Research Article
BibTex RIS Cite

Review of Grid Connected Solar Energy Systems in PVsyst and Simulink

Year 2024, , 1233 - 1249, 31.07.2024
https://doi.org/10.29130/dubited.1206700

Abstract

In this study, the factors affecting the power produced in grid-connected solar power plants were examined. The number of panels and inverters required for the imaginary solar energy system with an installed power of 500 kW has been calculated. The location of the solar energy system, which is planned to be installed with 1184 solar panels and 10 inverters, was chosen as Kocaeli University Umuttepe campus. The monthly and annual optimum panel angle values for the solar energy system are calculated by considering the latitude value of the selected location and the sun's declination angles. The annual optimum panel angle was found to be 31.88° for the selected location located at 40.82° north latitude. The solar energy system was created in PVsyst and MATLAB/Simulink. Within the scope of the application made in PVsyst, the effect of bifacial solar panels and albedo values on the generated power was examined. If the albedo value increased from 0.3 to 0.73, an increase of 10.22% was obtained in the annual amount of energy produced. The annual produced energy values obtained in PVsyst and Simulink for the solar energy system with the same features were compared.

References

  • [1] A. Karafil, H. Özbay, M. Kesler, “Sıcaklık ve Güneş Işınım Değişimlerinin Fotovoltaik Panel Gücü Üzerindeki Etkilerinin Simülasyon Analizi,” Elektrik-Elektronik ve Bilgisayar Sempozyumu, Türkiye, 2016.
  • [2] M. Zouine, M. Akhsassi, N. Erraissi, N. Aarich, “Mathematical Models Calculating PV Module Temperature Using Weather Data: Experimental Study,” Lecture Notes in Electrical Engineering, 2018.
  • [3] P.J.Y. Chua, S.E.R. Tay, “Comparative Discussion of Active and Passive Cooling of PV Modules-Are We Doing It Right?,” 47th IEEE Photovoltaic Specialists Conference, 2020.
  • [4] A. Sharma, N. Singh, S.K. Gawre, “Operational Losses of a Solar Power Plant: a Case Study,” 2021 IEEE 2nd International Conference on Electrical Power and Energy Systems, 2021.
  • [5] A.K. Singh, R.R. Singh, “An Overview of Factors Influencing Solar Power Efficiency and Strategies for Enhancing,” Innovations in Power and Advanced Computing Technologies, 2021.
  • [6] A. Awasthi, M.A. Kallioğlu, A. Sharma, A. Mohan, R. Chauhan, T. Singh, “Solar collector tilt angle optimization for solar power plant setup‑able sites at Western Himalaya and correlation formulation,” Journal of Thermal Analysis and Calorimetry, 2022.
  • [7] A. A. Mehadi, M. M. Nishat, F. Faisal, A. R. H. Bhuiyan, M. Hussain and M. A. Hoque, "Design, Simulation and Feasibility Analysis of Bifacial Solar PV System in Marine Drive Road, Cox’s Bazar," 2021 International Conference on Science & Contemporary Technologies (ICSCT), Dhaka, Bangladesh, 2021, pp. 1-6.
  • [8] M. Leonardi et al., "Effects of solar spectrum and albedo on the performance of bifacial Si heterojunction mini-modules," 2022 IEEE 49th Photovoltaics Specialists Conference (PVSC), Philadelphia, PA, USA, 2022, pp. 0567-0569.
  • [9] T. C. R. Russell, R. Saive, A. Augusto, S. G. Bowden and H. A. Atwater, "The Influence of Spectral Albedo on Bifacial Solar Cells: A Theoretical and Experimental Study," in IEEE Journal of Photovoltaics, vol. 7, no. 6, pp. 1611-1618, 2017.
  • [10] GTC photovoltaic solar systems, Çift yüzlü cam panel [Çevrimiçi] Erişim: http://gtctrade.com/wp-content/uploads/2022/02/GG1H-72-425-tr-02-22.pdf
  • [11] SUN2000-50KTL-M0 Smart string inverter [Çevrimiçi] Erişim: https://solar.huawei.com/-/media/Solar/attachment/pdf/mea/datasheet/SUN2000-50KTL-M0.pdf
  • [12] H.N. Muslim, A. Alkhazraji, “Management of electricity peak load for residential sector in Baghdad city by using solar generation,” International Journal of Energy and Enviroment. vol. 8, pp. 63-72, 2017.
  • [13] M.Z. Jacobson, V. Jadhav, “World estimates of PV optimal tilt angles and ratios of sunlight incident upon tilted and tracked PV panels relative to horizontal panels,” Solar Energy, vol. 169, pp. 55-66, 2018.
  • [14] M. Gul, Y. Kotak, T. Muneer, S. Ivanova, “Enhancement of Albedo for Solar Energy Gain with Particular Emphasis on Overcast Skies,” Energies, 2018.
  • [15] A. Alkan, “Yenilenebilir hibrit enerji kaynakları ile beslenen konutlarda akıllı enerji depolama ve yönetim sistemi,” Yüksek Lisans Tezi, Elektrik Mühendisliği Bölümü, Kocaeli Üniversitesi, Kocaeli, Türkiye, 2016.
  • [16] M. Zouine, M. Akhsassi, N. Erraissi, N. Aarich, “Mathematical Models Calculating PV Module Temperature Using Weather Data: Experimental Study,” Lecture Notes in Electrical Engineering, 2018.

Şebekeye Bağlı Güneş Enerjisi Sistemlerinin PVsyst ve Simulink’te İncelenmesi

Year 2024, , 1233 - 1249, 31.07.2024
https://doi.org/10.29130/dubited.1206700

Abstract

Bu çalışma kapsamında şebekeye bağlı güneş enerjisi santrallerinde üretilen güce etki eden faktörler incelenmiştir. Kurulu gücü 500 kW olan hayali bir güneş enerjisi sistemi için gerekli panel ve evirici sayıları hesaplanmıştır. 1184 adet güneş paneli ve 10 adet eviriciyle kurulması planlanan güneş enerjisi sisteminin konumu Kocaeli Üniversitesi Umuttepe yerleşkesi olarak seçilmiştir. Güneş enerjisi sistemi için aylık ve yıllık optimum panel açısı değerleri seçili konumun enlem değeri ve güneşin deklinasyon açıları dikkate alınarak hesaplanmıştır. 40,82° kuzey enleminde yer alan seçili konum için yıllık optimum panel açısı 31,88° olarak bulunmuştur. Güneş enerjisi sistemi PVsyst ve MATLAB/Simulink ortamında oluşturulmuştur. PVsyst’de yapılan uygulamanın kapsamında çift yüzlü güneş panellerinin ve albedo değerlerinin üretilen güce etkisi incelenmiştir. Albedo değerinin 0,3’ten 0,73’e çıkması durumunda üretilen yıllık enerji miktarında %10,22 artış elde edilmiştir. Aynı özelliklere sahip güneş enerjisi sistemi için PVsyst ve Simulink’te elde edilmiş yıllık üretilen enerji değerleri karşılaştırılmıştır.

References

  • [1] A. Karafil, H. Özbay, M. Kesler, “Sıcaklık ve Güneş Işınım Değişimlerinin Fotovoltaik Panel Gücü Üzerindeki Etkilerinin Simülasyon Analizi,” Elektrik-Elektronik ve Bilgisayar Sempozyumu, Türkiye, 2016.
  • [2] M. Zouine, M. Akhsassi, N. Erraissi, N. Aarich, “Mathematical Models Calculating PV Module Temperature Using Weather Data: Experimental Study,” Lecture Notes in Electrical Engineering, 2018.
  • [3] P.J.Y. Chua, S.E.R. Tay, “Comparative Discussion of Active and Passive Cooling of PV Modules-Are We Doing It Right?,” 47th IEEE Photovoltaic Specialists Conference, 2020.
  • [4] A. Sharma, N. Singh, S.K. Gawre, “Operational Losses of a Solar Power Plant: a Case Study,” 2021 IEEE 2nd International Conference on Electrical Power and Energy Systems, 2021.
  • [5] A.K. Singh, R.R. Singh, “An Overview of Factors Influencing Solar Power Efficiency and Strategies for Enhancing,” Innovations in Power and Advanced Computing Technologies, 2021.
  • [6] A. Awasthi, M.A. Kallioğlu, A. Sharma, A. Mohan, R. Chauhan, T. Singh, “Solar collector tilt angle optimization for solar power plant setup‑able sites at Western Himalaya and correlation formulation,” Journal of Thermal Analysis and Calorimetry, 2022.
  • [7] A. A. Mehadi, M. M. Nishat, F. Faisal, A. R. H. Bhuiyan, M. Hussain and M. A. Hoque, "Design, Simulation and Feasibility Analysis of Bifacial Solar PV System in Marine Drive Road, Cox’s Bazar," 2021 International Conference on Science & Contemporary Technologies (ICSCT), Dhaka, Bangladesh, 2021, pp. 1-6.
  • [8] M. Leonardi et al., "Effects of solar spectrum and albedo on the performance of bifacial Si heterojunction mini-modules," 2022 IEEE 49th Photovoltaics Specialists Conference (PVSC), Philadelphia, PA, USA, 2022, pp. 0567-0569.
  • [9] T. C. R. Russell, R. Saive, A. Augusto, S. G. Bowden and H. A. Atwater, "The Influence of Spectral Albedo on Bifacial Solar Cells: A Theoretical and Experimental Study," in IEEE Journal of Photovoltaics, vol. 7, no. 6, pp. 1611-1618, 2017.
  • [10] GTC photovoltaic solar systems, Çift yüzlü cam panel [Çevrimiçi] Erişim: http://gtctrade.com/wp-content/uploads/2022/02/GG1H-72-425-tr-02-22.pdf
  • [11] SUN2000-50KTL-M0 Smart string inverter [Çevrimiçi] Erişim: https://solar.huawei.com/-/media/Solar/attachment/pdf/mea/datasheet/SUN2000-50KTL-M0.pdf
  • [12] H.N. Muslim, A. Alkhazraji, “Management of electricity peak load for residential sector in Baghdad city by using solar generation,” International Journal of Energy and Enviroment. vol. 8, pp. 63-72, 2017.
  • [13] M.Z. Jacobson, V. Jadhav, “World estimates of PV optimal tilt angles and ratios of sunlight incident upon tilted and tracked PV panels relative to horizontal panels,” Solar Energy, vol. 169, pp. 55-66, 2018.
  • [14] M. Gul, Y. Kotak, T. Muneer, S. Ivanova, “Enhancement of Albedo for Solar Energy Gain with Particular Emphasis on Overcast Skies,” Energies, 2018.
  • [15] A. Alkan, “Yenilenebilir hibrit enerji kaynakları ile beslenen konutlarda akıllı enerji depolama ve yönetim sistemi,” Yüksek Lisans Tezi, Elektrik Mühendisliği Bölümü, Kocaeli Üniversitesi, Kocaeli, Türkiye, 2016.
  • [16] M. Zouine, M. Akhsassi, N. Erraissi, N. Aarich, “Mathematical Models Calculating PV Module Temperature Using Weather Data: Experimental Study,” Lecture Notes in Electrical Engineering, 2018.
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Doğukan Dere 0000-0003-3081-5940

Publication Date July 31, 2024
Published in Issue Year 2024

Cite

APA Dere, D. (2024). Şebekeye Bağlı Güneş Enerjisi Sistemlerinin PVsyst ve Simulink’te İncelenmesi. Duzce University Journal of Science and Technology, 12(3), 1233-1249. https://doi.org/10.29130/dubited.1206700
AMA Dere D. Şebekeye Bağlı Güneş Enerjisi Sistemlerinin PVsyst ve Simulink’te İncelenmesi. DÜBİTED. July 2024;12(3):1233-1249. doi:10.29130/dubited.1206700
Chicago Dere, Doğukan. “Şebekeye Bağlı Güneş Enerjisi Sistemlerinin PVsyst Ve Simulink’te İncelenmesi”. Duzce University Journal of Science and Technology 12, no. 3 (July 2024): 1233-49. https://doi.org/10.29130/dubited.1206700.
EndNote Dere D (July 1, 2024) Şebekeye Bağlı Güneş Enerjisi Sistemlerinin PVsyst ve Simulink’te İncelenmesi. Duzce University Journal of Science and Technology 12 3 1233–1249.
IEEE D. Dere, “Şebekeye Bağlı Güneş Enerjisi Sistemlerinin PVsyst ve Simulink’te İncelenmesi”, DÜBİTED, vol. 12, no. 3, pp. 1233–1249, 2024, doi: 10.29130/dubited.1206700.
ISNAD Dere, Doğukan. “Şebekeye Bağlı Güneş Enerjisi Sistemlerinin PVsyst Ve Simulink’te İncelenmesi”. Duzce University Journal of Science and Technology 12/3 (July 2024), 1233-1249. https://doi.org/10.29130/dubited.1206700.
JAMA Dere D. Şebekeye Bağlı Güneş Enerjisi Sistemlerinin PVsyst ve Simulink’te İncelenmesi. DÜBİTED. 2024;12:1233–1249.
MLA Dere, Doğukan. “Şebekeye Bağlı Güneş Enerjisi Sistemlerinin PVsyst Ve Simulink’te İncelenmesi”. Duzce University Journal of Science and Technology, vol. 12, no. 3, 2024, pp. 1233-49, doi:10.29130/dubited.1206700.
Vancouver Dere D. Şebekeye Bağlı Güneş Enerjisi Sistemlerinin PVsyst ve Simulink’te İncelenmesi. DÜBİTED. 2024;12(3):1233-49.