Research Article
BibTex RIS Cite

Technical, Economic and Environmental Optimization of Electric Vehicle Charging Stations Integrated Photovoltaic Panel and Energy Storage with Different Climatic Characteristics

Year 2023, , 1913 - 1929, 24.10.2023
https://doi.org/10.29130/dubited.1248158

Abstract

The increasing population in the world, the rapid development of technology, and the modern lifestyle leading society to more consumption increase the energy demand. Meeting the demand for energy widely from conventional sources creates many environmental and economic problems, especially global warming. Moreover, energy consumption devices' low efficiency and dependence on traditional resources further complicate the situation. Therefore, it is essential to electrify internal combustion vehicles, which have approximately 20% of fossil-based energy consumption, and to meet their energy demands with renewable energy systems (RES). In this study, the integration potential of electric vehicle (EV) charge stations with solar photovoltaic panels (PV) and energy storage systems (ESS) was investigated, and their technical, economic, and environmental effects were optimized. In addition, the effects of the proposed model in geographical regions with different climatic characteristics were determined by sensitivity analysis. The results showed that unit energy costs increased up to 21% due to climatic differences, and the best result was obtained in the province of Izmir with $0.046/kWh. ESSs used to reduce the clipped energy and increase clean energy consumption have caused the depreciation process to approach project life in cities with low solar radiation potential. On the other hand, the amortization period in hybrid models with PV decreased to 7.88 years. The results showed that PV-ESS-integrated EV charge stations might have different technical, economic, and environmental effects depending on the region's climatic characteristics. Developing infrastructure and investor incentive mechanisms is necessary by considering these situations.

References

  • [1] T. Igogo, K. Awuah-Offei, A. Newman, T. Lowder, and J. Engel-Cox, “Integrating renewable energy into mining operations: Opportunities, challenges, and enabling approaches,” Applied Energy, vol. 300, p. 117375, pp. 1-13, Oct. 2021, doi: 10.1016/j.apenergy.2021.117375.
  • [2] G. E. Halkos, and E.-C. Gkampoura, “Reviewing Usage, Potentials, and Limitations of Renewable Energy Sources,” Energies, vol. 13, no. 11, p. 2906, pp. 1-19, Jun. 2020, doi: 10.3390/en13112906.
  • [3] O. Ekren, C. Hakan Canbaz, and Ç. B. Güvel, “Sizing of a solar-wind hybrid electric vehicle charging station by using HOMER software,” Journal of Cleaner Production, vol. 279, p. 123615, pp. 1-13, Jan. 2021, doi: 10.1016/j.jclepro.2020.123615.
  • [4] M. Economidou, V. Todeschi, P. Bertoldi, D. D’Agostino, P. Zangheri, and L. Castellazzi, “Review of 50 years of EU energy efficiency policies for buildings,” Energy and Buildings, vol. 225, p. 110322, pp. 1-20, Oct. 2020, doi: 10.1016/j.enbuild.2020.110322.
  • [5] K. Ruamsuke, S. Dhakal, and C. O. P. Marpaung, “Energy and economic impacts of the global climate change policy on Southeast Asian countries: A general equilibrium analysis,” Energy, vol. 81, pp. 446–461, Mar. 2015, doi: 10.1016/j.energy.2014.12.057.
  • [6] “2015 United Nations Paris Climate Agreement,” 2023 [Online]. Available: https://unfccc.int/sites/default/files/english_paris_agreement.pdf.
  • [7] “Paris Anlaşması Onaylandı: Türkiye’nin İklim Politikasında Yeni Bir Dönem Başlıyor.”, Sürdürülebilir Ekonomi ve Finans Araştırmaları Derneği, 2021.
  • [8] IEA, IRENA, UN, World Bank, and WHO, “Tracking SDG7: The Energy Progress Report,” International Renewable Energy Agency (IRENA), Washington DC, 2023.
  • [9] Y. Gürbüz, ve A. A. Kulaksız, “Elektrikli Araçlar ile Klasik İçten Yanmalı Motorlu Araçların Çeşitli Yönlerden Karşılaştırılması,” Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 6, s. 2, ss. 117, Haziran 2016, doi: 10.17714/gufbed.2016.06.011.
  • [10] E. Can Güven, ve K. Gedik, “Ömrünü Tamamlamış Elektrikli Araç Bataryalarının Çevresel Yönetimi,” Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 9, s. 2, ss. 726–737, Haziran 2019, doi: 10.21597/jist.446170.
  • [11] N. Berkeley, D. Jarvis, and A. Jones, “Analysing the take up of battery electric vehicles: An investigation of barriers amongst drivers in the UK,” Transportation Research Part D: Transport and Environment, vol. 63, pp. 466–481, Aug. 2018, doi: 10.1016/j.trd.2018.06.016.
  • [12] World Bank Group, “CO2 emissions from transport (% of total fuel combustion),” The World Bank, Washington, D.C., 2019.
  • [13] M. Nurmuhammed, and T. Karadağ, “A Review on Locating the Electric Vehicle Charging Stations and Their Effect on the Energy Network,” Gazi University Journal of Science Part A: Engineering and Innovation, vol. 8, no. 2, pp. 218–233, 2021.
  • [14] IEA, “Global EV Outlook 2022: Securing supplies for an electric future,” International Energy Agency, France, 2022.
  • [15] M. Ashfaq, O. Butt, J. Selvaraj, and N. Rahim, “Assessment of electric vehicle charging infrastructure and its impact on the electric grid: A review,” International Journal of Green Energy, vol. 18, no. 7. pp. 657–686, 2021, doi: 10.1080/15435075.2021.1875471.
  • [16] Roland Irle, “Global Plug-in Vehicle Sales Reached over 3,2 Million in 2020.” The Electric Vehicle World Sales Database (EVvolumes), Sweeden, 2020 [Online]. Available: https://www.ev-volumes.com/country/total-world-plug-in-vehicle-volumes/.
  • [17] N. Adnan, S. Md. Nordin, M. A. bin Bahruddin, and M. Ali, “How trust can drive forward the user acceptance to the technology? In-vehicle technology for autonomous vehicle,” Transportation Research Part A: Policy and Practice, vol. 118, pp. 819–836, Dec. 2018, doi: 10.1016/J.TRA.2018.10.019.
  • [18] S. S. Bilgilioğlu, “Site Selection for Electric Vehicle Charging Station with Geographic Information Systems and Fuzzy Analytical Hierarchy Process,” Afyon Kocatepe University Journal of Science and Engineering Sciences, vol. 22, no. 1, pp. 165–174, Feb. 2022, doi: 10.35414/akufemubid.1013244.
  • [19] E. M. Szumska, “Electric Vehicle Charging Infrastructure along Highways in the EU,” Energies, vol. 16, no. 2, p. 895, pp. 1-18, Jan. 2023, doi: 10.3390/en16020895.
  • [20] IEA, “Global EV Outlook 2022: Securing supplies for an electric future,” International Renewable Energy Agency (IRENA), Washington DC, 2022.
  • [21] A. Yousefi-Sahzabi, E. Unlu-Yucesoy, K. Sasaki, H. Yuosefi, A. Widiatmojo, and Y. Sugai, “Turkish challenges for low-carbon society: Current status, government policies and social acceptance,” Renewable and Sustainable Energy Reviews, vol. 68, pp. 596–608, 2017, doi: 10.1016/j.rser.2016.09.090.
  • [22] Ö. Gönül, A. C. Duman, and Ö. Güler, “Electric vehicles and charging infrastructure in Turkey: An overview,” Renewable and Sustainable Energy Reviews, vol. 143, p. 110913, 2021, doi: 10.1016/j.rser.2021.110913.
  • [23] Plugshare. (2023, Jun 12). Türkiye Electric Vehicle Charging Station Map [Online]. Available: https://www.plugshare.com/.
  • [24] B. Bayram. (2023, 1 Haziran). Türkiye için şarj istasyonu kurulu gücü artıyor [Çevrimiçi]. Erişim: https://www.tehad.org/2022/05/22/devlet-destegi-ile-sarj-istasyonu-kurulu-gucumuz-230mwa-cikiyor.
  • [25] T.C. Sanayi ve Teknoloji Bakanlığı. (2023, Jun 10). Türkiye için elektrikli araç şarj altyapısı [Çevrimiçi]. Erişim: https://sarjdestek.sanayi.gov.tr/turkiye-icin-elektrikli-arac-sarj-altyapisi.
  • [26] S. Singh, P. Chauhan, and N. J. Singh, “Feasibility of Grid-connected Solar-wind Hybrid System with Electric Vehicle Charging Station,” Journal of Modern Power Systems and Clean Energy, vol. 9, no. 2, pp. 295–306, 2021, doi: 10.35833/MPCE.2019.000081.
  • [27] P. V. Minh, S. Le Quang, and M. H. Pham, “Technical economic analysis of photovoltaic-powered electric vehicle charging stations under different solar irradiation conditions in Vietnam,” Sustainability, vol. 13, no. 6, pp. 15–25, 2021, doi: 10.3390/su13063528.
  • [28] U. Fretzen, M. Ansarin, and T. Brandt, “Temporal city-scale matching of solar photovoltaic generation and electric vehicle charging,” Applied Energy, vol. 282, p. 116160, pp. 1-13, 2021, doi: 10.1016/j.apenergy.2020.116160.
  • [29] J. A. Domínguez-Navarro, R. Dufo-López, J. M. Yusta-Loyo, J. S. Artal-Sevil, and J. L. Bernal-Agustín, “Design of an electric vehicle fast-charging station with integration of renewable energy and storage systems,” International Journal of Electrical Power & Energy Systems, vol. 105, pp. 46–58, 2019, doi: 10.1016/j.ijepes.2018.08.001.
  • [30] O. Hafez, and K. Bhattacharya, “Optimal design of electric vehicle charging stations considering various energy resources,” Renewable Energy, vol. 107, pp. 576–589, 2017, doi: 10.1016/j.renene.2017.01.066.
  • [31] A. K. Mathur, C. Teja S, and P. K. Yemula, “Optimal Charging Schedule for Electric Vehicles in Parking Lot with Solar Power Generation,” in 2018 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), Singapore, May 2018, pp. 611–615, doi: 10.1109/ISGT-Asia.2018.8467916.
  • [32] A. Demirci, “Optimal Sizing of Solar-Based Electric Vehicle Charging Stations Considering Charging Demand and Economic Dynamics,” Niğde Ömer Halisdemir University Journal of Engineering Sciences, Sep. 2023, doi: 10.28948/ngumuh.1321628.
  • [33] R. Çakmak, ve A. Turan, “Türkiye’de İller Bazında Elektrikli Araç Şarj İstasyonu Altyapısı: Ölçevler Aracılığıyla Analizi,” Karadeniz Fen Bilimleri Dergisi, c. 12, s. 1, ss. 246–268, 2022, doi: 10.31466/kfbd.1029677.
  • [34] NASA. (2023, Jun 2). NASA Prediction of Worldwide Energy Resource (POWER) database [Online]. Available: https://power.larc.nasa.gov/
  • [35] M. Suri, and T. Cebecauer. (2023, Jun 5). Global Solar Atlas Solargis [Online]. Available: https://solargis.com/maps-and-gis-data/download/turkey.
  • [36] HOMER Grid. (2023, Jun 2). Hybrid Optimization Model for Multiple Energy Resources Grid Help [Online]. Available: https://www.homerenergy.com/products/grid/docs/1.8/index.html.
  • [37] J. M. Clairand, M. Arriaga, C. A. Canizares, and C. Alvarez-Bel, “Power Generation Planning of Galapagos’ Microgrid Considering Electric Vehicles and Induction Stoves,” IEEE Transactions on Sustainable Energy, vol. 10, no. 4, pp. 1916–1926, 2019, doi: 10.1109/TSTE.2018.2876059.
  • [38] A. Zervos, and E. Adlib, “Renewables 2021, Global Status Report,” Renewables (REN21), France (Paris), 2021.
  • [39] Z. Öztürk, and A. Demirci, “Optimization of Renewable Energy Hybrid Power Systems Under Different Penetration and Grid Tariffs,” Journal of Polytechnic, vol. 26, no. 3, pp. 1267-1275, 2023, doi: 10.2339/politeknik.1246418.
  • [40] S. M. Tercan, A. Demirci, E. Gokalp, and U. Cali, “Maximizing self-consumption rates and power quality towards two-stage evaluation for solar energy and shared energy storage empowered microgrids,” Journal of Energy Storage, vol. 51, p. 104561, pp. 1-13, 2022, doi: 10.1016/j.est.2022.104561.
  • [41] A. Demirci, Z. Öztürk, and S. M. Tercan, “Decision-making between hybrid renewable energy configurations and grid extension in rural areas for different climate zones,” Energy, vol. 262, p. 125402, pp. 1-14, 2023, doi: 10.1016/j.energy.2022.125402.
  • [42] Z. Öztürk, S. Tosun, and A. Öztürk, “Modeling of a Sample Hybrid Renewable Energy System with HOMER, Economic and Technical Analysis,” Bayburt University Journal of Science and Technology, vol. 2, no. 2, pp. 286–299, 2019.
  • [43] V. Boddapati, A. Rakesh Kumar, S. Arul Daniel, and S. Padmanaban, “Design and prospective assessment of a hybrid energy-based electric vehicle charging station,” Sustainable Energy Technologies and Assessments, vol. 53, p. 102389, pp. 1-17, 2022, doi: 10.1016/j.seta.2022.102389.
  • [44] Z. Öztürk, A. Demirci, S. Tosun, and A. Öztürk, “Technic and Economic Effects of Changes in the Location of Industrial Facilities in Industrializing Regions on Power Systems,” in 2021 13th International Conference on Electrical and Electronics Engineering (ELECO), Bursa (Türkiye), Nov. 2021, pp. 11–17, doi: 10.23919/ELECO54474.2021.9677827.
  • [45] Trading Economics. (2023, Jun 13). Inflation Rate (World) [Online]. Available: https://tradingeconomics.com/country-list/inflation-rate?continent=world.
  • [46] A. Demirci, Z. Öztürk, S. M. Tercan, and İ. Nakir, “Determination of photovoltaic inverter ratio minimizing energy clipping for electric vehicle charging station under different solar radiations,” in 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Ankara (Türkiye), Jun. 2022, pp. 1-6, doi: 10.1109/HORA55278.2022.9799890.
  • [47] F. L. Camera, “Renewable Power Generation Costs in 2020,” International Renewable Energy Agency (IRENA), Abu Dhabi, 2020.

Farklı İklim Özelliklerine Sahip Fotovoltaik Panel ve Enerji Depolama Entegreli Elektrikli Araç Şarj İstasyonlarının Teknik, Ekonomik ve Çevresel Optimizasyonu

Year 2023, , 1913 - 1929, 24.10.2023
https://doi.org/10.29130/dubited.1248158

Abstract

Dünya’da artan nüfus, teknolojinin hızla gelişimi ve modern yaşam şeklinin toplumu daha fazla tüketime yönlendirmesi enerjiye olan talebi artırmaktadır. Talep edilen enerjinin yaygın olarak konvansiyonel kaynaklardan karşılanması küresel ısınma başta olmak üzere birçok çevresel ve ekonomik problem oluşturmaktadır. Dahası enerji tüketim araçlarının verimliliklerinin düşük olması ve daha çok konvansiyonel kaynaklara bağımlılığı bu durumu daha da kötüleştirmektedir. Dolayısı ile özellikle fosil kaynaklı enerji tüketiminin yaklaşık %20’sine sahip içten yanmalı araçların elektrikli hale getirilmesi ve bunların enerji taleplerinin yenilenebilir enerji kaynakları (YEK) ile karşılanması çok önemlidir. Bu çalışmada elektrikli araç (EA) şarj istasyonlarının solar fotovoltaik panel (FV) ve enerji depolama sistemleri (EDS) ile entegrasyon potansiyeli araştırılmış ve teknik, ekonomik ve çevresel etkileri optimize edilmiştir. Ek olarak önerilen modelin farklı iklimsel özelliklere sahip coğrafi bölgelerdeki etkileri yapılan hassasiyet analizleri ile tespit edilmiştir. Sonuçlar birim enerji maliyetlerinin iklimsel farklılıklara bağlı olarak %21’e kadar artış gösterdiğini ve en iyi sonucun 0,046 $/kWh ile İzmir ilinde elde edildiğini göstermiştir. Kullanılamayan yenilenebilir enerji oranını azaltmak ve temiz enerji tüketimini artırmak amacıyla kullanılan EDS’ler, solar radyasyon potansiyeli düşük olan şehirlerde amortisman sürecinin proje ömrüne yaklaşmasına sebep olmuştur. Diğer taraftan FV’li hibrit modellerde amortisman süreci 7,88 yıla kadar düşmüştür. Sonuçlar FV-EDS entegreli EA şarj istasyonlarının bulundukları bölge iklim özelliklerine bağlı olarak farklı teknik, ekonomik ve çevresel etkilere sahip olabileceğini göstermiştir. Bu durumlar dikkate alınarak altyapı ve yatırımcı teşvik mekanizmalarının geliştirilmesi gerekmektedir.

References

  • [1] T. Igogo, K. Awuah-Offei, A. Newman, T. Lowder, and J. Engel-Cox, “Integrating renewable energy into mining operations: Opportunities, challenges, and enabling approaches,” Applied Energy, vol. 300, p. 117375, pp. 1-13, Oct. 2021, doi: 10.1016/j.apenergy.2021.117375.
  • [2] G. E. Halkos, and E.-C. Gkampoura, “Reviewing Usage, Potentials, and Limitations of Renewable Energy Sources,” Energies, vol. 13, no. 11, p. 2906, pp. 1-19, Jun. 2020, doi: 10.3390/en13112906.
  • [3] O. Ekren, C. Hakan Canbaz, and Ç. B. Güvel, “Sizing of a solar-wind hybrid electric vehicle charging station by using HOMER software,” Journal of Cleaner Production, vol. 279, p. 123615, pp. 1-13, Jan. 2021, doi: 10.1016/j.jclepro.2020.123615.
  • [4] M. Economidou, V. Todeschi, P. Bertoldi, D. D’Agostino, P. Zangheri, and L. Castellazzi, “Review of 50 years of EU energy efficiency policies for buildings,” Energy and Buildings, vol. 225, p. 110322, pp. 1-20, Oct. 2020, doi: 10.1016/j.enbuild.2020.110322.
  • [5] K. Ruamsuke, S. Dhakal, and C. O. P. Marpaung, “Energy and economic impacts of the global climate change policy on Southeast Asian countries: A general equilibrium analysis,” Energy, vol. 81, pp. 446–461, Mar. 2015, doi: 10.1016/j.energy.2014.12.057.
  • [6] “2015 United Nations Paris Climate Agreement,” 2023 [Online]. Available: https://unfccc.int/sites/default/files/english_paris_agreement.pdf.
  • [7] “Paris Anlaşması Onaylandı: Türkiye’nin İklim Politikasında Yeni Bir Dönem Başlıyor.”, Sürdürülebilir Ekonomi ve Finans Araştırmaları Derneği, 2021.
  • [8] IEA, IRENA, UN, World Bank, and WHO, “Tracking SDG7: The Energy Progress Report,” International Renewable Energy Agency (IRENA), Washington DC, 2023.
  • [9] Y. Gürbüz, ve A. A. Kulaksız, “Elektrikli Araçlar ile Klasik İçten Yanmalı Motorlu Araçların Çeşitli Yönlerden Karşılaştırılması,” Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 6, s. 2, ss. 117, Haziran 2016, doi: 10.17714/gufbed.2016.06.011.
  • [10] E. Can Güven, ve K. Gedik, “Ömrünü Tamamlamış Elektrikli Araç Bataryalarının Çevresel Yönetimi,” Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 9, s. 2, ss. 726–737, Haziran 2019, doi: 10.21597/jist.446170.
  • [11] N. Berkeley, D. Jarvis, and A. Jones, “Analysing the take up of battery electric vehicles: An investigation of barriers amongst drivers in the UK,” Transportation Research Part D: Transport and Environment, vol. 63, pp. 466–481, Aug. 2018, doi: 10.1016/j.trd.2018.06.016.
  • [12] World Bank Group, “CO2 emissions from transport (% of total fuel combustion),” The World Bank, Washington, D.C., 2019.
  • [13] M. Nurmuhammed, and T. Karadağ, “A Review on Locating the Electric Vehicle Charging Stations and Their Effect on the Energy Network,” Gazi University Journal of Science Part A: Engineering and Innovation, vol. 8, no. 2, pp. 218–233, 2021.
  • [14] IEA, “Global EV Outlook 2022: Securing supplies for an electric future,” International Energy Agency, France, 2022.
  • [15] M. Ashfaq, O. Butt, J. Selvaraj, and N. Rahim, “Assessment of electric vehicle charging infrastructure and its impact on the electric grid: A review,” International Journal of Green Energy, vol. 18, no. 7. pp. 657–686, 2021, doi: 10.1080/15435075.2021.1875471.
  • [16] Roland Irle, “Global Plug-in Vehicle Sales Reached over 3,2 Million in 2020.” The Electric Vehicle World Sales Database (EVvolumes), Sweeden, 2020 [Online]. Available: https://www.ev-volumes.com/country/total-world-plug-in-vehicle-volumes/.
  • [17] N. Adnan, S. Md. Nordin, M. A. bin Bahruddin, and M. Ali, “How trust can drive forward the user acceptance to the technology? In-vehicle technology for autonomous vehicle,” Transportation Research Part A: Policy and Practice, vol. 118, pp. 819–836, Dec. 2018, doi: 10.1016/J.TRA.2018.10.019.
  • [18] S. S. Bilgilioğlu, “Site Selection for Electric Vehicle Charging Station with Geographic Information Systems and Fuzzy Analytical Hierarchy Process,” Afyon Kocatepe University Journal of Science and Engineering Sciences, vol. 22, no. 1, pp. 165–174, Feb. 2022, doi: 10.35414/akufemubid.1013244.
  • [19] E. M. Szumska, “Electric Vehicle Charging Infrastructure along Highways in the EU,” Energies, vol. 16, no. 2, p. 895, pp. 1-18, Jan. 2023, doi: 10.3390/en16020895.
  • [20] IEA, “Global EV Outlook 2022: Securing supplies for an electric future,” International Renewable Energy Agency (IRENA), Washington DC, 2022.
  • [21] A. Yousefi-Sahzabi, E. Unlu-Yucesoy, K. Sasaki, H. Yuosefi, A. Widiatmojo, and Y. Sugai, “Turkish challenges for low-carbon society: Current status, government policies and social acceptance,” Renewable and Sustainable Energy Reviews, vol. 68, pp. 596–608, 2017, doi: 10.1016/j.rser.2016.09.090.
  • [22] Ö. Gönül, A. C. Duman, and Ö. Güler, “Electric vehicles and charging infrastructure in Turkey: An overview,” Renewable and Sustainable Energy Reviews, vol. 143, p. 110913, 2021, doi: 10.1016/j.rser.2021.110913.
  • [23] Plugshare. (2023, Jun 12). Türkiye Electric Vehicle Charging Station Map [Online]. Available: https://www.plugshare.com/.
  • [24] B. Bayram. (2023, 1 Haziran). Türkiye için şarj istasyonu kurulu gücü artıyor [Çevrimiçi]. Erişim: https://www.tehad.org/2022/05/22/devlet-destegi-ile-sarj-istasyonu-kurulu-gucumuz-230mwa-cikiyor.
  • [25] T.C. Sanayi ve Teknoloji Bakanlığı. (2023, Jun 10). Türkiye için elektrikli araç şarj altyapısı [Çevrimiçi]. Erişim: https://sarjdestek.sanayi.gov.tr/turkiye-icin-elektrikli-arac-sarj-altyapisi.
  • [26] S. Singh, P. Chauhan, and N. J. Singh, “Feasibility of Grid-connected Solar-wind Hybrid System with Electric Vehicle Charging Station,” Journal of Modern Power Systems and Clean Energy, vol. 9, no. 2, pp. 295–306, 2021, doi: 10.35833/MPCE.2019.000081.
  • [27] P. V. Minh, S. Le Quang, and M. H. Pham, “Technical economic analysis of photovoltaic-powered electric vehicle charging stations under different solar irradiation conditions in Vietnam,” Sustainability, vol. 13, no. 6, pp. 15–25, 2021, doi: 10.3390/su13063528.
  • [28] U. Fretzen, M. Ansarin, and T. Brandt, “Temporal city-scale matching of solar photovoltaic generation and electric vehicle charging,” Applied Energy, vol. 282, p. 116160, pp. 1-13, 2021, doi: 10.1016/j.apenergy.2020.116160.
  • [29] J. A. Domínguez-Navarro, R. Dufo-López, J. M. Yusta-Loyo, J. S. Artal-Sevil, and J. L. Bernal-Agustín, “Design of an electric vehicle fast-charging station with integration of renewable energy and storage systems,” International Journal of Electrical Power & Energy Systems, vol. 105, pp. 46–58, 2019, doi: 10.1016/j.ijepes.2018.08.001.
  • [30] O. Hafez, and K. Bhattacharya, “Optimal design of electric vehicle charging stations considering various energy resources,” Renewable Energy, vol. 107, pp. 576–589, 2017, doi: 10.1016/j.renene.2017.01.066.
  • [31] A. K. Mathur, C. Teja S, and P. K. Yemula, “Optimal Charging Schedule for Electric Vehicles in Parking Lot with Solar Power Generation,” in 2018 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), Singapore, May 2018, pp. 611–615, doi: 10.1109/ISGT-Asia.2018.8467916.
  • [32] A. Demirci, “Optimal Sizing of Solar-Based Electric Vehicle Charging Stations Considering Charging Demand and Economic Dynamics,” Niğde Ömer Halisdemir University Journal of Engineering Sciences, Sep. 2023, doi: 10.28948/ngumuh.1321628.
  • [33] R. Çakmak, ve A. Turan, “Türkiye’de İller Bazında Elektrikli Araç Şarj İstasyonu Altyapısı: Ölçevler Aracılığıyla Analizi,” Karadeniz Fen Bilimleri Dergisi, c. 12, s. 1, ss. 246–268, 2022, doi: 10.31466/kfbd.1029677.
  • [34] NASA. (2023, Jun 2). NASA Prediction of Worldwide Energy Resource (POWER) database [Online]. Available: https://power.larc.nasa.gov/
  • [35] M. Suri, and T. Cebecauer. (2023, Jun 5). Global Solar Atlas Solargis [Online]. Available: https://solargis.com/maps-and-gis-data/download/turkey.
  • [36] HOMER Grid. (2023, Jun 2). Hybrid Optimization Model for Multiple Energy Resources Grid Help [Online]. Available: https://www.homerenergy.com/products/grid/docs/1.8/index.html.
  • [37] J. M. Clairand, M. Arriaga, C. A. Canizares, and C. Alvarez-Bel, “Power Generation Planning of Galapagos’ Microgrid Considering Electric Vehicles and Induction Stoves,” IEEE Transactions on Sustainable Energy, vol. 10, no. 4, pp. 1916–1926, 2019, doi: 10.1109/TSTE.2018.2876059.
  • [38] A. Zervos, and E. Adlib, “Renewables 2021, Global Status Report,” Renewables (REN21), France (Paris), 2021.
  • [39] Z. Öztürk, and A. Demirci, “Optimization of Renewable Energy Hybrid Power Systems Under Different Penetration and Grid Tariffs,” Journal of Polytechnic, vol. 26, no. 3, pp. 1267-1275, 2023, doi: 10.2339/politeknik.1246418.
  • [40] S. M. Tercan, A. Demirci, E. Gokalp, and U. Cali, “Maximizing self-consumption rates and power quality towards two-stage evaluation for solar energy and shared energy storage empowered microgrids,” Journal of Energy Storage, vol. 51, p. 104561, pp. 1-13, 2022, doi: 10.1016/j.est.2022.104561.
  • [41] A. Demirci, Z. Öztürk, and S. M. Tercan, “Decision-making between hybrid renewable energy configurations and grid extension in rural areas for different climate zones,” Energy, vol. 262, p. 125402, pp. 1-14, 2023, doi: 10.1016/j.energy.2022.125402.
  • [42] Z. Öztürk, S. Tosun, and A. Öztürk, “Modeling of a Sample Hybrid Renewable Energy System with HOMER, Economic and Technical Analysis,” Bayburt University Journal of Science and Technology, vol. 2, no. 2, pp. 286–299, 2019.
  • [43] V. Boddapati, A. Rakesh Kumar, S. Arul Daniel, and S. Padmanaban, “Design and prospective assessment of a hybrid energy-based electric vehicle charging station,” Sustainable Energy Technologies and Assessments, vol. 53, p. 102389, pp. 1-17, 2022, doi: 10.1016/j.seta.2022.102389.
  • [44] Z. Öztürk, A. Demirci, S. Tosun, and A. Öztürk, “Technic and Economic Effects of Changes in the Location of Industrial Facilities in Industrializing Regions on Power Systems,” in 2021 13th International Conference on Electrical and Electronics Engineering (ELECO), Bursa (Türkiye), Nov. 2021, pp. 11–17, doi: 10.23919/ELECO54474.2021.9677827.
  • [45] Trading Economics. (2023, Jun 13). Inflation Rate (World) [Online]. Available: https://tradingeconomics.com/country-list/inflation-rate?continent=world.
  • [46] A. Demirci, Z. Öztürk, S. M. Tercan, and İ. Nakir, “Determination of photovoltaic inverter ratio minimizing energy clipping for electric vehicle charging station under different solar radiations,” in 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Ankara (Türkiye), Jun. 2022, pp. 1-6, doi: 10.1109/HORA55278.2022.9799890.
  • [47] F. L. Camera, “Renewable Power Generation Costs in 2020,” International Renewable Energy Agency (IRENA), Abu Dhabi, 2020.
There are 47 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Alpaslan Demirci 0000-0002-1038-7224

Zafer Öztürk 0000-0002-1947-9053

Publication Date October 24, 2023
Published in Issue Year 2023

Cite

APA Demirci, A., & Öztürk, Z. (2023). Farklı İklim Özelliklerine Sahip Fotovoltaik Panel ve Enerji Depolama Entegreli Elektrikli Araç Şarj İstasyonlarının Teknik, Ekonomik ve Çevresel Optimizasyonu. Duzce University Journal of Science and Technology, 11(4), 1913-1929. https://doi.org/10.29130/dubited.1248158
AMA Demirci A, Öztürk Z. Farklı İklim Özelliklerine Sahip Fotovoltaik Panel ve Enerji Depolama Entegreli Elektrikli Araç Şarj İstasyonlarının Teknik, Ekonomik ve Çevresel Optimizasyonu. DÜBİTED. October 2023;11(4):1913-1929. doi:10.29130/dubited.1248158
Chicago Demirci, Alpaslan, and Zafer Öztürk. “Farklı İklim Özelliklerine Sahip Fotovoltaik Panel Ve Enerji Depolama Entegreli Elektrikli Araç Şarj İstasyonlarının Teknik, Ekonomik Ve Çevresel Optimizasyonu”. Duzce University Journal of Science and Technology 11, no. 4 (October 2023): 1913-29. https://doi.org/10.29130/dubited.1248158.
EndNote Demirci A, Öztürk Z (October 1, 2023) Farklı İklim Özelliklerine Sahip Fotovoltaik Panel ve Enerji Depolama Entegreli Elektrikli Araç Şarj İstasyonlarının Teknik, Ekonomik ve Çevresel Optimizasyonu. Duzce University Journal of Science and Technology 11 4 1913–1929.
IEEE A. Demirci and Z. Öztürk, “Farklı İklim Özelliklerine Sahip Fotovoltaik Panel ve Enerji Depolama Entegreli Elektrikli Araç Şarj İstasyonlarının Teknik, Ekonomik ve Çevresel Optimizasyonu”, DÜBİTED, vol. 11, no. 4, pp. 1913–1929, 2023, doi: 10.29130/dubited.1248158.
ISNAD Demirci, Alpaslan - Öztürk, Zafer. “Farklı İklim Özelliklerine Sahip Fotovoltaik Panel Ve Enerji Depolama Entegreli Elektrikli Araç Şarj İstasyonlarının Teknik, Ekonomik Ve Çevresel Optimizasyonu”. Duzce University Journal of Science and Technology 11/4 (October 2023), 1913-1929. https://doi.org/10.29130/dubited.1248158.
JAMA Demirci A, Öztürk Z. Farklı İklim Özelliklerine Sahip Fotovoltaik Panel ve Enerji Depolama Entegreli Elektrikli Araç Şarj İstasyonlarının Teknik, Ekonomik ve Çevresel Optimizasyonu. DÜBİTED. 2023;11:1913–1929.
MLA Demirci, Alpaslan and Zafer Öztürk. “Farklı İklim Özelliklerine Sahip Fotovoltaik Panel Ve Enerji Depolama Entegreli Elektrikli Araç Şarj İstasyonlarının Teknik, Ekonomik Ve Çevresel Optimizasyonu”. Duzce University Journal of Science and Technology, vol. 11, no. 4, 2023, pp. 1913-29, doi:10.29130/dubited.1248158.
Vancouver Demirci A, Öztürk Z. Farklı İklim Özelliklerine Sahip Fotovoltaik Panel ve Enerji Depolama Entegreli Elektrikli Araç Şarj İstasyonlarının Teknik, Ekonomik ve Çevresel Optimizasyonu. DÜBİTED. 2023;11(4):1913-29.