Research Article
BibTex RIS Cite

Fiber Matların Kalınlığının Görüntü İşleme Yoluyla Işık Geçirgenliği Kullanılarak Ölçülmesi

Year 2023, , 2373 - 2381, 29.12.2023
https://doi.org/10.29130/dubited.1371752

Abstract

Fiber malzemeler sahip oldukları geniş aktif yüzey alanı, yüksek yüzey-hacim oranı, yüksek gözeneklilik, yüksek mekanik performans ve düşük yoğunluk gibi özellikleri nedeniyle enerji üretim ve depolama hücreleri, piller, atık su arıtımında kullanılan membranlar, sensörler, ilaç salınımlı yara bantları ile koruyucu giysiler gibi birçok uygulamada ana bileşen olarak kullanılmaktadır. Elektrospin, fiber malzemeler üretmek için kullanılan basit ve çok yönlü bir yöntemdir. Elektrospin yöntemi her ne kadar çalışma prensibi olarak basit bir yöntem olsa da işlem esnasında ortaya çıkan bükülme dengesizliği nedeniyle homojen kalınlıkta (tüm yüzeyde eşit olacak şekilde) fiber matlar elde edilememektedir. Homojen olmayan kalınlık, bu matların uygulamalardaki verimliliğini azaltmakla kalmaz, aynı zamanda mekanik işlevlerini de olumsuz etkiler. Bu çalışmada, elektrospin cihazı ile üretilen fiber formunda matların homojen kalınlıkta üretimlerinde ve kalınlık kontrolünün sağlanmasında karşılaşılan sorunlara çözüm olarak görüntü işleme ve ışık geçirgenliği prensibine dayalı bir kalınlık ölçüm sisteminin geliştirilmesi amaçlanmıştır. Bu amaç doğrultusunda öncelikle ışık geçirimsiz kapsülleme yöntemiyle kapatılmış bir düzenek kurulmuştur. Düzeneğin zemin kısmında LED aydınlatma üzerine kurulmuş asetat zemin üzerine farklı sürelerde üretilmiş çeşitli fiber matlar yerleştirilmiştir. Düzeneğin tepe noktasındaki odak noktasına koyulan çekim özellikleri sabit ayarlanmış bir kamera ile görüntüler elde edilmiş ve mat kalınlıklarına ait eşik değer aralıklarını belirlemek için görüntü işleme teknikleri kullanılmıştır. Fiber matların gerçek kalınlıkları optik mikroskop ölçümüyle doğrulanmış ve farklı numunelerde aynı renkle tanımlanan bölgelerin benzer kalınlığa sahip olduğu belirlenmiştir.

Supporting Institution

TÜBİTAK

Project Number

1139B412202006

Thanks

Bu çalışma TÜBİTAK 2209-B tarafından 1139B412202006 numaralı hibe ile desteklenmektedir.

References

  • [1] G. Karanfil, “Preparation and characterization of electrospun sulfonated polysulfone/ZrO2 composite nanofiber membranes,” Int. J. Mater. Res., vol. 113, no. 3, pp. 243-252, 2022.
  • [2] G. K. Celep and K. Dincer, “Optimization of parameters for electrospinning of polyacrylonitrile nanofibers by the Taguchi method,” Int. Polym. Process., vol. 32, no. 4, pp. 508-514, 2017.
  • [3] C. M. Wu, C. H. Hsu, C. I. Su, C. L. Liu, and J. Y. Lee, “Optimizing parameters for continuous electrospinning of polyacrylonitrile nanofibrous yarn using the Taguchi method,” J. Ind. Text., vol. 48, no. 3, pp. 559-579, 2018.
  • [4] C. F. Wan, T. Yang, G. G. Lipscomb, D. J. Stookey, and T. S. Chung, “Design and fabrication of hollow fiber membrane modules,” J. Membr. Sci., vol. 538, pp. 96-107, 2017.
  • [5] D. Öztürk, H. Yavuztürk, H. K. Can, E. Kaçmaz, B. Yılmazel, and G. K. Kaçmaz, “Measuring the Thickness of Fiber Mats Using Light Transmittance via Image Processing,” in 26th National Electron Microscopy Congress, Eskişehir, Turkey, 2023, pp. 97.
  • [6] J. Jiang, Y. Li, Y. Zhang, H. U. Bahia, “Distribution of mortar film thickness and its relationship to mixture cracking resistance,” Int. J. Pavement Eng., vol. 23, no. 3, pp. 824-833, 2020.
  • [7] D. J. Cruz, R. L. Amaral, A. D. Santos, J. M. R. S. Tavares, “Application of Digital Image Processing Techniques to Detect Through-Thickness Crack in Hole Expansion Test,” Metals, vol. 13, no. 7, pp. 1197, 2023.
  • [8] H. I. Ryu, M. S. Koo, S. Kim, S. Kim, Y. A. Park, and S. M. Park, “Uniform-thickness electrospun nanofiber mat production system based on real-time thickness measurement,” Sci. Rep., vol. 10, no. 1, pp. 1-10, 2020.
  • [9] GMZ Energy. (2023, September 10). Inovative Solutions for Sustainable Production: Smart and Innovative Electrospin Device [Online]. Available: https://www.gmzenerji.com/en/
  • [10] C. Saravanan, “Color Image to Grayscale Image Conversion,” in 2nd International Conference on Computer Engineering and Applications, Bali, Indonesia, 2010, pp. 196-199.
  • [11] M. Ĉadík, “Perceptual Evaluation of color‐to‐Grayscale Image Conversions,” Computer Graphics Forum, vol. 27, no. 7, pp. 1745–1754, 2008.
  • [12] J. Mukherjee, I. K. Maitra, K. N. Dey, S. K. Bandyopadhyay, D. Bhattacharyya, and T. H. Kim, “Grayscale conversion of histopathological slide images as a preprocessing step for image segmentation,” Int. J. Software Eng. Appl., vol. 10, no. 1, pp. 15-26, 2016.
  • [13] P. K. Sahoo, S. A. K. C. Soltani, and A. K. Wong, “A survey of thresholding techniques,” Comput. Vision Graphics Image Process., vol. 41, no. 2, pp. 233-260, 1988.
  • [14] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man. Cybern., vol. 9, no. 1, pp. 62-66, 1979.
  • [15] I. Culjak, D. Abram, T. Pribanic, H. Dzapo, and M. Cifrek, “A brief introduction to OpenCV,” in 35th International Convention MIPRO, Opatija, Croatia, 2012, pp. 1725-1730.

Measuring the Thickness of Fiber Mats Using Light Transmittance via Image Processing

Year 2023, , 2373 - 2381, 29.12.2023
https://doi.org/10.29130/dubited.1371752

Abstract

Fiber materials possess unique properties, including a large active surface area, high surface-to-volume ratio, high porosity, high mechanical performance, and low density. Consequently, they serve as key components in various applications such as energy production and storage cells, batteries, wastewater treatment membranes, sensors, drug-releasing band-aids, and protective clothing. Electrospinning is a simple and versatile method for producing fiber materials. Despite its simplicity in terms of working principles, it faces challenges in achieving homogeneous thickness (evenly on the entire surface) throughout fiber mats due to inherent bending instability during the process. Non-uniform thickness not only diminishes the efficiency of these mats in applications but also adversely impacts their mechanical functionality. In this study, the aim is to develop a thickness measurement system based on image processing and the principle of light transmittance as a solution to the issues encountered in achieving uniform thickness and thickness control of fiber mats produced by electrospinning devices. To accomplish this, a closed mechanism with a light-impermeable encapsulation method was established. Various fiber mats, produced at different times were placed on the acetate floor built on LED lighting on the base of the mechanism. Using a camera with the adjusted settings positioned at the focal point on top of the mechanism, images of the fiber mats were captured, and image processing techniques were employed to determine threshold value ranges for the mat thicknesses. The actual thicknesses of the fiber mats were verified using an optical microscope, revealing that regions defined with the same color in different samples exhibited similar thicknesses.

Supporting Institution

TUBITAK

Project Number

1139B412202006

Thanks

This study is supported by TUBITAK 2209-B under the grant no: 1139B412202006.

References

  • [1] G. Karanfil, “Preparation and characterization of electrospun sulfonated polysulfone/ZrO2 composite nanofiber membranes,” Int. J. Mater. Res., vol. 113, no. 3, pp. 243-252, 2022.
  • [2] G. K. Celep and K. Dincer, “Optimization of parameters for electrospinning of polyacrylonitrile nanofibers by the Taguchi method,” Int. Polym. Process., vol. 32, no. 4, pp. 508-514, 2017.
  • [3] C. M. Wu, C. H. Hsu, C. I. Su, C. L. Liu, and J. Y. Lee, “Optimizing parameters for continuous electrospinning of polyacrylonitrile nanofibrous yarn using the Taguchi method,” J. Ind. Text., vol. 48, no. 3, pp. 559-579, 2018.
  • [4] C. F. Wan, T. Yang, G. G. Lipscomb, D. J. Stookey, and T. S. Chung, “Design and fabrication of hollow fiber membrane modules,” J. Membr. Sci., vol. 538, pp. 96-107, 2017.
  • [5] D. Öztürk, H. Yavuztürk, H. K. Can, E. Kaçmaz, B. Yılmazel, and G. K. Kaçmaz, “Measuring the Thickness of Fiber Mats Using Light Transmittance via Image Processing,” in 26th National Electron Microscopy Congress, Eskişehir, Turkey, 2023, pp. 97.
  • [6] J. Jiang, Y. Li, Y. Zhang, H. U. Bahia, “Distribution of mortar film thickness and its relationship to mixture cracking resistance,” Int. J. Pavement Eng., vol. 23, no. 3, pp. 824-833, 2020.
  • [7] D. J. Cruz, R. L. Amaral, A. D. Santos, J. M. R. S. Tavares, “Application of Digital Image Processing Techniques to Detect Through-Thickness Crack in Hole Expansion Test,” Metals, vol. 13, no. 7, pp. 1197, 2023.
  • [8] H. I. Ryu, M. S. Koo, S. Kim, S. Kim, Y. A. Park, and S. M. Park, “Uniform-thickness electrospun nanofiber mat production system based on real-time thickness measurement,” Sci. Rep., vol. 10, no. 1, pp. 1-10, 2020.
  • [9] GMZ Energy. (2023, September 10). Inovative Solutions for Sustainable Production: Smart and Innovative Electrospin Device [Online]. Available: https://www.gmzenerji.com/en/
  • [10] C. Saravanan, “Color Image to Grayscale Image Conversion,” in 2nd International Conference on Computer Engineering and Applications, Bali, Indonesia, 2010, pp. 196-199.
  • [11] M. Ĉadík, “Perceptual Evaluation of color‐to‐Grayscale Image Conversions,” Computer Graphics Forum, vol. 27, no. 7, pp. 1745–1754, 2008.
  • [12] J. Mukherjee, I. K. Maitra, K. N. Dey, S. K. Bandyopadhyay, D. Bhattacharyya, and T. H. Kim, “Grayscale conversion of histopathological slide images as a preprocessing step for image segmentation,” Int. J. Software Eng. Appl., vol. 10, no. 1, pp. 15-26, 2016.
  • [13] P. K. Sahoo, S. A. K. C. Soltani, and A. K. Wong, “A survey of thresholding techniques,” Comput. Vision Graphics Image Process., vol. 41, no. 2, pp. 233-260, 1988.
  • [14] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man. Cybern., vol. 9, no. 1, pp. 62-66, 1979.
  • [15] I. Culjak, D. Abram, T. Pribanic, H. Dzapo, and M. Cifrek, “A brief introduction to OpenCV,” in 35th International Convention MIPRO, Opatija, Croatia, 2012, pp. 1725-1730.
There are 15 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Articles
Authors

Burcu Yılmazel 0000-0001-8917-6499

Dilara Öztürk 0009-0003-5677-7898

Hercan Yavuztürk 0009-0006-2835-7054

Halit Kaan Can 0009-0005-8362-7961

Emre Kaçmaz 0000-0002-0046-1806

Gamze Karanfil Kaçmaz 0000-0002-7941-9853

Project Number 1139B412202006
Publication Date December 29, 2023
Published in Issue Year 2023

Cite

APA Yılmazel, B., Öztürk, D., Yavuztürk, H., Can, H. K., et al. (2023). Measuring the Thickness of Fiber Mats Using Light Transmittance via Image Processing. Duzce University Journal of Science and Technology, 11(5), 2373-2381. https://doi.org/10.29130/dubited.1371752
AMA Yılmazel B, Öztürk D, Yavuztürk H, Can HK, Kaçmaz E, Karanfil Kaçmaz G. Measuring the Thickness of Fiber Mats Using Light Transmittance via Image Processing. DÜBİTED. December 2023;11(5):2373-2381. doi:10.29130/dubited.1371752
Chicago Yılmazel, Burcu, Dilara Öztürk, Hercan Yavuztürk, Halit Kaan Can, Emre Kaçmaz, and Gamze Karanfil Kaçmaz. “Measuring the Thickness of Fiber Mats Using Light Transmittance via Image Processing”. Duzce University Journal of Science and Technology 11, no. 5 (December 2023): 2373-81. https://doi.org/10.29130/dubited.1371752.
EndNote Yılmazel B, Öztürk D, Yavuztürk H, Can HK, Kaçmaz E, Karanfil Kaçmaz G (December 1, 2023) Measuring the Thickness of Fiber Mats Using Light Transmittance via Image Processing. Duzce University Journal of Science and Technology 11 5 2373–2381.
IEEE B. Yılmazel, D. Öztürk, H. Yavuztürk, H. K. Can, E. Kaçmaz, and G. Karanfil Kaçmaz, “Measuring the Thickness of Fiber Mats Using Light Transmittance via Image Processing”, DÜBİTED, vol. 11, no. 5, pp. 2373–2381, 2023, doi: 10.29130/dubited.1371752.
ISNAD Yılmazel, Burcu et al. “Measuring the Thickness of Fiber Mats Using Light Transmittance via Image Processing”. Duzce University Journal of Science and Technology 11/5 (December 2023), 2373-2381. https://doi.org/10.29130/dubited.1371752.
JAMA Yılmazel B, Öztürk D, Yavuztürk H, Can HK, Kaçmaz E, Karanfil Kaçmaz G. Measuring the Thickness of Fiber Mats Using Light Transmittance via Image Processing. DÜBİTED. 2023;11:2373–2381.
MLA Yılmazel, Burcu et al. “Measuring the Thickness of Fiber Mats Using Light Transmittance via Image Processing”. Duzce University Journal of Science and Technology, vol. 11, no. 5, 2023, pp. 2373-81, doi:10.29130/dubited.1371752.
Vancouver Yılmazel B, Öztürk D, Yavuztürk H, Can HK, Kaçmaz E, Karanfil Kaçmaz G. Measuring the Thickness of Fiber Mats Using Light Transmittance via Image Processing. DÜBİTED. 2023;11(5):2373-81.