Research Article
BibTex RIS Cite

Evaluation of Heat Transfer and Flow Structures in Combined Jet Flow Channels with Copper Oxide-Water and Diamond-Water

Year 2024, , 199 - 218, 26.01.2024
https://doi.org/10.29130/dubited.1183108

Abstract

In this study, heat transfer from circular hollow and trapezoidal model copper plate surfaces with a constant heat flux of 1000 W/m2 and flow structures in combined jet flow channels were numerically investigated using water, 2% volumetric concentration CuO-Water (Copper oxide)-Water and Diamond-Water nanofluids. The numerical study was carried out steady and in three dimensions by using the Ansys-Fluent program with the k-ε turbulence model. In addition, 45o and 90o angled fins have been added to the channels at a fixed distance (N) in the size of the D jet inlet diameter from the jet inlet. While the channel height is 3D, the Re number range of the fluids is 5000-15000. The accuracy and acceptability of the results obtained from the study were proven by using the equation obtained as a result of experimental research. The results of the study were evaluated comparatively in the finless and finned conditions for water and nanofluids as variations in the average Nu number for each model in the channels. Also, the velocity and temperature contour distributions of the combined jet flow for the CuO-Water nanofluid were presented for different fin angles. However, performance evaluation numbers (PEC) at different Reynolds numbers and mean Nu number (Num) and surface temperature values (Tm) were analyzed for Re=5000 and 15000 for all three model surfaces in the channels. For Re=15000, 27.57% and 26.11% increases in the Num number were obtained compared to the channels without fin and water-fluid for the use of Diamond-Water and Copper oxide-Water nanofluids, respectively, on the trapezoidal model surface in the 90o finned channel. In addition, the PEC number values for water fluid in channels with 90o angled fins at Re=15000 value were found to be 1.1%-1.31% and 0.82%-%0.63 higher compared to Diamond-Water and CuO-Water nanofluids on the circular hollow and trapezoidal model surfaces, respectively.

Project Number

TEKNO-2021-031

References

  • [1] K. Naga Ramesh, T. Karthikeya Sharma, G. Amba Prasad Rao, “Latest advancements in heat transfer enhancement in the micro‑channel heat sinks: a review,” Archives of Computational Methods in Engineering, vol. 28, pp. 3135-3165, 2021.
  • [2] M. Kılıç, “Elektronik sistemlerin soğutulmasında nanoakışkanlar ve çarpan jetlerin müşterek etkisinin incelenmesi,” Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 18, s. 33 (3), ss. 121-132, 2018.
  • [3] M. A. Teamah, M. M. Dawood, A. Shehata, “Numerical and experimental investigation of flow structure and behavior of nanofluids flow impingement on horizontal flat plate,” Experimental Thermal and Fluid Science, vol. 74, pp. 235-246, 2015.
  • [4] M. Kılıc, A. Ullah, “Numerical investigation of effect of different parameter on heat transfer for a crossflow heat exchanger by using nanofluids,” Journal of Thermal Engineering, vol. 7, no. 14, pp. 1980-1989, 2021.
  • [5] M. Kilic, T. Calisir, S. Baskaya, “Experimental and numerical investigation of vortex promoter effects on heat transfer from heated electronic components in a rectangular channel with an impinging jet,” Heat Transfer Research, vol. 48, no. 5, pp. 435-463, 2017.
  • [6] M. Kılıc, A. Abdulvahitoglu, “Numerical investigation of heat transfer at a rectangular channel with combined effect of nanofluids and swirling jets in a vehicle radiator,” Thermal Science, vol. 23, no. 6A, pp. 3627-3637, 2019.
  • [7] A. Dal, M. Kılıç, A. Ö. Akyüz, A. D. Tuncer, A. Gungor, “Effects of lubricant fluid with nanoparticle additive on the load capacity of a hydrostatic journal bearing,” El-Cezerî Journal of Science and Engineering, vol. 7, no. 2, pp. 753-762, 2020.
  • [8] S. M. Öztürk, T. Demircan, “Numerical analysis of the effects of fin angle on flow and heat transfer characteristics for cooling an electronic component with impinging jet and cross-flow combination,” Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 37, no. 1, pp. 57-74, 2022.
  • [9] T. B. Chang, Y. K. Yang, “Heat transfer performance of jet impingement flow boiling using Al2O3-water nanofluid,” Journal of Mechanical Science and Technology, vol. 28, no. 4, pp. 1559-1566, 2014.
  • [10] A. Datta, A. Jaiswal, P. Halder, “Heat transfer analysis of slot jet impingement using nano fluid on convex surface,” IOP Conference Series-Materials Science and Engineering, vol. 402, no. 012098, 2018.
  • [11] D. Kumar, M. Zunaid, S. Gautam, “Heat sink analysis in jet impingement with air foil pillars and nanoparticles,” Materials Today: Proceedings, vol. 46, no. 20, pp. 10752-10756, 2021.
  • [12] E. Jalali, S. M. Sajadi, F. Ghaemi, D. Baleanu, “Numerical analysis of the effect of hot dent infusion jet on the fluid flow and heat transfer rate through the microchannel in the presence of external magnetic field,” Journal of Thermal Analysis and Calorimetry, vol. 147, pp. 8397-8409, 2022.
  • [13] F. Selimefendigil, A. J. Chamkha, “Cooling of an isothermal surface having a cavity component by using CuO-water nano-jet,” International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30, no. 4, pp. 2169-2191, 2020.
  • [14] M. F. Abdullah, R. Zulkifli, Z. Harun, S. Abdullah, W. A. Wan Ghopa, A. S. Najm, N. H. Sulaiman, “Impact of the TiO2 nanosolution concentration on heat transfer enhancement of the twin impingement jet of a heated aluminum plate,” Micromachines, vol. 10, no. 176, 2019.
  • [15] W. Shi, F. Li, Q. Lin, G. Fang, “Experimental study on instability of round nanofluid jets at low velocity,” Experimental Thermal and Fluid Science, vol. 120, no. 110253, 2021.
  • [16] F. Kılınç, E. Buyruk, K. Karabulut, “Experimental investigation of cooling performance with graphene based nano-fluids in a vehicle radiator”, Heat and Mass Transfer, vol. 56, pp. 521-530, 2020.
  • [17] K. Karabulut, E. Buyruk, F. Kilinc, “Experimental and numerical investigation of convection heat transfer in a circular copper tube using graphene oxide nanofluid”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 42, no. 230, 2020.
  • [18] K. Karabulut, E. Buyruk, F. Kılınç, “Grafen oksit nanoparçacıkları içeren nanoakışkanın taşınım ısı transferi ve basınç düşüşü artışı üzerindeki etkisinin düz bir boruda deneysel olarak araştırılması”, Mühendis ve Makina, vol. 59, no. 690, pp. 45-67, 2018.
  • [19] F. Kılınç, E. Buyruk, K. Karabulut, “Grafen tabanlı nanoakışkanların araç radyatörü soğutma performansı üzerindeki etkisinin deneysel analizi”, Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 9, no. 2, pp. 1046-1056, 2019.
  • [20] M. Kilic, T. Calisir, S. Baskaya, “Experimental and numerical study of heat transfer from a heated fat plate in a rectangular channel with an impinging air jet,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 39, no. 1, pp. 329-344, 2016.
  • [21] K. Karabulut, “Heat transfer improvement study of electronic component surfaces using air jet impingement,” Journal of Computational Electronics, vol. 18, pp. 1259-1271, 2019.
  • [22] D. E. Alnak, F. Koca, Y. A. Alnak, “Numerical investigation of heat transfer from heated surfaces of different shapes,” Journal of Engineering Thermophysics, vol. 30, pp. 494-507, 2021.
  • [23] K. Koca, M. S. Genç, E. Bayır, F. K. Soğuksu, “Experimental study of the wind turbine airfoil with the local flexibility at different locations for more energy output”, Energy, vol. 239, no. Part A, pp. 121887, 2022.
  • [24] K. Koca, M. S. Genç, R. Özkan, “Mapping of laminar separation bubble and bubble-induced vibrations over a turbine blade at low Reynolds numbers”, Ocean Engineering, vol. 239, pp. 109867, 2021.
  • [25] K. Koca, M. S. Genç, S. Ertürk, “Impact of local flexible membrane on power efficiency stability at wind turbine blade”, Renewable Energy, vol. 197, pp. 1163-1173, 2022.
  • [26] K. Koca, M. S. Genç, H. H. Açıkel, M. Çağdaş, T. M. Bodur, “Identification of flow phenomena over NACA 4412 wind turbine airfoil at low Reynolds numbers and role of laminar separation bubble on flow evolution”, Energy, vol. 144, pp. 750-764, 2018.
  • [27] K. Koca, M. S. Genç, H. H. Açıkel, “Experimental investigation on effect of partial flexibility at low aspect ratio airfoil - Part II: Installation both on suction and pressure surface”, EPJ Web of Conferences- Experimental Fluid Mechanics, vol. 269, no. 01028, 2022.
  • [28] K. Koca, M. S. Genç, D. Veerasamy, M. Özden, “Experimental flow control investigation over suction surface of turbine blade with local surface passive oscillation”, Ocean Engineering, vol. 266, no. Part 4-113024, 2022.
  • [29] J. C. Maxwell, Preliminary on the Measurement of Quantities, A Treatise on Electricity and Magnetism, England: Oxford University Press, 1873, pp. 6-10.
  • [30] H. A. Mohammed, P. Gunnasegaran, N. H. Shuaib, “The impact of various nanofluid types on triangular microchannels heat sink cooling performance,” International Communications in Heat and Mass Transfer, no. 3, pp. 767-773, 2011.
  • [31] S. J. Wang, A. S. Mujumdar, “A comparative study of five low Reynolds number k-ε models for impingement heat transfer”, Applied Thermal Engineering, vol. 25, pp. 31-44, 2005.
  • [32] K. Karabulut, D. E. Alnak, “Investigation of graphene oxide-distilled water nanofluids with consideration of heat transfer and flow structure for backward-facing step flow,” Journal of Engineering Thermophysics, vol. 30, no. 2, pp. 300-316, 2021.
  • [33] M.S. Genc, U. Kaynak, G. D. Lock, “Flow over an aerofoil without and with a leading-edge slat at a transitional Reynolds number,” Proceedings of the Institution of Mechanical Engineers Part G: Journal of Aerospace Engineering, vol. 223, pp. 217-231, 2009.
  • [34] M. S. Genç, “Numerical simulation of flow over a thin aerofoil at a high Reynolds number using a transition model,” Proceedings of the Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science, vol. 24, pp. 2155-2164, 2010.
  • [35] M. S. Genç, Ü. Kaynak, H. Yapıcı, “Performance of transition model for predicting low Re aerofoil flows without/with single and simultaneous blowing and suction,” European Journal of Mechanics B/Fluids, vol. 30, pp. 218-235, 2011.
  • [36] M. S. Genc, Ü. Kaynak, “Control of laminar separation bubble over a NACA2415 aerofoil at low Re transitional flow using blowing/suction”, International Conference on Aerospace Sciences and Aviation Technology, ASAT-13-AE-11, Cairo, Egypt, 2009.
  • [37] M. S. Genc, G. Lock, U. Kaynak, “An experimental and computational study of low Re number transitional flows over an aerofoil with leading edge slat”, The 26th Congress of ICAS and 8th AIAA ATIO, AIAA-8877, Anchorage, Alaska, 2008.
  • [38] İ. Karasu, M. Özden, M. S. Genç, “Performance assessment of transition models for three-dimensional flow over NACA4412 wings at low Reynolds numbers”, Journal of Fluids Engineering vol. 140, no. 12, pp. 121102, 2018.
  • [39] M. S. Genç, G. Ozisik, N. Kahraman, “Investigation of aerodynamics performance of NACA 00-12 aerofoil with plain”, Journal of Thermal Scıence and Technology, vol. 28, no. 1, pp. 1-8, 2008.
  • [40] M. S. Genç, K. Koca, H. H. Açıkel, “Investigation of pre-stall flow control on wind turbine blade airfoil using roughness element”, Energy, vol. 176, pp. 320-334, 2019.
  • [41] İ. Karasu, H. H. Açıkel, K. Koca, M. S. Genç, “Effects of thickness and camber ratio on flow characteristics over airfoils”, Journal of Thermal Engineering, vol. 6, no. 3, pp. 242-252, 2020.
  • [42] D. E. Alnak, “Thermohydraulic performance study of different square baffle angles in cross-corrugated channel,” Journal of Energy Storage, vol. 28, no. 101295, 2020.
  • [43] C. F. Ma, A. E. Bergles, “Boiling jet impingement cooling of simulated microelectronic chips,” Heat Transfer in Electronic Equipment HTD, vol. 28, pp. 5-12, 1983.
  • [44] Y. Masip, A. Rivas, G. S. Larraona, R. Anton, J. C. Ramos, B. Moshfegh, “Experimental study of the turbulent flow around a single wall-mounted cube exposed to a cross-flow and an impinging jet,” International Journal of Heat and Fluid Flow, vol. 38, pp. 50-71, 2012.

Bakır Oksit-Su ve Elmas-Su Nanoakışkanlı Birleşik Jet Akışlı Kanallarda Isı Transferi ve Akış Yapılarının Değerlendirilmesi

Year 2024, , 199 - 218, 26.01.2024
https://doi.org/10.29130/dubited.1183108

Abstract

Bu çalışmada, sabit 1000 W/m2 ısı akısına sahip dairesel oyuklu ve yamuk modelli bakır plakalı yüzeylerden olan ısı transferi ve birleşik jet akışlı kanallardaki akış yapıları su, %2 hacimsel konsantrasyonlu CuO-Su (Bakır oksit)-Su ve Elmas-Su nanoakışkanları kullanılarak sayısal olarak incelenmiştir. Sayısal çalışma, sürekli ve üç boyutlu olarak k-ε türbülans modelli Ansys-Fluent programının kullanılmasıyla gerçekleştirilmiştir. Kanallara ayrıca jet girişinden itibaren D jet giriş çapı ölçüsündeki sabit bir uzaklıkta (N) 45o ve 90o açılı kanatçıklar eklenmiştir. Kanal yüksekliği 3D iken; akışkanların Re sayısı aralığı 5000-15000’ dir. Çalışmadan elde edilen sonuçların doğruluğu ve kabul edilebilirliği deneysel araştırmalar sonucu elde edilen eşitlik kullanılarak kanıtlanmıştır. Çalışmanın sonuçları, kanallardaki her bir model için ortalama Nu sayısının değişimleri olarak su ve nanoakışkanlar için kanatçıksız ve kanatçıklı durumlarda karşılaştırmalı olarak değerlendirilmiştir. Ayrıca, CuO-Su nanoakışkanı için birleşik jet akışın hız ve sıcaklık konturu dağılımları farklı kanatçık açıları için sunulmuştur. Bununla birlikte, kanallardaki her üç desenli yüzeyin tümü için farklı Reynolds sayılarında performans değerlendirme sayıları (PEC) ve ortalama Nu sayısı (Num) ve yüzey sıcaklık değerleri (Tm) Re=5000 ve 15000 için analiz edilmiştir. Re=15000 için 90o kanatçıklı kanalda yamuk modelli yüzeyde sırasıyla Elmas-Su ve Bakır oksit-Su nanoakışkanları kullanılması durumları için kanatçıksız ve su akışkanı kullanılan kanallara göre Num sayısında %27,57 ve %26,11’ lik artışlar elde edilmiştir. Bunun yanı sıra, Re=15000 değerinde 90o açılı kanatçıklı kanallarda su akışkanı için PEC sayısı değerlerinin sırasıyla dairesel oyuklu ve yamuk modelli yüzeylerde Elmas-Su ve CuO-Su nanoakışkanlarına göre %1,1-%1,31 ve %0,82-%0,63 daha fazla oldukları tespit edilmiştir.

Supporting Institution

Sivas Cumhuriyet Üniversitesi Bilimsel Araştırma Projeleri (CÜBAP) birimi

Project Number

TEKNO-2021-031

Thanks

Bu çalışma Sivas Cumhuriyet Üniversitesi Bilimsel Araştırma Projeleri birimi tarafından desteklenmiştir (Proje no: TEKNO-2021-031).

References

  • [1] K. Naga Ramesh, T. Karthikeya Sharma, G. Amba Prasad Rao, “Latest advancements in heat transfer enhancement in the micro‑channel heat sinks: a review,” Archives of Computational Methods in Engineering, vol. 28, pp. 3135-3165, 2021.
  • [2] M. Kılıç, “Elektronik sistemlerin soğutulmasında nanoakışkanlar ve çarpan jetlerin müşterek etkisinin incelenmesi,” Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 18, s. 33 (3), ss. 121-132, 2018.
  • [3] M. A. Teamah, M. M. Dawood, A. Shehata, “Numerical and experimental investigation of flow structure and behavior of nanofluids flow impingement on horizontal flat plate,” Experimental Thermal and Fluid Science, vol. 74, pp. 235-246, 2015.
  • [4] M. Kılıc, A. Ullah, “Numerical investigation of effect of different parameter on heat transfer for a crossflow heat exchanger by using nanofluids,” Journal of Thermal Engineering, vol. 7, no. 14, pp. 1980-1989, 2021.
  • [5] M. Kilic, T. Calisir, S. Baskaya, “Experimental and numerical investigation of vortex promoter effects on heat transfer from heated electronic components in a rectangular channel with an impinging jet,” Heat Transfer Research, vol. 48, no. 5, pp. 435-463, 2017.
  • [6] M. Kılıc, A. Abdulvahitoglu, “Numerical investigation of heat transfer at a rectangular channel with combined effect of nanofluids and swirling jets in a vehicle radiator,” Thermal Science, vol. 23, no. 6A, pp. 3627-3637, 2019.
  • [7] A. Dal, M. Kılıç, A. Ö. Akyüz, A. D. Tuncer, A. Gungor, “Effects of lubricant fluid with nanoparticle additive on the load capacity of a hydrostatic journal bearing,” El-Cezerî Journal of Science and Engineering, vol. 7, no. 2, pp. 753-762, 2020.
  • [8] S. M. Öztürk, T. Demircan, “Numerical analysis of the effects of fin angle on flow and heat transfer characteristics for cooling an electronic component with impinging jet and cross-flow combination,” Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 37, no. 1, pp. 57-74, 2022.
  • [9] T. B. Chang, Y. K. Yang, “Heat transfer performance of jet impingement flow boiling using Al2O3-water nanofluid,” Journal of Mechanical Science and Technology, vol. 28, no. 4, pp. 1559-1566, 2014.
  • [10] A. Datta, A. Jaiswal, P. Halder, “Heat transfer analysis of slot jet impingement using nano fluid on convex surface,” IOP Conference Series-Materials Science and Engineering, vol. 402, no. 012098, 2018.
  • [11] D. Kumar, M. Zunaid, S. Gautam, “Heat sink analysis in jet impingement with air foil pillars and nanoparticles,” Materials Today: Proceedings, vol. 46, no. 20, pp. 10752-10756, 2021.
  • [12] E. Jalali, S. M. Sajadi, F. Ghaemi, D. Baleanu, “Numerical analysis of the effect of hot dent infusion jet on the fluid flow and heat transfer rate through the microchannel in the presence of external magnetic field,” Journal of Thermal Analysis and Calorimetry, vol. 147, pp. 8397-8409, 2022.
  • [13] F. Selimefendigil, A. J. Chamkha, “Cooling of an isothermal surface having a cavity component by using CuO-water nano-jet,” International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30, no. 4, pp. 2169-2191, 2020.
  • [14] M. F. Abdullah, R. Zulkifli, Z. Harun, S. Abdullah, W. A. Wan Ghopa, A. S. Najm, N. H. Sulaiman, “Impact of the TiO2 nanosolution concentration on heat transfer enhancement of the twin impingement jet of a heated aluminum plate,” Micromachines, vol. 10, no. 176, 2019.
  • [15] W. Shi, F. Li, Q. Lin, G. Fang, “Experimental study on instability of round nanofluid jets at low velocity,” Experimental Thermal and Fluid Science, vol. 120, no. 110253, 2021.
  • [16] F. Kılınç, E. Buyruk, K. Karabulut, “Experimental investigation of cooling performance with graphene based nano-fluids in a vehicle radiator”, Heat and Mass Transfer, vol. 56, pp. 521-530, 2020.
  • [17] K. Karabulut, E. Buyruk, F. Kilinc, “Experimental and numerical investigation of convection heat transfer in a circular copper tube using graphene oxide nanofluid”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 42, no. 230, 2020.
  • [18] K. Karabulut, E. Buyruk, F. Kılınç, “Grafen oksit nanoparçacıkları içeren nanoakışkanın taşınım ısı transferi ve basınç düşüşü artışı üzerindeki etkisinin düz bir boruda deneysel olarak araştırılması”, Mühendis ve Makina, vol. 59, no. 690, pp. 45-67, 2018.
  • [19] F. Kılınç, E. Buyruk, K. Karabulut, “Grafen tabanlı nanoakışkanların araç radyatörü soğutma performansı üzerindeki etkisinin deneysel analizi”, Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 9, no. 2, pp. 1046-1056, 2019.
  • [20] M. Kilic, T. Calisir, S. Baskaya, “Experimental and numerical study of heat transfer from a heated fat plate in a rectangular channel with an impinging air jet,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 39, no. 1, pp. 329-344, 2016.
  • [21] K. Karabulut, “Heat transfer improvement study of electronic component surfaces using air jet impingement,” Journal of Computational Electronics, vol. 18, pp. 1259-1271, 2019.
  • [22] D. E. Alnak, F. Koca, Y. A. Alnak, “Numerical investigation of heat transfer from heated surfaces of different shapes,” Journal of Engineering Thermophysics, vol. 30, pp. 494-507, 2021.
  • [23] K. Koca, M. S. Genç, E. Bayır, F. K. Soğuksu, “Experimental study of the wind turbine airfoil with the local flexibility at different locations for more energy output”, Energy, vol. 239, no. Part A, pp. 121887, 2022.
  • [24] K. Koca, M. S. Genç, R. Özkan, “Mapping of laminar separation bubble and bubble-induced vibrations over a turbine blade at low Reynolds numbers”, Ocean Engineering, vol. 239, pp. 109867, 2021.
  • [25] K. Koca, M. S. Genç, S. Ertürk, “Impact of local flexible membrane on power efficiency stability at wind turbine blade”, Renewable Energy, vol. 197, pp. 1163-1173, 2022.
  • [26] K. Koca, M. S. Genç, H. H. Açıkel, M. Çağdaş, T. M. Bodur, “Identification of flow phenomena over NACA 4412 wind turbine airfoil at low Reynolds numbers and role of laminar separation bubble on flow evolution”, Energy, vol. 144, pp. 750-764, 2018.
  • [27] K. Koca, M. S. Genç, H. H. Açıkel, “Experimental investigation on effect of partial flexibility at low aspect ratio airfoil - Part II: Installation both on suction and pressure surface”, EPJ Web of Conferences- Experimental Fluid Mechanics, vol. 269, no. 01028, 2022.
  • [28] K. Koca, M. S. Genç, D. Veerasamy, M. Özden, “Experimental flow control investigation over suction surface of turbine blade with local surface passive oscillation”, Ocean Engineering, vol. 266, no. Part 4-113024, 2022.
  • [29] J. C. Maxwell, Preliminary on the Measurement of Quantities, A Treatise on Electricity and Magnetism, England: Oxford University Press, 1873, pp. 6-10.
  • [30] H. A. Mohammed, P. Gunnasegaran, N. H. Shuaib, “The impact of various nanofluid types on triangular microchannels heat sink cooling performance,” International Communications in Heat and Mass Transfer, no. 3, pp. 767-773, 2011.
  • [31] S. J. Wang, A. S. Mujumdar, “A comparative study of five low Reynolds number k-ε models for impingement heat transfer”, Applied Thermal Engineering, vol. 25, pp. 31-44, 2005.
  • [32] K. Karabulut, D. E. Alnak, “Investigation of graphene oxide-distilled water nanofluids with consideration of heat transfer and flow structure for backward-facing step flow,” Journal of Engineering Thermophysics, vol. 30, no. 2, pp. 300-316, 2021.
  • [33] M.S. Genc, U. Kaynak, G. D. Lock, “Flow over an aerofoil without and with a leading-edge slat at a transitional Reynolds number,” Proceedings of the Institution of Mechanical Engineers Part G: Journal of Aerospace Engineering, vol. 223, pp. 217-231, 2009.
  • [34] M. S. Genç, “Numerical simulation of flow over a thin aerofoil at a high Reynolds number using a transition model,” Proceedings of the Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science, vol. 24, pp. 2155-2164, 2010.
  • [35] M. S. Genç, Ü. Kaynak, H. Yapıcı, “Performance of transition model for predicting low Re aerofoil flows without/with single and simultaneous blowing and suction,” European Journal of Mechanics B/Fluids, vol. 30, pp. 218-235, 2011.
  • [36] M. S. Genc, Ü. Kaynak, “Control of laminar separation bubble over a NACA2415 aerofoil at low Re transitional flow using blowing/suction”, International Conference on Aerospace Sciences and Aviation Technology, ASAT-13-AE-11, Cairo, Egypt, 2009.
  • [37] M. S. Genc, G. Lock, U. Kaynak, “An experimental and computational study of low Re number transitional flows over an aerofoil with leading edge slat”, The 26th Congress of ICAS and 8th AIAA ATIO, AIAA-8877, Anchorage, Alaska, 2008.
  • [38] İ. Karasu, M. Özden, M. S. Genç, “Performance assessment of transition models for three-dimensional flow over NACA4412 wings at low Reynolds numbers”, Journal of Fluids Engineering vol. 140, no. 12, pp. 121102, 2018.
  • [39] M. S. Genç, G. Ozisik, N. Kahraman, “Investigation of aerodynamics performance of NACA 00-12 aerofoil with plain”, Journal of Thermal Scıence and Technology, vol. 28, no. 1, pp. 1-8, 2008.
  • [40] M. S. Genç, K. Koca, H. H. Açıkel, “Investigation of pre-stall flow control on wind turbine blade airfoil using roughness element”, Energy, vol. 176, pp. 320-334, 2019.
  • [41] İ. Karasu, H. H. Açıkel, K. Koca, M. S. Genç, “Effects of thickness and camber ratio on flow characteristics over airfoils”, Journal of Thermal Engineering, vol. 6, no. 3, pp. 242-252, 2020.
  • [42] D. E. Alnak, “Thermohydraulic performance study of different square baffle angles in cross-corrugated channel,” Journal of Energy Storage, vol. 28, no. 101295, 2020.
  • [43] C. F. Ma, A. E. Bergles, “Boiling jet impingement cooling of simulated microelectronic chips,” Heat Transfer in Electronic Equipment HTD, vol. 28, pp. 5-12, 1983.
  • [44] Y. Masip, A. Rivas, G. S. Larraona, R. Anton, J. C. Ramos, B. Moshfegh, “Experimental study of the turbulent flow around a single wall-mounted cube exposed to a cross-flow and an impinging jet,” International Journal of Heat and Fluid Flow, vol. 38, pp. 50-71, 2012.
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Koray Karabulut 0000-0001-5680-0988

Project Number TEKNO-2021-031
Publication Date January 26, 2024
Published in Issue Year 2024

Cite

APA Karabulut, K. (2024). Bakır Oksit-Su ve Elmas-Su Nanoakışkanlı Birleşik Jet Akışlı Kanallarda Isı Transferi ve Akış Yapılarının Değerlendirilmesi. Duzce University Journal of Science and Technology, 12(1), 199-218. https://doi.org/10.29130/dubited.1183108
AMA Karabulut K. Bakır Oksit-Su ve Elmas-Su Nanoakışkanlı Birleşik Jet Akışlı Kanallarda Isı Transferi ve Akış Yapılarının Değerlendirilmesi. DÜBİTED. January 2024;12(1):199-218. doi:10.29130/dubited.1183108
Chicago Karabulut, Koray. “Bakır Oksit-Su Ve Elmas-Su Nanoakışkanlı Birleşik Jet Akışlı Kanallarda Isı Transferi Ve Akış Yapılarının Değerlendirilmesi”. Duzce University Journal of Science and Technology 12, no. 1 (January 2024): 199-218. https://doi.org/10.29130/dubited.1183108.
EndNote Karabulut K (January 1, 2024) Bakır Oksit-Su ve Elmas-Su Nanoakışkanlı Birleşik Jet Akışlı Kanallarda Isı Transferi ve Akış Yapılarının Değerlendirilmesi. Duzce University Journal of Science and Technology 12 1 199–218.
IEEE K. Karabulut, “Bakır Oksit-Su ve Elmas-Su Nanoakışkanlı Birleşik Jet Akışlı Kanallarda Isı Transferi ve Akış Yapılarının Değerlendirilmesi”, DÜBİTED, vol. 12, no. 1, pp. 199–218, 2024, doi: 10.29130/dubited.1183108.
ISNAD Karabulut, Koray. “Bakır Oksit-Su Ve Elmas-Su Nanoakışkanlı Birleşik Jet Akışlı Kanallarda Isı Transferi Ve Akış Yapılarının Değerlendirilmesi”. Duzce University Journal of Science and Technology 12/1 (January 2024), 199-218. https://doi.org/10.29130/dubited.1183108.
JAMA Karabulut K. Bakır Oksit-Su ve Elmas-Su Nanoakışkanlı Birleşik Jet Akışlı Kanallarda Isı Transferi ve Akış Yapılarının Değerlendirilmesi. DÜBİTED. 2024;12:199–218.
MLA Karabulut, Koray. “Bakır Oksit-Su Ve Elmas-Su Nanoakışkanlı Birleşik Jet Akışlı Kanallarda Isı Transferi Ve Akış Yapılarının Değerlendirilmesi”. Duzce University Journal of Science and Technology, vol. 12, no. 1, 2024, pp. 199-18, doi:10.29130/dubited.1183108.
Vancouver Karabulut K. Bakır Oksit-Su ve Elmas-Su Nanoakışkanlı Birleşik Jet Akışlı Kanallarda Isı Transferi ve Akış Yapılarının Değerlendirilmesi. DÜBİTED. 2024;12(1):199-218.