Research Article
BibTex RIS Cite

Numerical Investigation of the Effects of Buoyancy and Inter-Surface Radiation on Jet Impingement Cooling of an Inclined Plate

Year 2024, , 320 - 336, 26.01.2024
https://doi.org/10.29130/dubited.1280558

Abstract

In this study, effects of buoyancy and inter-surface radiation on convective heat transfer from an inclined plate cooled by a slot jet are numerically investigated. The study is carried out between the values of jet Reynolds number (Re_j) 100 and 1000, and the Richardson number (Ri) varies between 0.1 and 10. Impact of inter-surface radiation on the overall heat transfer performance is analyzed for three emissivity (ε=0.05-0.5-0.95) values of the target plate and confined surfaces and three different inclination angles (α=0°-5°-10°) of the target plate. The dimensionless nozzle-to-target plate spacing (H/D_j) equals to 4, and computations are performed assuming that air (Pr =0.71) is not participating for radiation. As a result of the study, it is determined that effect of buoyancy on the flow and heat transfer characteristics at high Richardson numbers cannot be neglected, while the increase in surface emissivity improves the overall heat transfer performance and inclination of the target plate significantly affects the heat transfer.

References

  • [1] J. Ferrari, N. Lior, and J. Slycke, “An evalutaion of gas quenching of steel rings by multiple-jet impingement”, Journal of Materials Processing Technology, vol. 136, pp. 190-201, 2003.
  • [2] N. Zuckerman and N. Lior, “Jet impingement heat transfer: physics, correlations, and numerical modeling”, Advances in Heat Transfer, vol. 39, pp. 565-631, 2006.
  • [3] M. Albayrak, B. Sarper, M. Saglam, S. Birinci, and O. Aydin, “The role of jet-to-crossflow velocity ratio on convective heat transfer enhancement in the cooling of discrete heating modules”, Thermal Science and Engineering Progress, vol. 37, 101549, 2023.
  • [4] R. Gardon and J.C. Akfirat, “The role of turbulence in determining the heat transfer characteristics of impinging jets”, International Journal of Heat and Mass Transfer, vol. 8, pp. 1261-1272, 1965.
  • [5] F.F. Cadek, “A fundamental investigation of jet impingement heat transfer”, Ph.D. thesis, University of Cincinnati, 1965.
  • [6] H. Miyazaki and E. Silberman, “Flow and heat transfer on a flat plate normal to a two-dimensional laminar jet issuing from a nozzle of finite height”, International Journal of Heat and Mass Transfer, vol. 15, pp. 2097-2107, 1972.
  • [7] E.M. Sparrow and T.C. Wong, “Impingement transfer coefficients due to initially laminar slot jets”, International Journal of Heat and Mass Transfer, vol. 18, pp. 597-605, 1975.
  • [8] A.R.P. Van Heiningen, “Heat transfer under an impinging slot jet”, Ph.D. Thesis, McGill University, Monteal, Quebec, 1982.
  • [9] V.K. Garg and S. Jayaraj, “Boundary layer analysis for two-dimensional slot jet impingement on inclined plates”, Journal of Heat Transfer, vol. 110, pp. 577-582, 1988.
  • [10] T.D. Yuan, J.A. Liburdy, and T. Wang, “Buoyancy effects on laminar impinging jets”, International Journal of Heat and Mass Transfer, vol. 31, pp. 2137-2145, 1988.
  • [11] D. Lytle and B.W. Webb, “Air jet impingement heat transfer at low nozzle-plate spacings”, International Journal of Heat and Mass Transfer, vol. 37, pp. 1687-1697, 1994.
  • [12] Z.H. Lin, Y.J. Chou, and Y.H. Hung, “Heat transfer behaviors of a confined slot jet impingement”, International Journal of Heat and Mass Transfer, vol. 40, pp. 1095-1107, 1997.
  • [13] G. Yang, M. Choi, and J.S. Lee, “An experimental study of slot jet impingement cooling on concave surface: effects of nozzle configuration and curvature”, International Journal of Heat and Mass Transfer, vol. 42, pp. 2199-2209, 1999.
  • [14] C. Cornaro, A.S. Fleischer, M. Rounds, and R.J. Goldstein, “Jet impingement cooling of a convex semi-cylindrical surface”, International Journal of Thermal Sciences, vol. 40, pp. 890-898, 2001.
  • [15] V.A. Chiriac and A. Ortega, “A numerical study of the unsteady flow and heat transfer in a transitional confined slot jet impinging on an isothermal surface”, International Journal of Heat and Mass Transfer, vol. 45, pp. 1237-1248, 2002.
  • [16] D. Sahoo and M.A.R. Sharif, “Mixed-convective cooling of an isothermal hot Surface by confined slot jet impingement”, Numerical Heat Transfer, Part A: Applications, vol. 45, pp. 887-909, 2004.
  • [17] M. Angioletti, E. Nino, and G. Ruocco, “CFD turbulent modelling of jet impingement and its validation by particle image velocimetry and mass transfer measurements”, International Journal of Thermal Sciences, vol. 44, pp. 349-356, 2005.
  • [18] G. Hu and L. Zhang, “Experimental and numerical study on heat transfer with impinging circular jet on a convex hemispherical surface”, Heat Transfer Engineering, vol. 28, pp. 1008-1016, 2007.
  • [19] M.S.J. De Lemos and C. Fischer, “Thermal analysis of an impinging jet on a plate with and without a porous layer”, Numerical Heat Transfer, Part A: Applications, vol. 54, pp. 1022-1041, 2008.
  • [20] S. Abishek and R. Narayanaswamy, “Coupled effects of surface-radiation and buoyancy on jet-impingement heat transfer”, Journal of Heat Transfer, vol. 39, pp. 1631-1638, 2012.
  • [21] A.S. Cavadas, F.T. Pinho, and J.B.L.M. Campos, “Laminar flow field in a viscous liquid impinging jet confined by inclined plane walls”, International Journal of Thermal Sciences, vol. 59, pp. 95-110, 2012.
  • [22] E. Oztekin, O. Aydin, and M. Avci, “Hydrodynamics of a turbulent slot jet impinging on a concave surface”, International Communications in Heat and Mass Transfer, vol. 39, pp. 1631-1638, 2012.
  • [23] E. Oztekin, O. Aydin, and M. Avci, “Heat transfer in a turbulent slot jet flow impinging on concave surfaces”, International Communications in Heat and Mass Transfer, vol. 44, pp. 77-82, 2013.
  • [24] B. Yousefi-Lafouraki, A. Ramiar, and, A. Ranjbar, “Laminar forced convection of a confined slot impinging jet in a converging channel”, International Journal of Thermal Sciences, vol. 77, pp. 130-138, 2014.
  • [25] M.A.R. Sharif, “Heat transfer from an isothermally heated flat surface due to confined laminar twin oblique slot-jet impingement”, Journal of Thermal Science and Engineering Applications, vol. 7, pp. 1-11, 2015.
  • [26] Z. Ying, L. Guiping, B. Xueqin, B. Lizhan, and W. Dongsheng, “Experimental study of curvature effects on jet impingement heat transfer on concave surfaces. Chinese Journal of Aeronautics, vol. 30, pp. 586-594, 2017.
  • [27] R. Ekiciler, M. Samet, A. Cetinkaya, and K. Arslan, “Effect of shape of nanoparticle on heat transfer and entropy generation of nanofluid-jet impingement cooling”, International Journal of Green Energy. vol. 17, pp. 555-567, 2020.
  • [28] E. Pulat and E. Beyazoglu, “Computational investigation of confined wall inclination effects on impinging jet fluid flow and heat Transfer”, International Journal of Thermal Sciences, vol. 163, pp. 106749, 2021.
  • [29] S.H. Han, H.J. Park, Y.H. Kim, and D.H. Lee, “The effects of thermal boundary conditions on the heat transfer characteristics of laminar flow in mili-scale confined impinging slot jets”, International Journal of Heat and Mass Transfer, vol. 168, 120865, 2021.
  • [30] M. Albayrak, B. Sarper, S. Birinci, M. Saglam, and O. Aydin, “Effect of surface radiation on jet impingement cooling of a concave surface”, International Symposium on Convective Heat and Mass Transfer, June 5-10 2022, Izmir-Turkey. [31] P. Singh, Y. Aider, and I., Kaur, Swirl jet impingement heat transfer: effect of jet-to-target spacing, jet Reynolds number and orientation with flat target”, International Journal of Thermal Sciences, vol. 184, 107993, 2023.
  • [32] Y. Zhou, M. Wang, M. Wang, and Y. Wang, “Predictive accuracy of Boussinesq approximation in opposed mixed convection with a high-temperature heat source inside a building”, Building Environment, vol. 144, pp. 349-356, 2018.
  • [33] Ansys Inc., “Ansys Fluent, Release 21 R2, Theory Guide”, 2021.
  • [34] B. Sarper, M. Saglam, and O. Aydin, “Constructal placement of discrete heat sources with different lengths in vertical ducts under natural and mixed convection”, Journal of Heat and Mass Transfer, vol. 140, 121401, 2018.
  • [35] M.A. Gad and C. Balaji, “Effect of surface radiation RBC in cavities heated from below”, International Communications in Heat and Mass Transfer, vol. 37, pp. 1459-1464, 2010.
  • [36] C. Balaji, M. Hölling, and H. Herwig, “Combined laminar mixed convection and surface radiation using asymptotic computational fluid dynamics (ACFD)”, Heat and Mass Transfer, vol. 43, pp. 567-577, 2007.

Kaldırma Kuvveti ve Yüzey Işınımının Eğik Bir Plakanın Çarpan Jet ile Soğutulmasına Etkilerinin Sayısal Olarak İncelenmesi

Year 2024, , 320 - 336, 26.01.2024
https://doi.org/10.29130/dubited.1280558

Abstract

Bu çalışmada, eğik bir plakanın tek bir slot jet ile soğutulmasında kaldırma kuvveti ve yüzeyler arası ışınımın taşınımla ısı transferine etkileri sayısal olarak incelenmiştir. Çalışma jet Reynolds sayısının (Re_j) 100 ile 1000 değerleri arasında gerçekleştirilmiş olup Richardson sayısı (Ri) ise 0.1 ile 10 arasında değişmektedir. Yüzeyler arası ışınımla ısı transferinin genel ısı transfer performansına etkileri hedef plaka ve sınırlandırıcı yüzeylerin üç farklı yayıcılık (ε=0.05-0.5-0.95) değeri ve üç farklı eğim açısı (α=0°-5°-10°) için analiz edilmiştir. Boyutsuz hedef plaka-nozul çapı mesafesi (H/D_j) 4’e eşit olup havanın (Pr=0.71) ışınım açısından katılımcı olmadığı kabulüyle hesaplamalar gerçekleştirilmiştir. Çalışma sonucunda, yüksek Richardson sayılarında kaldırma kuvvetinin akış ve ısı transfer karakteristiklerinin üzerindeki etkisinin ihmal edilemeyecek düzeyde olduğu, yüzey yayıcılığının artışının ise genel ısı transfer performansını iyileştirdiği ve plaka eğiminin ısı transferini önemli ölçüde etkilediği belirlenmiştir.

References

  • [1] J. Ferrari, N. Lior, and J. Slycke, “An evalutaion of gas quenching of steel rings by multiple-jet impingement”, Journal of Materials Processing Technology, vol. 136, pp. 190-201, 2003.
  • [2] N. Zuckerman and N. Lior, “Jet impingement heat transfer: physics, correlations, and numerical modeling”, Advances in Heat Transfer, vol. 39, pp. 565-631, 2006.
  • [3] M. Albayrak, B. Sarper, M. Saglam, S. Birinci, and O. Aydin, “The role of jet-to-crossflow velocity ratio on convective heat transfer enhancement in the cooling of discrete heating modules”, Thermal Science and Engineering Progress, vol. 37, 101549, 2023.
  • [4] R. Gardon and J.C. Akfirat, “The role of turbulence in determining the heat transfer characteristics of impinging jets”, International Journal of Heat and Mass Transfer, vol. 8, pp. 1261-1272, 1965.
  • [5] F.F. Cadek, “A fundamental investigation of jet impingement heat transfer”, Ph.D. thesis, University of Cincinnati, 1965.
  • [6] H. Miyazaki and E. Silberman, “Flow and heat transfer on a flat plate normal to a two-dimensional laminar jet issuing from a nozzle of finite height”, International Journal of Heat and Mass Transfer, vol. 15, pp. 2097-2107, 1972.
  • [7] E.M. Sparrow and T.C. Wong, “Impingement transfer coefficients due to initially laminar slot jets”, International Journal of Heat and Mass Transfer, vol. 18, pp. 597-605, 1975.
  • [8] A.R.P. Van Heiningen, “Heat transfer under an impinging slot jet”, Ph.D. Thesis, McGill University, Monteal, Quebec, 1982.
  • [9] V.K. Garg and S. Jayaraj, “Boundary layer analysis for two-dimensional slot jet impingement on inclined plates”, Journal of Heat Transfer, vol. 110, pp. 577-582, 1988.
  • [10] T.D. Yuan, J.A. Liburdy, and T. Wang, “Buoyancy effects on laminar impinging jets”, International Journal of Heat and Mass Transfer, vol. 31, pp. 2137-2145, 1988.
  • [11] D. Lytle and B.W. Webb, “Air jet impingement heat transfer at low nozzle-plate spacings”, International Journal of Heat and Mass Transfer, vol. 37, pp. 1687-1697, 1994.
  • [12] Z.H. Lin, Y.J. Chou, and Y.H. Hung, “Heat transfer behaviors of a confined slot jet impingement”, International Journal of Heat and Mass Transfer, vol. 40, pp. 1095-1107, 1997.
  • [13] G. Yang, M. Choi, and J.S. Lee, “An experimental study of slot jet impingement cooling on concave surface: effects of nozzle configuration and curvature”, International Journal of Heat and Mass Transfer, vol. 42, pp. 2199-2209, 1999.
  • [14] C. Cornaro, A.S. Fleischer, M. Rounds, and R.J. Goldstein, “Jet impingement cooling of a convex semi-cylindrical surface”, International Journal of Thermal Sciences, vol. 40, pp. 890-898, 2001.
  • [15] V.A. Chiriac and A. Ortega, “A numerical study of the unsteady flow and heat transfer in a transitional confined slot jet impinging on an isothermal surface”, International Journal of Heat and Mass Transfer, vol. 45, pp. 1237-1248, 2002.
  • [16] D. Sahoo and M.A.R. Sharif, “Mixed-convective cooling of an isothermal hot Surface by confined slot jet impingement”, Numerical Heat Transfer, Part A: Applications, vol. 45, pp. 887-909, 2004.
  • [17] M. Angioletti, E. Nino, and G. Ruocco, “CFD turbulent modelling of jet impingement and its validation by particle image velocimetry and mass transfer measurements”, International Journal of Thermal Sciences, vol. 44, pp. 349-356, 2005.
  • [18] G. Hu and L. Zhang, “Experimental and numerical study on heat transfer with impinging circular jet on a convex hemispherical surface”, Heat Transfer Engineering, vol. 28, pp. 1008-1016, 2007.
  • [19] M.S.J. De Lemos and C. Fischer, “Thermal analysis of an impinging jet on a plate with and without a porous layer”, Numerical Heat Transfer, Part A: Applications, vol. 54, pp. 1022-1041, 2008.
  • [20] S. Abishek and R. Narayanaswamy, “Coupled effects of surface-radiation and buoyancy on jet-impingement heat transfer”, Journal of Heat Transfer, vol. 39, pp. 1631-1638, 2012.
  • [21] A.S. Cavadas, F.T. Pinho, and J.B.L.M. Campos, “Laminar flow field in a viscous liquid impinging jet confined by inclined plane walls”, International Journal of Thermal Sciences, vol. 59, pp. 95-110, 2012.
  • [22] E. Oztekin, O. Aydin, and M. Avci, “Hydrodynamics of a turbulent slot jet impinging on a concave surface”, International Communications in Heat and Mass Transfer, vol. 39, pp. 1631-1638, 2012.
  • [23] E. Oztekin, O. Aydin, and M. Avci, “Heat transfer in a turbulent slot jet flow impinging on concave surfaces”, International Communications in Heat and Mass Transfer, vol. 44, pp. 77-82, 2013.
  • [24] B. Yousefi-Lafouraki, A. Ramiar, and, A. Ranjbar, “Laminar forced convection of a confined slot impinging jet in a converging channel”, International Journal of Thermal Sciences, vol. 77, pp. 130-138, 2014.
  • [25] M.A.R. Sharif, “Heat transfer from an isothermally heated flat surface due to confined laminar twin oblique slot-jet impingement”, Journal of Thermal Science and Engineering Applications, vol. 7, pp. 1-11, 2015.
  • [26] Z. Ying, L. Guiping, B. Xueqin, B. Lizhan, and W. Dongsheng, “Experimental study of curvature effects on jet impingement heat transfer on concave surfaces. Chinese Journal of Aeronautics, vol. 30, pp. 586-594, 2017.
  • [27] R. Ekiciler, M. Samet, A. Cetinkaya, and K. Arslan, “Effect of shape of nanoparticle on heat transfer and entropy generation of nanofluid-jet impingement cooling”, International Journal of Green Energy. vol. 17, pp. 555-567, 2020.
  • [28] E. Pulat and E. Beyazoglu, “Computational investigation of confined wall inclination effects on impinging jet fluid flow and heat Transfer”, International Journal of Thermal Sciences, vol. 163, pp. 106749, 2021.
  • [29] S.H. Han, H.J. Park, Y.H. Kim, and D.H. Lee, “The effects of thermal boundary conditions on the heat transfer characteristics of laminar flow in mili-scale confined impinging slot jets”, International Journal of Heat and Mass Transfer, vol. 168, 120865, 2021.
  • [30] M. Albayrak, B. Sarper, S. Birinci, M. Saglam, and O. Aydin, “Effect of surface radiation on jet impingement cooling of a concave surface”, International Symposium on Convective Heat and Mass Transfer, June 5-10 2022, Izmir-Turkey. [31] P. Singh, Y. Aider, and I., Kaur, Swirl jet impingement heat transfer: effect of jet-to-target spacing, jet Reynolds number and orientation with flat target”, International Journal of Thermal Sciences, vol. 184, 107993, 2023.
  • [32] Y. Zhou, M. Wang, M. Wang, and Y. Wang, “Predictive accuracy of Boussinesq approximation in opposed mixed convection with a high-temperature heat source inside a building”, Building Environment, vol. 144, pp. 349-356, 2018.
  • [33] Ansys Inc., “Ansys Fluent, Release 21 R2, Theory Guide”, 2021.
  • [34] B. Sarper, M. Saglam, and O. Aydin, “Constructal placement of discrete heat sources with different lengths in vertical ducts under natural and mixed convection”, Journal of Heat and Mass Transfer, vol. 140, 121401, 2018.
  • [35] M.A. Gad and C. Balaji, “Effect of surface radiation RBC in cavities heated from below”, International Communications in Heat and Mass Transfer, vol. 37, pp. 1459-1464, 2010.
  • [36] C. Balaji, M. Hölling, and H. Herwig, “Combined laminar mixed convection and surface radiation using asymptotic computational fluid dynamics (ACFD)”, Heat and Mass Transfer, vol. 43, pp. 567-577, 2007.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Buğra Sarper 0000-0001-7554-6575

Publication Date January 26, 2024
Published in Issue Year 2024

Cite

APA Sarper, B. (2024). Kaldırma Kuvveti ve Yüzey Işınımının Eğik Bir Plakanın Çarpan Jet ile Soğutulmasına Etkilerinin Sayısal Olarak İncelenmesi. Duzce University Journal of Science and Technology, 12(1), 320-336. https://doi.org/10.29130/dubited.1280558
AMA Sarper B. Kaldırma Kuvveti ve Yüzey Işınımının Eğik Bir Plakanın Çarpan Jet ile Soğutulmasına Etkilerinin Sayısal Olarak İncelenmesi. DÜBİTED. January 2024;12(1):320-336. doi:10.29130/dubited.1280558
Chicago Sarper, Buğra. “Kaldırma Kuvveti Ve Yüzey Işınımının Eğik Bir Plakanın Çarpan Jet Ile Soğutulmasına Etkilerinin Sayısal Olarak İncelenmesi”. Duzce University Journal of Science and Technology 12, no. 1 (January 2024): 320-36. https://doi.org/10.29130/dubited.1280558.
EndNote Sarper B (January 1, 2024) Kaldırma Kuvveti ve Yüzey Işınımının Eğik Bir Plakanın Çarpan Jet ile Soğutulmasına Etkilerinin Sayısal Olarak İncelenmesi. Duzce University Journal of Science and Technology 12 1 320–336.
IEEE B. Sarper, “Kaldırma Kuvveti ve Yüzey Işınımının Eğik Bir Plakanın Çarpan Jet ile Soğutulmasına Etkilerinin Sayısal Olarak İncelenmesi”, DÜBİTED, vol. 12, no. 1, pp. 320–336, 2024, doi: 10.29130/dubited.1280558.
ISNAD Sarper, Buğra. “Kaldırma Kuvveti Ve Yüzey Işınımının Eğik Bir Plakanın Çarpan Jet Ile Soğutulmasına Etkilerinin Sayısal Olarak İncelenmesi”. Duzce University Journal of Science and Technology 12/1 (January 2024), 320-336. https://doi.org/10.29130/dubited.1280558.
JAMA Sarper B. Kaldırma Kuvveti ve Yüzey Işınımının Eğik Bir Plakanın Çarpan Jet ile Soğutulmasına Etkilerinin Sayısal Olarak İncelenmesi. DÜBİTED. 2024;12:320–336.
MLA Sarper, Buğra. “Kaldırma Kuvveti Ve Yüzey Işınımının Eğik Bir Plakanın Çarpan Jet Ile Soğutulmasına Etkilerinin Sayısal Olarak İncelenmesi”. Duzce University Journal of Science and Technology, vol. 12, no. 1, 2024, pp. 320-36, doi:10.29130/dubited.1280558.
Vancouver Sarper B. Kaldırma Kuvveti ve Yüzey Işınımının Eğik Bir Plakanın Çarpan Jet ile Soğutulmasına Etkilerinin Sayısal Olarak İncelenmesi. DÜBİTED. 2024;12(1):320-36.