Research Article
BibTex RIS Cite

1.4534 Paslanmaz Çeliğin Sürdürülebilir Koşullarda Tornalanmasında Yüzey Pürüzlülüğü ve Kesme Sıcaklığının Optimizasyonu

Year 2024, , 654 - 668, 29.04.2024
https://doi.org/10.29130/dubited.1359478

Abstract

Özellikle havacılık uygulamaları için üretilen 1.4534 paslanmaz çeliği, yüksek yük altındaki uçak iniş takımlarında, yüksek korozif ortamlarda sıklıkla tercih edilmektedir. Üstün özelliklerinin yanında diğer paslanmaz çeliklerle kıyaslandığında işlenebilirlik oranı düşük mertebelerdedir. Dahası şekillendirilebilirliği merak konusu olan 1.4534 paslanmaz çeliğinin işleme verimliliğini artırmak son derece önemlidir. Bu çalışmada 1.4534 paslanmaz çeliği sürdürülebilir koşullar (hBN, CO2 ve hBN+CO2) altında bir dizi deneye tabi tutulmuştur. Maliyet ve zaman tasarrufu adına deney tasarımında Taguchi teknikleri kullanılmıştır. Deneyler üç farklı soğutma seviyesinde (hBN, CO2 ve hBN+CO2), üç farklı kesme hızı seviyesinde (140, 200 ve 260 m/dak), üç farklı ilerleme oranı seviyesinde (0,12 - 0,16 ve 0,20 mm/dev) ve sabit kesme hızında (0,8 mm) yürütülmüştür. Yüzey pürüzlülüğü ve kesme sıcaklığının performans kriteri olarak tercih edildiği güncel çalışmada, faktörlerin etki düzeyinin anlaşılmasında varyans analizi (ANOVA) kullanılmıştır. Elde edilen sonuçlara göre; yüzey pürüzlülüğü ve kesme sıcaklığı için en iyi performansı hBN+CO2 koşulu göstermiştir.

References

  • [1] Y. Kayır, S. Aslan, A. Aytürk. “AISI 316Ti paslanmaz çeliğin tornalanmasında kesici uç etkisinin taguchi yöntemi ile analizi,” Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c.28, s.2, ss.363-372, 2013.
  • [2] İ. Ercan, “Ph13-8 Mo paslanmaz çeliğinin işlenebilirliğinin incelenmesi,” Yüksek lisans tezi, İmalat Mühendisliği Bölümü, Karabük Üniversitesi, Karabük, Türkiye, 2020.
  • [3] O. Öndin, T. Kıvak, M. Sarıkaya, Ç.V.Yıldırım,“Investigation of the influence of MWCNTs mixed nanofluid on the machinability characteristics of PH 13-8 Mo stainless steel, Tribology International, vol.148, pp.10632, 2020.
  • [4] Z. Guo, W. Sha, D. Vaumousse, “Microstructural evolution in a PH13-8 stainless steel after ageing,” Acta Materialia, vol. 51, no.1, pp.101-116, 2003.
  • [5] S. Akincioğlu, Ş. Şirin. “Evaluation of the tribological performance of the green hBN nanofluid on the friction characteristics of AISI 316L stainless steel,”Industrial Lubrication Tribology, vol. 73, pp.1176-1186, 2021.
  • [6] P. Shah, N. Khanna,“ Comprehensive machining analysis to establish cryogenic LN2 and LCO2 as sustainable cooling and lubrication techniques,”Tribology International, vol. 148, pp.106314, 2020.
  • [7] M. Hadad, M. A. Beigi M, “Novel approach to improve environmentally friendly machining processes using ultrasonic nozzle–minimum quantity lubrication system,”International Journal of Advanced Manufacturing Technology, vol. 114, pp.741-756, 2021.
  • [8] Ç. V. Yıldırım, M. Sarıkaya, T. Kıvak, Ş. Şirin, “The effect of addition of hBN nanoparticles to nanofluid-MQL on tool wear patterns, tool life, roughness and temperature in turning of Ni-based Inconel 625,” Tribology International, vol. 134, pp. 443-456, 2019.
  • [9] E. Şirin, Ş. Şirin, “ Investigation of the performance of ecological cooling/lubrication methods in the milling of AISI 316L stainless steel,” Manufacturing Technologies and Applications, vol.2, no.1, pp. 75-84, 2021.
  • [10] H. Singh, V.S. Sharma, M. Dogra, “Exploration of graphene assisted vegetables oil base Minimum quantity lubrication for surface grinding of TI-6AL-4V-ELI,” Tribology International, vol. 144, pp.106113, 2020.
  • [11] Ş. Şirin, T. Kıvak, “ Performances of different eco-friendly nanofluid lubricants in the milling of Inconel X-750 superalloy,” Tribology International, vol. 137, pp. 180-92, 2019.
  • [12] E. Şirin, T. Kıvak, Ç.V. Yıldırım, “ Effects of mono/hybrid nanofluid strategies and surfactants on machining performance in the drilling of Hastelloy X,” Tribology International, vol. 157, pp.106894, 2021.
  • [13] Ş. Şirin, “ Sustainability in manufacturing: future trends,” in Sustainable Materials and Manufacturing Technologies, 1st ed., vol. 1, London, İngiltere: CRC Press, 2023,ch. 9, pp.125–51.
  • [14] Ç. V. Yıldırım, Ş. Şirin, T. Kıvak, H. Ercan, M. Sarıkaya, “ An attempt towards green machining of Ni-based Hastelloy C4 alloy: Effect of vegetable oils and their combination with TiO2 and SiO2 nanoparticles on outputs,” Sustainable Materials and Technologies, vol. 37, pp.e00668, 2023.
  • [15] E. Çelik, Ş. Şirin, T. Kıvak, “AISI 2507 süper dubleks paslanmaz çeliğinin hibrit soğutma/yağlama yöntemleri altında tornalanmasında yüzey kalitesinin incelenmesi,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c. 9 ss.929–42, 2021.
  • [16] M. K. Gupta, P. Niesłony, M.E. Korkmaz, G.M. Królczyk, M. Kuntoğlu, P. Pawlus, “Potential use of cryogenic cooling for improving the tribological and tool wear characteristics while machining aluminum alloys,” Tribology International, vol. 183, pp.108434, 2023.
  • [17] N.S. Ross, M. Ganesh, D. Srinivasan, M.K. Gupta, M.E. Korkmaz, J. B. Krolczyk, “Role of sustainable cooling/lubrication conditions in improving the tribological and machining characteristics of Monel-400 alloy,” Tribology International, vol. 176, pp.107880, 2022.
  • [18] Ş. Şirin, “Investigation of the performance of cermet tools in the turning of Haynes 25 superalloy under gaseous N2 and hybrid nanofluid cutting environments,” Journal Manufacture Process, vol. 76, pp. 428–43, 2022.
  • [19] O. Pereira, A. Rodríguez, Al. Fernández-Abia, J. Barreiro, L. N. López de Lacalle, “Cryogenic and minimum quantity lubrication for an eco-efficiency turning of AISI 304,”Journal of Cleaner Production, vol. 139, pp. 440–9, 2016.
  • [20] Ş. Şirin, “AISI 904L süper dubleks paslanmaz çeliğin tornalanmasında mmy, hbn ve n2 soğutma/yağlama koşullarının performans değerlendirmesi,”International Journal of Innovation Engineering Application, c.6, ss. 103-110, 2022.
  • [21] D. Taylan, “Taguchi deney tasarımı uygulaması,” Yüksek lisans tezi, Endüstri Mühendisliği Bölümü, Süleyman Demirel Üniversitesi, Isparta, Türkiye, 2009.
  • [22] A. Ercetin, K. Aslantaş, Ö. Özgün, M. Perçin, M.P.G. Chandrashekarappa, “Optimization of machining parameters to minimize cutting forces and surface roughness in micro-milling of mg13sn alloy,” Micromachines, vol. 14, no. 8, pp. 1590-1602, 2023.
  • [23] H. Akkuş, H. Yaka, “Experimental and statistical investigation of the effect of cutting parameters on surface roughness, vibration and energy consumption in machining of titanium 6Al-4V ELI (grade 5) alloy,” Measurement, vol. 167, pp.108465, 2021.
  • [24] C. Boga, T. Koroglu, “ Proper estimation of surface roughness using hybrid intelligence based on artificial neural network and genetic algorithm,”Journal of Manufacturing Processes, vol. 70, pp. 560-9, 2021.
  • [25] Ş. Şirin, T. Kıvak, “Effects of hybrid nanofluids on machining performance in MQL-milling o Inconel X-750 superalloy,” Journal of Manufacturing Processes, vol. 70, pp.163–76, 2021.
  • [26] Y. Hua, Z. Liu, “Effects of cutting parameters and tool nose radius on surface roughness and work hardening during dry turning Inconel 718,” International Journal of Advanced Manufacturing Technology, vol. 96, pp. 2421–30, 2018.
  • [27] Ç. V. Yıldırım, T. Kıvak, M. Sarıkaya, Ş. Şirin, “ Evaluation of tool wear, surface roughness/topography and chip morphology when machining of Ni-based alloy 625 under MQL, cryogenic cooling and CryoMQL,” Journal of Materials Research and Technology, vol. 9, no.2, pp. 2079 92, 2020.
  • [28] E. Şirin, “Evaluation of tribological performance of MQL technique combined with LN₂, CO₂, N₂ ecological cooling/lubrication techniques when turning of Hastelloy C22 superalloy,” Tribology International, vol.188, pp.108786, 2023.
  • [29] Ç.V. Yıldırım, “Experimental comparison of the performance of nanofluids, cryogenic and hybrid cooling in turning of Inconel 625,” Tribology International, vol. 137, pp. 366-78, 2019.
  • [30] Ş. Şirin, M. Sarıkaya, Ç. V. Yıldırım, T. Kıvak, “Machinability performance of nickel alloy X- 750 with SiAlON ceramic cutting tool under dry, MQL and hBN mixed nanofluid-MQL,” Tribology International, vol. 153, pp.106673,2021.
  • [31] O. Pereira, A. Celaya, G. Urbikaín, A. Rodríguez, A. Fernández-Valdivielso, L. Noberto López de Lacalle, “ CO2 cryogenic milling of Inconel 718: cutting forces and tool wear,”Journal of Materials Research Technology, vol. 9, pp. 8459-8468, 2020.
  • [32] D. M. Kim, H. I. Kim, H. W. Park, “Tool wear, economic costs, and CO2 emissions analysis in cryogenic assisted hard-turning process of AISI 52100 steel,” Sustainable Materials Technology, vol. 30, pp. e00349, 2021.
  • [33] C. Devi, S.K. Mahalingam, R. Cep, K. Kouril,“ Effect of cryo-treated cutting tool end milling on custom 450 stainless steel,” Materials, vol.16, no.13, pp. 4744, 2023.
  • [34] S. Bayır, E. Semerci, T. E. Bedri, “ Preparation of novel thermal conductive nanocomposites by covalent bonding between hexagonal boron nitride nanosheet and well-defined polymer matrix. Compos Part A,” Applied Science and Manufacturing, vol. 146, pp.106406, 2021.
  • [35] M. Günay, E. Yücel, “Application of Taguchi method for determining optimum surface roughness in turning of high-alloy white cast iron,”Measurement, vol. 46, pp.913–9, 2013.
  • [36] E. Şirin, Ş. Şirin, Y. Turgut, İ. Korkut,“ AISI D2 soğuk iş takım çeliğinin frezelenmesinde yüzey pürüzlülüğünün Taguchi metodu ile optimizasyonu,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c.3, ss.132–44, 2015.

Optimization of Surface Roughness and Cutting Temperature in Turning of 1.4534 Stainless Steel under Sustainable Conditions

Year 2024, , 654 - 668, 29.04.2024
https://doi.org/10.29130/dubited.1359478

Abstract

1.4534 stainless steel, which is produced especially for aerospace applications, is frequently preferred in aircraft landing sets under high load and in highly corrosive environments. In addition to its superior properties, its machinability rate is low compared to other stainless steels. Moreover, improving 1.4534 stainless steel's machining performance is crucial since its formability problems. In this study, 1.4534 stainless steel was tested in a series of experiments under sustainable conditions (hBN, CO2, and hBN+CO2). Taguchi techniques were used in the experimental design to save cost and time. Three cooling levels (hBN, CO2, and hBN+CO2), three cutting speeds (140, 200, and 260 m/min), three feed rates (0.12, 0.16, and 0.20 mm/rev), and a constant cutting speed (0.8 mm) were used in the current study. Analysis of variance (ANOVA) was performed in the current study to determine the extent of the components' effects since cutting temperature and surface roughness were chosen as the performance standard. According to the test results obtained; hBN+CO2 condition showed the best performance for surface roughness and cutting temperature.

References

  • [1] Y. Kayır, S. Aslan, A. Aytürk. “AISI 316Ti paslanmaz çeliğin tornalanmasında kesici uç etkisinin taguchi yöntemi ile analizi,” Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c.28, s.2, ss.363-372, 2013.
  • [2] İ. Ercan, “Ph13-8 Mo paslanmaz çeliğinin işlenebilirliğinin incelenmesi,” Yüksek lisans tezi, İmalat Mühendisliği Bölümü, Karabük Üniversitesi, Karabük, Türkiye, 2020.
  • [3] O. Öndin, T. Kıvak, M. Sarıkaya, Ç.V.Yıldırım,“Investigation of the influence of MWCNTs mixed nanofluid on the machinability characteristics of PH 13-8 Mo stainless steel, Tribology International, vol.148, pp.10632, 2020.
  • [4] Z. Guo, W. Sha, D. Vaumousse, “Microstructural evolution in a PH13-8 stainless steel after ageing,” Acta Materialia, vol. 51, no.1, pp.101-116, 2003.
  • [5] S. Akincioğlu, Ş. Şirin. “Evaluation of the tribological performance of the green hBN nanofluid on the friction characteristics of AISI 316L stainless steel,”Industrial Lubrication Tribology, vol. 73, pp.1176-1186, 2021.
  • [6] P. Shah, N. Khanna,“ Comprehensive machining analysis to establish cryogenic LN2 and LCO2 as sustainable cooling and lubrication techniques,”Tribology International, vol. 148, pp.106314, 2020.
  • [7] M. Hadad, M. A. Beigi M, “Novel approach to improve environmentally friendly machining processes using ultrasonic nozzle–minimum quantity lubrication system,”International Journal of Advanced Manufacturing Technology, vol. 114, pp.741-756, 2021.
  • [8] Ç. V. Yıldırım, M. Sarıkaya, T. Kıvak, Ş. Şirin, “The effect of addition of hBN nanoparticles to nanofluid-MQL on tool wear patterns, tool life, roughness and temperature in turning of Ni-based Inconel 625,” Tribology International, vol. 134, pp. 443-456, 2019.
  • [9] E. Şirin, Ş. Şirin, “ Investigation of the performance of ecological cooling/lubrication methods in the milling of AISI 316L stainless steel,” Manufacturing Technologies and Applications, vol.2, no.1, pp. 75-84, 2021.
  • [10] H. Singh, V.S. Sharma, M. Dogra, “Exploration of graphene assisted vegetables oil base Minimum quantity lubrication for surface grinding of TI-6AL-4V-ELI,” Tribology International, vol. 144, pp.106113, 2020.
  • [11] Ş. Şirin, T. Kıvak, “ Performances of different eco-friendly nanofluid lubricants in the milling of Inconel X-750 superalloy,” Tribology International, vol. 137, pp. 180-92, 2019.
  • [12] E. Şirin, T. Kıvak, Ç.V. Yıldırım, “ Effects of mono/hybrid nanofluid strategies and surfactants on machining performance in the drilling of Hastelloy X,” Tribology International, vol. 157, pp.106894, 2021.
  • [13] Ş. Şirin, “ Sustainability in manufacturing: future trends,” in Sustainable Materials and Manufacturing Technologies, 1st ed., vol. 1, London, İngiltere: CRC Press, 2023,ch. 9, pp.125–51.
  • [14] Ç. V. Yıldırım, Ş. Şirin, T. Kıvak, H. Ercan, M. Sarıkaya, “ An attempt towards green machining of Ni-based Hastelloy C4 alloy: Effect of vegetable oils and their combination with TiO2 and SiO2 nanoparticles on outputs,” Sustainable Materials and Technologies, vol. 37, pp.e00668, 2023.
  • [15] E. Çelik, Ş. Şirin, T. Kıvak, “AISI 2507 süper dubleks paslanmaz çeliğinin hibrit soğutma/yağlama yöntemleri altında tornalanmasında yüzey kalitesinin incelenmesi,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c. 9 ss.929–42, 2021.
  • [16] M. K. Gupta, P. Niesłony, M.E. Korkmaz, G.M. Królczyk, M. Kuntoğlu, P. Pawlus, “Potential use of cryogenic cooling for improving the tribological and tool wear characteristics while machining aluminum alloys,” Tribology International, vol. 183, pp.108434, 2023.
  • [17] N.S. Ross, M. Ganesh, D. Srinivasan, M.K. Gupta, M.E. Korkmaz, J. B. Krolczyk, “Role of sustainable cooling/lubrication conditions in improving the tribological and machining characteristics of Monel-400 alloy,” Tribology International, vol. 176, pp.107880, 2022.
  • [18] Ş. Şirin, “Investigation of the performance of cermet tools in the turning of Haynes 25 superalloy under gaseous N2 and hybrid nanofluid cutting environments,” Journal Manufacture Process, vol. 76, pp. 428–43, 2022.
  • [19] O. Pereira, A. Rodríguez, Al. Fernández-Abia, J. Barreiro, L. N. López de Lacalle, “Cryogenic and minimum quantity lubrication for an eco-efficiency turning of AISI 304,”Journal of Cleaner Production, vol. 139, pp. 440–9, 2016.
  • [20] Ş. Şirin, “AISI 904L süper dubleks paslanmaz çeliğin tornalanmasında mmy, hbn ve n2 soğutma/yağlama koşullarının performans değerlendirmesi,”International Journal of Innovation Engineering Application, c.6, ss. 103-110, 2022.
  • [21] D. Taylan, “Taguchi deney tasarımı uygulaması,” Yüksek lisans tezi, Endüstri Mühendisliği Bölümü, Süleyman Demirel Üniversitesi, Isparta, Türkiye, 2009.
  • [22] A. Ercetin, K. Aslantaş, Ö. Özgün, M. Perçin, M.P.G. Chandrashekarappa, “Optimization of machining parameters to minimize cutting forces and surface roughness in micro-milling of mg13sn alloy,” Micromachines, vol. 14, no. 8, pp. 1590-1602, 2023.
  • [23] H. Akkuş, H. Yaka, “Experimental and statistical investigation of the effect of cutting parameters on surface roughness, vibration and energy consumption in machining of titanium 6Al-4V ELI (grade 5) alloy,” Measurement, vol. 167, pp.108465, 2021.
  • [24] C. Boga, T. Koroglu, “ Proper estimation of surface roughness using hybrid intelligence based on artificial neural network and genetic algorithm,”Journal of Manufacturing Processes, vol. 70, pp. 560-9, 2021.
  • [25] Ş. Şirin, T. Kıvak, “Effects of hybrid nanofluids on machining performance in MQL-milling o Inconel X-750 superalloy,” Journal of Manufacturing Processes, vol. 70, pp.163–76, 2021.
  • [26] Y. Hua, Z. Liu, “Effects of cutting parameters and tool nose radius on surface roughness and work hardening during dry turning Inconel 718,” International Journal of Advanced Manufacturing Technology, vol. 96, pp. 2421–30, 2018.
  • [27] Ç. V. Yıldırım, T. Kıvak, M. Sarıkaya, Ş. Şirin, “ Evaluation of tool wear, surface roughness/topography and chip morphology when machining of Ni-based alloy 625 under MQL, cryogenic cooling and CryoMQL,” Journal of Materials Research and Technology, vol. 9, no.2, pp. 2079 92, 2020.
  • [28] E. Şirin, “Evaluation of tribological performance of MQL technique combined with LN₂, CO₂, N₂ ecological cooling/lubrication techniques when turning of Hastelloy C22 superalloy,” Tribology International, vol.188, pp.108786, 2023.
  • [29] Ç.V. Yıldırım, “Experimental comparison of the performance of nanofluids, cryogenic and hybrid cooling in turning of Inconel 625,” Tribology International, vol. 137, pp. 366-78, 2019.
  • [30] Ş. Şirin, M. Sarıkaya, Ç. V. Yıldırım, T. Kıvak, “Machinability performance of nickel alloy X- 750 with SiAlON ceramic cutting tool under dry, MQL and hBN mixed nanofluid-MQL,” Tribology International, vol. 153, pp.106673,2021.
  • [31] O. Pereira, A. Celaya, G. Urbikaín, A. Rodríguez, A. Fernández-Valdivielso, L. Noberto López de Lacalle, “ CO2 cryogenic milling of Inconel 718: cutting forces and tool wear,”Journal of Materials Research Technology, vol. 9, pp. 8459-8468, 2020.
  • [32] D. M. Kim, H. I. Kim, H. W. Park, “Tool wear, economic costs, and CO2 emissions analysis in cryogenic assisted hard-turning process of AISI 52100 steel,” Sustainable Materials Technology, vol. 30, pp. e00349, 2021.
  • [33] C. Devi, S.K. Mahalingam, R. Cep, K. Kouril,“ Effect of cryo-treated cutting tool end milling on custom 450 stainless steel,” Materials, vol.16, no.13, pp. 4744, 2023.
  • [34] S. Bayır, E. Semerci, T. E. Bedri, “ Preparation of novel thermal conductive nanocomposites by covalent bonding between hexagonal boron nitride nanosheet and well-defined polymer matrix. Compos Part A,” Applied Science and Manufacturing, vol. 146, pp.106406, 2021.
  • [35] M. Günay, E. Yücel, “Application of Taguchi method for determining optimum surface roughness in turning of high-alloy white cast iron,”Measurement, vol. 46, pp.913–9, 2013.
  • [36] E. Şirin, Ş. Şirin, Y. Turgut, İ. Korkut,“ AISI D2 soğuk iş takım çeliğinin frezelenmesinde yüzey pürüzlülüğünün Taguchi metodu ile optimizasyonu,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c.3, ss.132–44, 2015.
There are 36 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Articles
Authors

Emine Şirin 0000-0001-9561-2453

Publication Date April 29, 2024
Published in Issue Year 2024

Cite

APA Şirin, E. (2024). Optimization of Surface Roughness and Cutting Temperature in Turning of 1.4534 Stainless Steel under Sustainable Conditions. Duzce University Journal of Science and Technology, 12(2), 654-668. https://doi.org/10.29130/dubited.1359478
AMA Şirin E. Optimization of Surface Roughness and Cutting Temperature in Turning of 1.4534 Stainless Steel under Sustainable Conditions. DÜBİTED. April 2024;12(2):654-668. doi:10.29130/dubited.1359478
Chicago Şirin, Emine. “Optimization of Surface Roughness and Cutting Temperature in Turning of 1.4534 Stainless Steel under Sustainable Conditions”. Duzce University Journal of Science and Technology 12, no. 2 (April 2024): 654-68. https://doi.org/10.29130/dubited.1359478.
EndNote Şirin E (April 1, 2024) Optimization of Surface Roughness and Cutting Temperature in Turning of 1.4534 Stainless Steel under Sustainable Conditions. Duzce University Journal of Science and Technology 12 2 654–668.
IEEE E. Şirin, “Optimization of Surface Roughness and Cutting Temperature in Turning of 1.4534 Stainless Steel under Sustainable Conditions”, DÜBİTED, vol. 12, no. 2, pp. 654–668, 2024, doi: 10.29130/dubited.1359478.
ISNAD Şirin, Emine. “Optimization of Surface Roughness and Cutting Temperature in Turning of 1.4534 Stainless Steel under Sustainable Conditions”. Duzce University Journal of Science and Technology 12/2 (April 2024), 654-668. https://doi.org/10.29130/dubited.1359478.
JAMA Şirin E. Optimization of Surface Roughness and Cutting Temperature in Turning of 1.4534 Stainless Steel under Sustainable Conditions. DÜBİTED. 2024;12:654–668.
MLA Şirin, Emine. “Optimization of Surface Roughness and Cutting Temperature in Turning of 1.4534 Stainless Steel under Sustainable Conditions”. Duzce University Journal of Science and Technology, vol. 12, no. 2, 2024, pp. 654-68, doi:10.29130/dubited.1359478.
Vancouver Şirin E. Optimization of Surface Roughness and Cutting Temperature in Turning of 1.4534 Stainless Steel under Sustainable Conditions. DÜBİTED. 2024;12(2):654-68.