Öznitelik Çıkarım Yöntemleri Kullanılarak Akciğer Tomografi Görüntülerinde Covid-19 Sınıflandırılması
Year 2024,
, 1648 - 1663, 31.07.2024
Pelin Görgel
,
Nurşah Dincer
Abstract
Dünya Sağlık Örgütü (WHO) tarafından Covid-19 (Coronavirus Hastalığı 2019) olarak adlandırılan SARS-CoV-2 enfeksiyonu salgını hızla birçok ülkeye yayılmış ve insan ölümü sayısındaki fazlalık sebebiyle pandemi olarak ilan edilmiştir. Yeni bir solunum yolu hastalığı olan Covid-19 ilk olarak Çin’in Wuhan şehrinde görülmüştür [1]. Genel belirtileri ateş, kuru öksürük, yorgunluk, kas ağrısı ve nefes darlığı olan bu hastalığın bulaşıcılık yönü yüksektir [2]. Hastalığın salgın şeklinde olması sebebiyle hastalığın erken teşhisi büyük önem taşımaktadır. Hastalığın hızlı ve doğru teşhisi amacıyla doktorlar için yardımcı araçlar kullanmak oldukça fayda sağlamaktadır. Diğer akciğer hastalıklarında olduğu gibi Covid-19’un teşhisinde de tıbbi görüntüleme teknikleri sıklıkla kullanılmaktadır. Pandemi döneminde Covid-19 tespitinde X-ray ve bilgisayarlı tomografi görüntüleme teknikleri önemli birer yardımcı haline gelmiştir. Bu çalışmada hastalıklı ve sağlıklı akciğer tomografi görüntülerine görüntü işleme ve yapay zekâ teknikleri uygulanarak farklı öznitelikler çıkarılmış ve Covid-19 teşhisi amacıyla sınıflandırma yapılmıştır.
References
- [1] M. Çöl ve G. Güneş, “COVID-19 Salgınına Genel Bir Bakıș”, Covid-19. Ankara, Türkiye: Ankara
Üniversitesi Basımevi, 2020, böl. 1, ss. 1-9. [Çevrimiçi]. Erişim:
http://www.medicine.ankara.edu.tr/wp-content/uploads/sites/121/2020/05/COVID-19-Kitap.pdf.
- [2] A. Gürün Kaya ve A. Kaya, “Klinik Yaklașım: Solunum Sistemi”, Covid-19. Ankara, Türkiye: Ankara
Üniversitesi Basımevi, 2020, böl. 7, ss. 49-55. [Çevrimiçi]. Erişim:
http://www.medicine.ankara.edu.tr/wp-content/uploads/sites/121/2020/05/COVID-19-Kitap.pdf.
- [3] Ç. Uzun, “Görüntülemenin Yeri ve Radyolojik Bulgular”, Covid-19. Ankara, Türkiye: , Ankara
Üniversitesi Basımevi, 2020, böl. 5, ss. 35-43. [Çevrimiçi]. Erişim:
http://www.medicine.ankara.edu.tr/wp-content/uploads/sites/121/2020/05/COVID-19-Kitap.pdf.
- [4] H. M. Afify, K. K. Mohammed and A. E. Hassanien, “An Automated CAD System of CT Chest Images
for COVID-19 Based on Genetic Algorithm and K-Nearest Neighbor Classifier”, International
Information and Engineering Technology Association, vol. 25, no.5, pp. 589-594, 2020.
- [5] J. M. Challab and F. Mardukhi, “A Hybrid Method Based on LSTM and Optimized SVM for Diagnosis
of Novel Coronavirus (COVID-19)”, International Information and Engineering Technology
Association, vol. 38, no. 4, pp. 1061-1069, 2021.
- [6] A. M. Hasan, H. M. Abd El-Kader and A. Hossam, “An Intelligent Detection System for Covid-19
Diagnosis using CT-Images”, Journal of Engineering Sciences Assiut University Faculty of
Engineering, vol. 49, no. 4, pp. 476–508, 2021.
- [7] A. H. Osman, H. M. Aljahdali, S. M. Altarrazi and A. Ahmed, “SOM-LWL method for identification
of COVID-19 on chest X-rays”, Plos One, vol. 16, no. 2, 2021.
1662
- [8] A. Saygılı, “Computer‑Aided Detection of COVID‑19 from CT Images Based on Gaussian Mixture
Model and Kernel Support Vector Machines Classifier”, Arabian Journal for Science and Engineering,
vol. 47, no. 2, pp. 2435–2453, 2021.
- [9] A. M. Ismaela and A. Şengür, “Deep learning approaches for COVID-19 detection based on chest X-
ray images”, Expert Systems With Applications, vol. 164, 2021.
- [10] J. N. Hasoon, A. H. Fadel, R. S. Hameed, S. A. Mostafa, B. A. Khalaf, M. A. Mohammed and J.
Nedoma, “COVID-19 anomaly detection and classification method based on supervised machine
learning of chest X-ray images”, Results in Physics, vol. 31, 2021.
- [11] Ç. Oğuz, M. Yağanoğlu, “Detection of COVID-19 using deep learning techniques and classification
methods”, Information Processing & Management, vol. 59, no. 5, 2022.
- [12] S. S. Vermaa, A. Prasadb and A. Kumar, “CovXmlc: High performance COVID-19 detection on X-
ray images using Multi-Model classification”, Biomedical Signal Processing and Control, vol. 71, 2022.
- [13] M. Barstuğan, Umut Özkaya ve Şaban Öztürk, “Coronavirus (COVID-19) Classification using CT
Images by Machine Learning Methods”
, 4th International Conference on Recent Trends and
Applications in Computer Science and Information Technology, 2021, pp. 29-35.
- [14] H. Gunraj. [Online]. Available: https://www.kaggle.com/hgunraj/covidxct?select=2A_images.
- [15] K. He, X. Zhang, S. Ren and J. Sun, “Deep Residual Learning for Image Recognition”, IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp. 770-778.
- [16] D. Sarwinda, R. H. Paradisa, A. Bustamama and P. Anggia, “Deep Learning in Image Classification
using Residual Network (ResNet) Variants for Detection of Colorectal Cancer”, 5th International
Conference on Computer Science and Computational Intelligence, 2021, pp. 423–431.
- [17] H. Zhang, J. Mo, H. Jiang, Z. Li, W. Hu, C. Zhang, Y. Wang, X. Wang, C. Liu, B. Zhao, J. Zhang
and K. Zhang, “Deep Learning Model for the Automated Detection and Histopathological Prediction of
Meningioma”, Neuroinformatics, vol. 19, no. 3, pp. 393–402, 2020.
- [18] M. Gao, J. Chen, H. Mu and D. Qi, “A Transfer Residual Neural Network Based on ResNet‑34 for
Detection of Wood Knot Defects”, Forests, vol. 12, no. 2, 2021.
- [19] A. M. Reza, “Realization of the Contrast Limited Adaptive Histogram Equalization (CLAHE) for
Real-Time Image Enhancement”, Journal of VLSI Signal Processing, vol. 38, no. 1, pp. 35–44, 2004.
- [20] [Online]. Available: https://scikit-
image.org/docs/stable/auto_examples/filters/plot_unsharp_mask.html.
1663
- [21] G. Gupta, “Algorithm for Image Processing Using Improved Median Filter and Comparison of Mean,
Median and Improved Median Filter”, International Journal of Soft Computing and Engineering
(IJSCE), vol. 1, no. 5, 2011.
- [22] A. Değirmenci, İ. Çankaya ve R. Demirci, “Gradyan Anahtarlamalı Gauss Görüntü Filtresi”, Düzce
Üniversitesi Bilim ve Teknoloji Dergisi, c. 6, s. 1, ss. 196-215, 2017.
- [23] B. S. Akkoca, “Durgun Görüntülerden Yüz İfadelerinin Tanınması”, Yüksek Lisans Tezi, Bilgisayar
Mühendisliği Bölümü, İstanbul Teknik Üniversitesi, İstanbul, Türkiye, 2014.
- [24] P. A. Torrione, K. D. Morton, R. Sakaguchi and L. M. Collins, “Histograms of Oriented Gradients
for Landmine Detection in Ground-Penetrating Radar Data”, IEEE Transactions on Geoscience and
Remote Sensing, vol. 52, no.3, pp.1538-1550, 2014.
- [25] B. Zhang, Y. Gao, S. Zhao and J. Liu, “Local Derivative Pattern Versus Local Binary Pattern: Face
Recognition With High-Order Local Pattern Descriptor”, IEEE Transactions on Image Processing, vol.
19, no. 2, pp. 533 - 544, 2009.
- [26] C. Cortes and V. Vapnik. 1995. Support-vector Networks. Machine Learning 20.3 (1995), 273–297.
https://doi.org/10.1007/BF00994018
- [27] A. F. Agarap, “An Architecture Combining Convolutional Neural Network (CNN) and Support
Vector Machine (SVM) for Image Classification”, Arxiv, 2017.
- [28] N. C. Pratiwi, N. Ibrahim, Y. N. Fu’adah and K. Masykuroh, “Computer-Aided Detection (CAD) for
COVID-19 based on Chest X-Ray Images using Convolutional Neural Network”, International
Conference in Engineering, Technology and Innovative Researches, 2020.
Year 2024,
, 1648 - 1663, 31.07.2024
Pelin Görgel
,
Nurşah Dincer
References
- [1] M. Çöl ve G. Güneş, “COVID-19 Salgınına Genel Bir Bakıș”, Covid-19. Ankara, Türkiye: Ankara
Üniversitesi Basımevi, 2020, böl. 1, ss. 1-9. [Çevrimiçi]. Erişim:
http://www.medicine.ankara.edu.tr/wp-content/uploads/sites/121/2020/05/COVID-19-Kitap.pdf.
- [2] A. Gürün Kaya ve A. Kaya, “Klinik Yaklașım: Solunum Sistemi”, Covid-19. Ankara, Türkiye: Ankara
Üniversitesi Basımevi, 2020, böl. 7, ss. 49-55. [Çevrimiçi]. Erişim:
http://www.medicine.ankara.edu.tr/wp-content/uploads/sites/121/2020/05/COVID-19-Kitap.pdf.
- [3] Ç. Uzun, “Görüntülemenin Yeri ve Radyolojik Bulgular”, Covid-19. Ankara, Türkiye: , Ankara
Üniversitesi Basımevi, 2020, böl. 5, ss. 35-43. [Çevrimiçi]. Erişim:
http://www.medicine.ankara.edu.tr/wp-content/uploads/sites/121/2020/05/COVID-19-Kitap.pdf.
- [4] H. M. Afify, K. K. Mohammed and A. E. Hassanien, “An Automated CAD System of CT Chest Images
for COVID-19 Based on Genetic Algorithm and K-Nearest Neighbor Classifier”, International
Information and Engineering Technology Association, vol. 25, no.5, pp. 589-594, 2020.
- [5] J. M. Challab and F. Mardukhi, “A Hybrid Method Based on LSTM and Optimized SVM for Diagnosis
of Novel Coronavirus (COVID-19)”, International Information and Engineering Technology
Association, vol. 38, no. 4, pp. 1061-1069, 2021.
- [6] A. M. Hasan, H. M. Abd El-Kader and A. Hossam, “An Intelligent Detection System for Covid-19
Diagnosis using CT-Images”, Journal of Engineering Sciences Assiut University Faculty of
Engineering, vol. 49, no. 4, pp. 476–508, 2021.
- [7] A. H. Osman, H. M. Aljahdali, S. M. Altarrazi and A. Ahmed, “SOM-LWL method for identification
of COVID-19 on chest X-rays”, Plos One, vol. 16, no. 2, 2021.
1662
- [8] A. Saygılı, “Computer‑Aided Detection of COVID‑19 from CT Images Based on Gaussian Mixture
Model and Kernel Support Vector Machines Classifier”, Arabian Journal for Science and Engineering,
vol. 47, no. 2, pp. 2435–2453, 2021.
- [9] A. M. Ismaela and A. Şengür, “Deep learning approaches for COVID-19 detection based on chest X-
ray images”, Expert Systems With Applications, vol. 164, 2021.
- [10] J. N. Hasoon, A. H. Fadel, R. S. Hameed, S. A. Mostafa, B. A. Khalaf, M. A. Mohammed and J.
Nedoma, “COVID-19 anomaly detection and classification method based on supervised machine
learning of chest X-ray images”, Results in Physics, vol. 31, 2021.
- [11] Ç. Oğuz, M. Yağanoğlu, “Detection of COVID-19 using deep learning techniques and classification
methods”, Information Processing & Management, vol. 59, no. 5, 2022.
- [12] S. S. Vermaa, A. Prasadb and A. Kumar, “CovXmlc: High performance COVID-19 detection on X-
ray images using Multi-Model classification”, Biomedical Signal Processing and Control, vol. 71, 2022.
- [13] M. Barstuğan, Umut Özkaya ve Şaban Öztürk, “Coronavirus (COVID-19) Classification using CT
Images by Machine Learning Methods”
, 4th International Conference on Recent Trends and
Applications in Computer Science and Information Technology, 2021, pp. 29-35.
- [14] H. Gunraj. [Online]. Available: https://www.kaggle.com/hgunraj/covidxct?select=2A_images.
- [15] K. He, X. Zhang, S. Ren and J. Sun, “Deep Residual Learning for Image Recognition”, IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp. 770-778.
- [16] D. Sarwinda, R. H. Paradisa, A. Bustamama and P. Anggia, “Deep Learning in Image Classification
using Residual Network (ResNet) Variants for Detection of Colorectal Cancer”, 5th International
Conference on Computer Science and Computational Intelligence, 2021, pp. 423–431.
- [17] H. Zhang, J. Mo, H. Jiang, Z. Li, W. Hu, C. Zhang, Y. Wang, X. Wang, C. Liu, B. Zhao, J. Zhang
and K. Zhang, “Deep Learning Model for the Automated Detection and Histopathological Prediction of
Meningioma”, Neuroinformatics, vol. 19, no. 3, pp. 393–402, 2020.
- [18] M. Gao, J. Chen, H. Mu and D. Qi, “A Transfer Residual Neural Network Based on ResNet‑34 for
Detection of Wood Knot Defects”, Forests, vol. 12, no. 2, 2021.
- [19] A. M. Reza, “Realization of the Contrast Limited Adaptive Histogram Equalization (CLAHE) for
Real-Time Image Enhancement”, Journal of VLSI Signal Processing, vol. 38, no. 1, pp. 35–44, 2004.
- [20] [Online]. Available: https://scikit-
image.org/docs/stable/auto_examples/filters/plot_unsharp_mask.html.
1663
- [21] G. Gupta, “Algorithm for Image Processing Using Improved Median Filter and Comparison of Mean,
Median and Improved Median Filter”, International Journal of Soft Computing and Engineering
(IJSCE), vol. 1, no. 5, 2011.
- [22] A. Değirmenci, İ. Çankaya ve R. Demirci, “Gradyan Anahtarlamalı Gauss Görüntü Filtresi”, Düzce
Üniversitesi Bilim ve Teknoloji Dergisi, c. 6, s. 1, ss. 196-215, 2017.
- [23] B. S. Akkoca, “Durgun Görüntülerden Yüz İfadelerinin Tanınması”, Yüksek Lisans Tezi, Bilgisayar
Mühendisliği Bölümü, İstanbul Teknik Üniversitesi, İstanbul, Türkiye, 2014.
- [24] P. A. Torrione, K. D. Morton, R. Sakaguchi and L. M. Collins, “Histograms of Oriented Gradients
for Landmine Detection in Ground-Penetrating Radar Data”, IEEE Transactions on Geoscience and
Remote Sensing, vol. 52, no.3, pp.1538-1550, 2014.
- [25] B. Zhang, Y. Gao, S. Zhao and J. Liu, “Local Derivative Pattern Versus Local Binary Pattern: Face
Recognition With High-Order Local Pattern Descriptor”, IEEE Transactions on Image Processing, vol.
19, no. 2, pp. 533 - 544, 2009.
- [26] C. Cortes and V. Vapnik. 1995. Support-vector Networks. Machine Learning 20.3 (1995), 273–297.
https://doi.org/10.1007/BF00994018
- [27] A. F. Agarap, “An Architecture Combining Convolutional Neural Network (CNN) and Support
Vector Machine (SVM) for Image Classification”, Arxiv, 2017.
- [28] N. C. Pratiwi, N. Ibrahim, Y. N. Fu’adah and K. Masykuroh, “Computer-Aided Detection (CAD) for
COVID-19 based on Chest X-Ray Images using Convolutional Neural Network”, International
Conference in Engineering, Technology and Innovative Researches, 2020.