167.
  • [34] M. Biçer, “One-Step Hydrothermal Deposition of ZnO–TiO2 Heterojunction Nanostructures as Photoelectrochemical Performance for Sb2S3 Quantum-Dot-Sensitized Solar Cells by High-Efficiency Enhancement,” Crystallogr. Reports, vol. 66, no. 6, pp. 1117–1124, 2021, doi: 10.1134/S1063774521060067.
  • [35] M. Biçer, “ZnO-TiO2 Hetero Nanoyapılarının Sentezi ve Güneş Pilleri için Fotoelektrokimyasal Performansı” Düzce Üniversitesi Bilim ve Teknol. Derg., vol. 9, 262–272, 2021, doi: 10.29130/dubited.840584.
  • [36] M. A. Shafi, A. Bouich, K. Fradi, J. M. Guaita, L. Khan, and B. Mari, “Effect of deposition cycles on the properties of ZnO thin films deposited by spin coating method for CZTS-based solar cells,” Optik (Stuttg)., vol. 258, no. September 2021, p. 168854, 2022, doi: 10.1016/j.ijleo.2022.168854.
  • [37] P. K. Sharma, R. K. Dutta, and A. C. Pandey, “Effect of nickel doping concentration on structural and magnetic properties of ultrafine diluted magnetic semiconductor ZnO nanoparticles,” J. Magn. Magn. Mater., vol. 321, no. 20, pp. 3457–3461, 2009, doi: 10.1016/j.jmmm.2009.06.055.
  • [38] G. Vijayaprasath et al., “Role of nickel doping on structural, optical, magnetic properties and antibacterial activity of ZnO nanoparticles,” Mater. Res. Bull., vol. 76, pp. 48–61, 2016, doi: 10.1016/j.materresbull.2015.11.053.
  • [39] Y. Liu, G. Li, R. Mi, C. Deng, and P. Gao, “An environment-benign method for the synthesis of p-NiO/n-ZnO heterostructure with excellent performance for gas sensing and photocatalysis,” Sensors Actuators, B Chem., vol. 191, pp. 537–544, 2014, doi: 10.1016/j.snb.2013.10.068.
  • [40] A. Adachi, A. Kudo, T. Sakata, “The Optical and Photoelectrochemical Properties of Electrodeposited CdS and SnS Thin Films,” Bull. Chem. Soc. Jpn, vol. 68, pp. 3283-3288, 1995, doi: 10.1246/bcsj.68.3283.
  • [41] M. Biçer, İ. Şişman, “Electrodeposition and growth mechanism of SnSe thin films,” Appl. Surf. Sci, vol. 257, pp. 2944–2949, 2011, doi:10.1016/j.apsusc.2010.10.096.
  • [42] K. R. Rajesh, C. S. Menon, “Electrical and optical properties of vacuum deposited MnPc thin films,” Eur. Phys. J. B, vol. 47, pp. 171, 2005, doi: 10.1140/epjb/e2005-00317-x.
  • [43] G. Srinet, R. Kumar, and V. Sajal, “Structural, optical, vibrational, and magnetic properties of sol-gel derived Ni doped ZnO nanoparticles,” J. Appl. Phys., vol. 114, no. 3, 2013, doi: 10.1063/1.4813868.
  • [44] R. N. Ali, H. Naz, J. Li, X. Zhu, P. Liu, and B. Xiang, “Band gap engineering of transition metal (Ni/Co) codoped in zinc oxide (ZnO) nanoparticles,” J. Alloys Compd., vol. 744, pp. 90–95, 2018, doi: 10.1016/j.jallcom.2018.02.072.
There are 44 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mustafa Biçer 0000-0001-7451-4600

Project Number Proje no: 2021.05.03.1250
Publication Date October 24, 2023
Published in Issue Year 2023

Cite

APA Biçer, M. (2023). Synthesis of Metal (Ni) Doped Metal Oxide (ZnO) Heteronanostructures and Investigation of Their Morphological-Optical Properties. Duzce University Journal of Science and Technology, 11(4), 1782-1793. https://doi.org/10.29130/dubited.1167452
AMA Biçer M. Synthesis of Metal (Ni) Doped Metal Oxide (ZnO) Heteronanostructures and Investigation of Their Morphological-Optical Properties. DÜBİTED. October 2023;11(4):1782-1793. doi:10.29130/dubited.1167452
Chicago Biçer, Mustafa. “Synthesis of Metal (Ni) Doped Metal Oxide (ZnO) Heteronanostructures and Investigation of Their Morphological-Optical Properties”. Duzce University Journal of Science and Technology 11, no. 4 (October 2023): 1782-93. https://doi.org/10.29130/dubited.1167452.
EndNote Biçer M (October 1, 2023) Synthesis of Metal (Ni) Doped Metal Oxide (ZnO) Heteronanostructures and Investigation of Their Morphological-Optical Properties. Duzce University Journal of Science and Technology 11 4 1782–1793.
IEEE M. Biçer, “Synthesis of Metal (Ni) Doped Metal Oxide (ZnO) Heteronanostructures and Investigation of Their Morphological-Optical Properties”, DÜBİTED, vol. 11, no. 4, pp. 1782–1793, 2023, doi: 10.29130/dubited.1167452.
ISNAD Biçer, Mustafa. “Synthesis of Metal (Ni) Doped Metal Oxide (ZnO) Heteronanostructures and Investigation of Their Morphological-Optical Properties”. Duzce University Journal of Science and Technology 11/4 (October 2023), 1782-1793. https://doi.org/10.29130/dubited.1167452.
JAMA Biçer M. Synthesis of Metal (Ni) Doped Metal Oxide (ZnO) Heteronanostructures and Investigation of Their Morphological-Optical Properties. DÜBİTED. 2023;11:1782–1793.
MLA Biçer, Mustafa. “Synthesis of Metal (Ni) Doped Metal Oxide (ZnO) Heteronanostructures and Investigation of Their Morphological-Optical Properties”. Duzce University Journal of Science and Technology, vol. 11, no. 4, 2023, pp. 1782-93, doi:10.29130/dubited.1167452.
Vancouver Biçer M. Synthesis of Metal (Ni) Doped Metal Oxide (ZnO) Heteronanostructures and Investigation of Their Morphological-Optical Properties. DÜBİTED. 2023;11(4):1782-93.