Research Article
BibTex RIS Cite

Amido-Tiyoüre Bazlı p-tert-bütilkaliks[4]aren Bileşiğinin Sentezi, Karakterizasyonu ve Geçiş Metal Kompleks Özelliklerinin Araştırılması

Year 2024, , 858 - 868, 29.04.2024
https://doi.org/10.29130/dubited.1198430

Abstract

Konak-konuk kompleks bileşiklerinde, konakçı boşluğunun ve konuk molekülün boyut ve şeklinin uyumluluğu, konak-konuk kompleksinin oluşumunda esastır. Üçüncü nesil makrosiklik konakçılar olarak kabul edilen kaliksarenler, biyokataliz, enzim analizi, farmasötikler ve biyoalgılama gibi alanlarda geniş bir uygulama yelpazesi sunmaları nedeniyle supramoleküler kimya araştırmacılarının ilgisini çekmektedir. Koordinasyon kimyasında anyonik ve katyonik misafir bileşikler için ev sahibi moleküllerin sentezi oldukça önemli yer tutmaktadır. Kaliksareneler supramoleküler bileşiklerin önemli türlerinden biri olarak bilinmekte ve katyon, anyon ve organik moleküller için uygun bir reseptör olarak görev alabilen ve kolay sentezlenebilen önemli bir bileşik sınıfıdır. Ev sahibi-konuk kimyasında önemli bir yeri olan kaliksaren bileşikleri uygun şekilde türevlendirildiklerinde, molekülün metal katyonlarına karşı koordinasyon yeteneği artmaktadır. Bu türevlendirmeler moleküllün sensör özelliği göstermesi ile önem kazanmış ve daha çok misafir molekülü için daha büyük kavite ve fonksiyonel grup gerektiği düşünülerek faklı çalışmalar başlamıştır. Bu çalışmada da katyon seçimliliği arttırılmış, yapısında amit grupları taşıyan 1,3-disübstitüe kaliks[4]aren türevi bileşik ve bu bileşiğin Co(II), Ni(II), Cu(II) ve Zn(II) kompleksleri sentezlenerek bileşiklerin yapıları UV-vis, FT-IR, 1H-NMR, 13C-NMR kütle spektrometresi ile aydınlatılmıştır.

Project Number

2011BSP028

References

  • [1] C. D. Gutsche, B. Dhawan, and H. Kwang, “Academic Press,” Anal. Chem., vol. 48, no. 3, pp. 339A-339A, 1976.
  • [2] C. David Gutsche and J. A. Levine, “Calixarenes. 6. Synthesis of a Functionalizable Calix[4]arene in a Conformationally Rigid Cone Conformation,” J. Am. Chem. Soc., no. 104, pp. 2652–2653, 1982.
  • [3] C. D. G. and M. Iqbal, “p-tert-BUTYLCALIX[4]ARENE,” Org. Synth., vol. 68, no. September, pp. 234, 1990.
  • [4] C. D. Gutsche and L. J. Bauer, “Calixarenes. 14. The Conformational Properties of the Ethers and Esters of the Calix[6]arenes and the Calix[8]arenes,” J. Am. Chem. Soc., vol. 107, no. 21, pp. 6059–6063, 1985.
  • [5] D. Diamond and M. A. Mckervey, “Calixarene-based Sensing Agents,” Chemıcal Socıety Revıews, vol. 25, no. 1, pp. 15-24, 1996.
  • [6] D. M. Rudkevich, W. Verboom, and D. N. Reinhoudt, “Calix[4]arene Salenes: A Bifunctional Receptor for NaH2PO4,” J. Org. Chem., vol. 59, no. 13, pp. 3683–3686, 1994.
  • [7] M. F. Arnaud-Neu et al., “Modulation of cation binding in calix[4]arene amides: synthesis, complexation and molecular modelling studies,” J. Chem. Soc. Trans. 2, no. 8, pp. 1727–1738, 1999.
  • [8] B. Tomapatanaget and T. Tuntulani, “Lower rim tetra-substituted and upper rim ferrocene amide calix[4]arenes: Synthesis, conformation and anion-binding properties,” Tetrahedron Lett., vol. 42, no. 45, pp. 8105–8109, 2001.
  • [9] R. Ludwig and N. T. K. Dzung, “Calixarene-based molecules for cation recognition,” Sensors, vol. 2, no. 10, pp. 397–416, 2002.
  • [10] N. Galić, M. Rubčić, K. Magdić, M. Cindrić, and V. Tomišić, “Solution and solid-state studies of complexation of transition-metal cations and Al(III) by aroylhydrazones derived from nicotinic acid hydrazide,” Inorganica Chim. Acta, vol. 366, no. 1, pp. 98–104, 2011.
  • [11] C. Alkan, Y. Tek, and D. Kahraman, “Preparation and characterization of a series of thiourea derivatives as phase change materials for thermal energy storage,” Turkish J. Chem., vol. 35, no. 5, pp. 769–777, 2011.
  • [12] C. L. Allen and J. M. J. Williams, “Metal-catalysed approaches to amide bond formation,” Chem. Soc. Rev., vol. 40, no. 7, pp. 3405–3415, 2011.
  • [13] C. Toussaint, C. Beghidja, and R. Welter, “Cobalt complexes supported by salicylichydrazono derivative ligands and various coordination solvents,” Comptes Rendus Chim., vol. 13, no. 3, pp. 343–352, 2010.
  • [14] K. Mounika, A. Pragathi, and C. Gyanakumari, “Synthesis¸ Characterization and Biological Activity of a Schiff Base Derived from 3-Ethoxy Salicylaldehyde and 2-Amino Benzoic acid and its Transition Metal Complexes,” J. Sci. Res., vol. 2, no. 3, p. 513, 2010
  • [15] S. Budagumpi, N. V. Kulkarni, G. S. Kurdekar, M. P. Sathisha, and V. K. Revankar, “Synthesis and spectroscopy of CoII, NiII, CuII and ZnII complexes derived from 3,5-disubstituted-1H-pyrazole derivative: A special emphasis on DNA binding and cleavage studies,” Eur. J. Med. Chem., vol. 45, no. 2, pp. 455–462, 2010.
  • [16] S. N. Podyachev, N. E. Burmakina, V. V. Syakaev, S. N. Sudakova, R. R. Shagidullin, and A. I. Konovalov, “Synthesis, IR and NMR characterization and ion extraction properties of tetranonylcalix[4]resorcinol bearing acetylhydrazone groups,” Tetrahedron, vol. 65, no. 1, pp. 408–417, 2009.
  • [17] D. Zhang et al., “A selective fluorescence probe for yttrium(III) based on acylhydrazone Schiff base,” Inorg. Chem. Commun., vol. 12, no. 11, pp. 1154–1156, 2009.
  • [18] A. Ali and C. P. Rao, “Formation of mono- and di-amide-calix[4]arene derivatives from the reaction of p-tert-butyl-calix[4]arene and α-chloro-N,N-diethylacetamide in the presence of sodium hydride,” Indian J. Chem. - Sect. B Org. Med. Chem., vol. 44, no. 3, pp. 549–552, 2005.
  • [19] I. Vatsouro, E. Alt, M. Vysotsky, and V. Böhmer, “Guest exchange in dimeric capsules formed by tetra-urea calix[4]arenes,” Org. Biomol. Chem., vol. 6, no. 6, pp. 998–1003, 2008.
  • [20] A. Yildirim, S. Karakurt, and M. Yilmaz, “Synthesized Two New Water-Soluble Fluorescents Calix[4]arene 4-sulfo-1,8-naphthalimide Derivatives Inhibit Proliferation of Human Colorectal Carcinoma Cells,” ChemistrySelect, vol. 6, no. 28, pp. 7093–7097, 2021.
  • [21] E. Akceylan, A. Uyanik, S. Eymur, O. Sahin, and M. Yilmaz, “Calixarene-proline functionalized iron oxide magnetite nanoparticles (Calix-Pro-MN): An efficient recyclable organocatalyst for asymmetric aldol reaction in water,” Appl. Catal. A Gen., vol. 499, pp. 205–212, 2015.
  • [22] E. Quinlan, S. E. Matthews, and T. Gunnlaugsson, “Anion sensing using colorimetric amidourea based receptors incorporated into a 1,3-disubstituted calix[4]arene,” Tetrahedron Lett., vol. 47, no. 52, pp. 9333–9338, 2006.
  • [23] S. Bozkurt, A. Karakucuk, A. Sirit, and M. Yilmaz, “Synthesis of two calix[4]arene diamide derivatives for extraction of chromium(VI),” Tetrahedron, vol. 61, no. 44, pp. 10443–10448, 2005.
  • [24] E. M. Collins et al., “Chemically modified calix[4]arenes. Regioselective synthesis of 1,3-(distal) derivatives and related compounds. X-ray crystal structure of a diphenol-dinitrile,” J. Chem. Soc. Perkin Trans. 1, vol. 3, no. 12, pp. 3137–3142, 1991.
  • [25] O. K. Taşkin, Ö. F. Öztürk, and E. Canpolat, “Yeni Bir Schi ff Bazı ve Geçiş Metalleri ile Oluşturdukları Komplekslerin Sentezi ve Karakterizasyonu Synthesis and Characterization of a New Schiff Base and Its Complexes with Some Transition Metals,” BEU Fen Bilim. Derg., c. 1, s. 1, ss. 34–39, 2012
  • [26] D. N. Hundekar, A.M., Sen, “Preparation & Characterization of Metal Complexes of N-Acetyl-N-aroylferrocenyl Hydrazidest,” Indian J. Chem., vol. 23, no. June, pp. 477–479, 1984.
  • [27] K. Shoaib, W. Rehman, B. Mohammad, and S. Ali, “Synthesis, characterization and biological applications of transition metal complexes of [no] donor schiff bases,” J. Proteomics Bioinforma., vol. 6, no. 7, pp. 153–157, 2013.
  • [28] S. TUNA YILDIRIM, “Aromatik Amin İçeren Schiff Bazı Ligandının Sentezi, Karakterizasyonu ve Bazı Geçiş Metal Komplekslerinin İncelenmesi,” Erzincan Üniversitesi Fen Bilim. Enstitüsü Derg., c. 12, s. 3, ss. 1329–1340, 2019.
  • [29] A. S. El-Tabl, F. A. El-Saied, W. Plass, and A. N. Al-Hakimi, “Synthesis, spectroscopic characterization and biological activity of the metal complexes of the Schiff base derived from phenylaminoacetohydrazide and dibenzoylmethane,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 71, no. 1, pp. 90–99, 2008.
  • [30] G. G. Mohamed, M. M. Omar, and A. M. Hindy, “Metal complexes of Schiff bases: Preparation, characterization, and biological activity,” Turkish J. Chem., vol. 30, no. 3, pp. 361–382, 2006.
  • [31] G. G. Mohamed, M. M. Omar, and Y. M. Ahmed, “Metal complexes of Tridentate Schiff base: Synthesis, Characterization, Biological Activity and Molecular Docking Studies with COVID-19 Protein Receptor,” Zeitschrift fur Anorg. und Allg. Chemie, vol. 647, no. 23–24, pp. 2201–2218, 2021.
  • [32] Z. T. Omar, S. Jadhav, R. Pathrikar, S. Shejul, and M. Rai, “Synthesis, Magnetic Susceptibility, Thermodynamic Study and Bio-Evaluation of Transition Metal Complexes of New Schiff Base Incorporating INH Pharmacophore,” Polycycl. Aromat. Compd., vol. 43, no. 1, pp. 523–537, 2023.

Synthesis and Characterization of Amido-Thiourea Based p-tert-butylcalix[4]arene Compound and Investigation of Transition Metal Complex Properties

Year 2024, , 858 - 868, 29.04.2024
https://doi.org/10.29130/dubited.1198430

Abstract

In host-guest complexes, the compatibility of the size and shape of the host cavity and the guest molecule is essential in the formation of the host-guest complex. Considered third-generation macrocyclic hosts, calixarenes attract the attention of researchers in supramolecular chemistry as they offer a wide range of applications in fields such as biocatalysis, enzyme analysis, pharmaceuticals, and biosensing. The synthesis of host molecules for anionic and cationic guest compounds has a very important place in coordination chemistry. Calixarenes are known as one of the important types of supramolecular compounds and are an important class of easily synthesized compounds that can act as a suitable receptors for cations, anions, and organic molecules. When calixarene compounds, which have an important place in host-guest chemistry, are derivatized appropriately, the coordination ability of the molecule against metal cations increases. These derivatizations gained importance due to the sensory properties of the molecule, and different studies were started considering that a larger cavity and functional group are required for more guest molecules. In this study, a new ligand of 1,3-disubstituted p-tert-butylcalix[4]arene derivative with increased donor atomic number with amide and thiourea groups in its structure was synthesized. Co(II), Ni(II), Cu(II), and Zn(II) complexes were synthesized with the compound and the structures of the compounds were characterized by UV-vis, FT-IR, 1H-NMR, 13C-NMR, and mass spectrometry.

Supporting Institution

Pamukkale Üniversitesi

Project Number

2011BSP028

Thanks

This study was supported by Pamukkale University Scientific ResearchProjects (Project no: 2011BSP028).

References

  • [1] C. D. Gutsche, B. Dhawan, and H. Kwang, “Academic Press,” Anal. Chem., vol. 48, no. 3, pp. 339A-339A, 1976.
  • [2] C. David Gutsche and J. A. Levine, “Calixarenes. 6. Synthesis of a Functionalizable Calix[4]arene in a Conformationally Rigid Cone Conformation,” J. Am. Chem. Soc., no. 104, pp. 2652–2653, 1982.
  • [3] C. D. G. and M. Iqbal, “p-tert-BUTYLCALIX[4]ARENE,” Org. Synth., vol. 68, no. September, pp. 234, 1990.
  • [4] C. D. Gutsche and L. J. Bauer, “Calixarenes. 14. The Conformational Properties of the Ethers and Esters of the Calix[6]arenes and the Calix[8]arenes,” J. Am. Chem. Soc., vol. 107, no. 21, pp. 6059–6063, 1985.
  • [5] D. Diamond and M. A. Mckervey, “Calixarene-based Sensing Agents,” Chemıcal Socıety Revıews, vol. 25, no. 1, pp. 15-24, 1996.
  • [6] D. M. Rudkevich, W. Verboom, and D. N. Reinhoudt, “Calix[4]arene Salenes: A Bifunctional Receptor for NaH2PO4,” J. Org. Chem., vol. 59, no. 13, pp. 3683–3686, 1994.
  • [7] M. F. Arnaud-Neu et al., “Modulation of cation binding in calix[4]arene amides: synthesis, complexation and molecular modelling studies,” J. Chem. Soc. Trans. 2, no. 8, pp. 1727–1738, 1999.
  • [8] B. Tomapatanaget and T. Tuntulani, “Lower rim tetra-substituted and upper rim ferrocene amide calix[4]arenes: Synthesis, conformation and anion-binding properties,” Tetrahedron Lett., vol. 42, no. 45, pp. 8105–8109, 2001.
  • [9] R. Ludwig and N. T. K. Dzung, “Calixarene-based molecules for cation recognition,” Sensors, vol. 2, no. 10, pp. 397–416, 2002.
  • [10] N. Galić, M. Rubčić, K. Magdić, M. Cindrić, and V. Tomišić, “Solution and solid-state studies of complexation of transition-metal cations and Al(III) by aroylhydrazones derived from nicotinic acid hydrazide,” Inorganica Chim. Acta, vol. 366, no. 1, pp. 98–104, 2011.
  • [11] C. Alkan, Y. Tek, and D. Kahraman, “Preparation and characterization of a series of thiourea derivatives as phase change materials for thermal energy storage,” Turkish J. Chem., vol. 35, no. 5, pp. 769–777, 2011.
  • [12] C. L. Allen and J. M. J. Williams, “Metal-catalysed approaches to amide bond formation,” Chem. Soc. Rev., vol. 40, no. 7, pp. 3405–3415, 2011.
  • [13] C. Toussaint, C. Beghidja, and R. Welter, “Cobalt complexes supported by salicylichydrazono derivative ligands and various coordination solvents,” Comptes Rendus Chim., vol. 13, no. 3, pp. 343–352, 2010.
  • [14] K. Mounika, A. Pragathi, and C. Gyanakumari, “Synthesis¸ Characterization and Biological Activity of a Schiff Base Derived from 3-Ethoxy Salicylaldehyde and 2-Amino Benzoic acid and its Transition Metal Complexes,” J. Sci. Res., vol. 2, no. 3, p. 513, 2010
  • [15] S. Budagumpi, N. V. Kulkarni, G. S. Kurdekar, M. P. Sathisha, and V. K. Revankar, “Synthesis and spectroscopy of CoII, NiII, CuII and ZnII complexes derived from 3,5-disubstituted-1H-pyrazole derivative: A special emphasis on DNA binding and cleavage studies,” Eur. J. Med. Chem., vol. 45, no. 2, pp. 455–462, 2010.
  • [16] S. N. Podyachev, N. E. Burmakina, V. V. Syakaev, S. N. Sudakova, R. R. Shagidullin, and A. I. Konovalov, “Synthesis, IR and NMR characterization and ion extraction properties of tetranonylcalix[4]resorcinol bearing acetylhydrazone groups,” Tetrahedron, vol. 65, no. 1, pp. 408–417, 2009.
  • [17] D. Zhang et al., “A selective fluorescence probe for yttrium(III) based on acylhydrazone Schiff base,” Inorg. Chem. Commun., vol. 12, no. 11, pp. 1154–1156, 2009.
  • [18] A. Ali and C. P. Rao, “Formation of mono- and di-amide-calix[4]arene derivatives from the reaction of p-tert-butyl-calix[4]arene and α-chloro-N,N-diethylacetamide in the presence of sodium hydride,” Indian J. Chem. - Sect. B Org. Med. Chem., vol. 44, no. 3, pp. 549–552, 2005.
  • [19] I. Vatsouro, E. Alt, M. Vysotsky, and V. Böhmer, “Guest exchange in dimeric capsules formed by tetra-urea calix[4]arenes,” Org. Biomol. Chem., vol. 6, no. 6, pp. 998–1003, 2008.
  • [20] A. Yildirim, S. Karakurt, and M. Yilmaz, “Synthesized Two New Water-Soluble Fluorescents Calix[4]arene 4-sulfo-1,8-naphthalimide Derivatives Inhibit Proliferation of Human Colorectal Carcinoma Cells,” ChemistrySelect, vol. 6, no. 28, pp. 7093–7097, 2021.
  • [21] E. Akceylan, A. Uyanik, S. Eymur, O. Sahin, and M. Yilmaz, “Calixarene-proline functionalized iron oxide magnetite nanoparticles (Calix-Pro-MN): An efficient recyclable organocatalyst for asymmetric aldol reaction in water,” Appl. Catal. A Gen., vol. 499, pp. 205–212, 2015.
  • [22] E. Quinlan, S. E. Matthews, and T. Gunnlaugsson, “Anion sensing using colorimetric amidourea based receptors incorporated into a 1,3-disubstituted calix[4]arene,” Tetrahedron Lett., vol. 47, no. 52, pp. 9333–9338, 2006.
  • [23] S. Bozkurt, A. Karakucuk, A. Sirit, and M. Yilmaz, “Synthesis of two calix[4]arene diamide derivatives for extraction of chromium(VI),” Tetrahedron, vol. 61, no. 44, pp. 10443–10448, 2005.
  • [24] E. M. Collins et al., “Chemically modified calix[4]arenes. Regioselective synthesis of 1,3-(distal) derivatives and related compounds. X-ray crystal structure of a diphenol-dinitrile,” J. Chem. Soc. Perkin Trans. 1, vol. 3, no. 12, pp. 3137–3142, 1991.
  • [25] O. K. Taşkin, Ö. F. Öztürk, and E. Canpolat, “Yeni Bir Schi ff Bazı ve Geçiş Metalleri ile Oluşturdukları Komplekslerin Sentezi ve Karakterizasyonu Synthesis and Characterization of a New Schiff Base and Its Complexes with Some Transition Metals,” BEU Fen Bilim. Derg., c. 1, s. 1, ss. 34–39, 2012
  • [26] D. N. Hundekar, A.M., Sen, “Preparation & Characterization of Metal Complexes of N-Acetyl-N-aroylferrocenyl Hydrazidest,” Indian J. Chem., vol. 23, no. June, pp. 477–479, 1984.
  • [27] K. Shoaib, W. Rehman, B. Mohammad, and S. Ali, “Synthesis, characterization and biological applications of transition metal complexes of [no] donor schiff bases,” J. Proteomics Bioinforma., vol. 6, no. 7, pp. 153–157, 2013.
  • [28] S. TUNA YILDIRIM, “Aromatik Amin İçeren Schiff Bazı Ligandının Sentezi, Karakterizasyonu ve Bazı Geçiş Metal Komplekslerinin İncelenmesi,” Erzincan Üniversitesi Fen Bilim. Enstitüsü Derg., c. 12, s. 3, ss. 1329–1340, 2019.
  • [29] A. S. El-Tabl, F. A. El-Saied, W. Plass, and A. N. Al-Hakimi, “Synthesis, spectroscopic characterization and biological activity of the metal complexes of the Schiff base derived from phenylaminoacetohydrazide and dibenzoylmethane,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 71, no. 1, pp. 90–99, 2008.
  • [30] G. G. Mohamed, M. M. Omar, and A. M. Hindy, “Metal complexes of Schiff bases: Preparation, characterization, and biological activity,” Turkish J. Chem., vol. 30, no. 3, pp. 361–382, 2006.
  • [31] G. G. Mohamed, M. M. Omar, and Y. M. Ahmed, “Metal complexes of Tridentate Schiff base: Synthesis, Characterization, Biological Activity and Molecular Docking Studies with COVID-19 Protein Receptor,” Zeitschrift fur Anorg. und Allg. Chemie, vol. 647, no. 23–24, pp. 2201–2218, 2021.
  • [32] Z. T. Omar, S. Jadhav, R. Pathrikar, S. Shejul, and M. Rai, “Synthesis, Magnetic Susceptibility, Thermodynamic Study and Bio-Evaluation of Transition Metal Complexes of New Schiff Base Incorporating INH Pharmacophore,” Polycycl. Aromat. Compd., vol. 43, no. 1, pp. 523–537, 2023.
There are 32 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Sevil Söyleyici 0000-0002-2219-0111

Project Number 2011BSP028
Publication Date April 29, 2024
Published in Issue Year 2024

Cite

APA Söyleyici, S. (2024). Synthesis and Characterization of Amido-Thiourea Based p-tert-butylcalix[4]arene Compound and Investigation of Transition Metal Complex Properties. Duzce University Journal of Science and Technology, 12(2), 858-868. https://doi.org/10.29130/dubited.1198430
AMA Söyleyici S. Synthesis and Characterization of Amido-Thiourea Based p-tert-butylcalix[4]arene Compound and Investigation of Transition Metal Complex Properties. DÜBİTED. April 2024;12(2):858-868. doi:10.29130/dubited.1198430
Chicago Söyleyici, Sevil. “Synthesis and Characterization of Amido-Thiourea Based P-Tert-butylcalix[4]arene Compound and Investigation of Transition Metal Complex Properties”. Duzce University Journal of Science and Technology 12, no. 2 (April 2024): 858-68. https://doi.org/10.29130/dubited.1198430.
EndNote Söyleyici S (April 1, 2024) Synthesis and Characterization of Amido-Thiourea Based p-tert-butylcalix[4]arene Compound and Investigation of Transition Metal Complex Properties. Duzce University Journal of Science and Technology 12 2 858–868.
IEEE S. Söyleyici, “Synthesis and Characterization of Amido-Thiourea Based p-tert-butylcalix[4]arene Compound and Investigation of Transition Metal Complex Properties”, DÜBİTED, vol. 12, no. 2, pp. 858–868, 2024, doi: 10.29130/dubited.1198430.
ISNAD Söyleyici, Sevil. “Synthesis and Characterization of Amido-Thiourea Based P-Tert-butylcalix[4]arene Compound and Investigation of Transition Metal Complex Properties”. Duzce University Journal of Science and Technology 12/2 (April 2024), 858-868. https://doi.org/10.29130/dubited.1198430.
JAMA Söyleyici S. Synthesis and Characterization of Amido-Thiourea Based p-tert-butylcalix[4]arene Compound and Investigation of Transition Metal Complex Properties. DÜBİTED. 2024;12:858–868.
MLA Söyleyici, Sevil. “Synthesis and Characterization of Amido-Thiourea Based P-Tert-butylcalix[4]arene Compound and Investigation of Transition Metal Complex Properties”. Duzce University Journal of Science and Technology, vol. 12, no. 2, 2024, pp. 858-6, doi:10.29130/dubited.1198430.
Vancouver Söyleyici S. Synthesis and Characterization of Amido-Thiourea Based p-tert-butylcalix[4]arene Compound and Investigation of Transition Metal Complex Properties. DÜBİTED. 2024;12(2):858-6.