Research Article
BibTex RIS Cite

Periods of Leonardo Sequences and Bivariate Gaussian Leonardo Polynomials

Year 2024, , 1572 - 1580, 31.07.2024
https://doi.org/10.29130/dubited.1373596

Abstract

In this study, we investigate the periodic characteristics of Leonardo, Leonardo-Lucas, and Gaussian Leonardo sequences, presenting our findings through lemmas and theorems. Additionally, we introduce the concept of the power Leonardo like sequences and characterize the modules and integers within which these sequences exist. Furthermore, we conduct a comparative analysis between these power sequences and the power Fibonacci sequence under the same modulus. Lastly, we define a bivariate Gaussian Leonardo polynomial sequence and obtain specific properties associated with it.

References

  • [1] J. Ide, M.S. Renault, “Power Fibonacci sequences,” The Fibonacci Quarterly, vol. 50, no. 2 pp. 175-180, 2012.
  • [2] T. Koshy, “Fibonacci and Lucas Polynomials”, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, New York, pp. 3-26, 2001.
  • [3] Catarino, P. M., Borges, A., “On Leonardo numbers”, Acta Mathematica Universitatis Comenianae, vol. 89, no. 1, pp. 75-86, 2019.
  • [4] Soykan, Y., “Generalized Leonardo numbers”, Journal of Progressive Research in Mathematics, vol. 18, no. 4, pp. 58-84, 2021.
  • [5] dos Santos Mangueira, M. C., Vieira, R. P. M., Alves, F. R. V., Catarino, P. M. M. C., “Leonardo's bivariate and complex polynomials”, Notes on Number Theory and Discrete Mathematics, vol. 28, no. 1, pp. 115-123, 2022.
  • [6] D.D. Wall, “Fibonacci series modulo 𝑚,” The American Mathematical Monthly, vol. 67, no. 6, pp. 525-532, 1960.
  • [7] Çelemoğlu, Ç., “Gauss Leonardo number”, 7th Aegean International Conference on Applied Sciences, December, 2022, pp. 100-106.
  • [8] Andrews, G. E., Number theory. Courier Corporation, New York, 1994, pp. 52-115. [9] Özçevik, S. B., Dertli, A., “Gaussian Leonardo polynomials and applications of Leonardo numbers to coding theory”, Journal of Science and Arts, vol. 23, no.4, 2023.

Leonardo Dizisinin Periyotları ve İki değişkenli Gauss Leonardo Polinomları

Year 2024, , 1572 - 1580, 31.07.2024
https://doi.org/10.29130/dubited.1373596

Abstract

Bu çalışmada, Leonardo, Leonardo-Lucas ve Gaussian Leonardo dizilerinin polinomları incelendi. Sonuçlar teoremler ve lemmalar yoluyla ifade edildi. Ayrıca, Leonardo kuvvet benzeri dizileri tanımlandı. Bu dizilerin var olduğu modüller ve sayıları karakterize edildi. Ek olarak, aynı modülde bu kuvvet dizilerinin periyotları ile Fibonacci kuvvet dizisinin periyotları karşılaştırıldı. Son olarak, iki değişkenli Gaussian Leonardo polinom dizisi tanımlandı ve belirli özellikleri elde edildi.

References

  • [1] J. Ide, M.S. Renault, “Power Fibonacci sequences,” The Fibonacci Quarterly, vol. 50, no. 2 pp. 175-180, 2012.
  • [2] T. Koshy, “Fibonacci and Lucas Polynomials”, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, New York, pp. 3-26, 2001.
  • [3] Catarino, P. M., Borges, A., “On Leonardo numbers”, Acta Mathematica Universitatis Comenianae, vol. 89, no. 1, pp. 75-86, 2019.
  • [4] Soykan, Y., “Generalized Leonardo numbers”, Journal of Progressive Research in Mathematics, vol. 18, no. 4, pp. 58-84, 2021.
  • [5] dos Santos Mangueira, M. C., Vieira, R. P. M., Alves, F. R. V., Catarino, P. M. M. C., “Leonardo's bivariate and complex polynomials”, Notes on Number Theory and Discrete Mathematics, vol. 28, no. 1, pp. 115-123, 2022.
  • [6] D.D. Wall, “Fibonacci series modulo 𝑚,” The American Mathematical Monthly, vol. 67, no. 6, pp. 525-532, 1960.
  • [7] Çelemoğlu, Ç., “Gauss Leonardo number”, 7th Aegean International Conference on Applied Sciences, December, 2022, pp. 100-106.
  • [8] Andrews, G. E., Number theory. Courier Corporation, New York, 1994, pp. 52-115. [9] Özçevik, S. B., Dertli, A., “Gaussian Leonardo polynomials and applications of Leonardo numbers to coding theory”, Journal of Science and Arts, vol. 23, no.4, 2023.
There are 8 citations in total.

Details

Primary Language English
Subjects Electrical Engineering (Other)
Journal Section Articles
Authors

Selime Beyza Özçevik 0000-0003-2026-3345

Abdullah Dertli 0000-0001-8687-032X

Publication Date July 31, 2024
Published in Issue Year 2024

Cite

APA Özçevik, S. B., & Dertli, A. (2024). Periods of Leonardo Sequences and Bivariate Gaussian Leonardo Polynomials. Duzce University Journal of Science and Technology, 12(3), 1572-1580. https://doi.org/10.29130/dubited.1373596
AMA Özçevik SB, Dertli A. Periods of Leonardo Sequences and Bivariate Gaussian Leonardo Polynomials. DÜBİTED. July 2024;12(3):1572-1580. doi:10.29130/dubited.1373596
Chicago Özçevik, Selime Beyza, and Abdullah Dertli. “Periods of Leonardo Sequences and Bivariate Gaussian Leonardo Polynomials”. Duzce University Journal of Science and Technology 12, no. 3 (July 2024): 1572-80. https://doi.org/10.29130/dubited.1373596.
EndNote Özçevik SB, Dertli A (July 1, 2024) Periods of Leonardo Sequences and Bivariate Gaussian Leonardo Polynomials. Duzce University Journal of Science and Technology 12 3 1572–1580.
IEEE S. B. Özçevik and A. Dertli, “Periods of Leonardo Sequences and Bivariate Gaussian Leonardo Polynomials”, DÜBİTED, vol. 12, no. 3, pp. 1572–1580, 2024, doi: 10.29130/dubited.1373596.
ISNAD Özçevik, Selime Beyza - Dertli, Abdullah. “Periods of Leonardo Sequences and Bivariate Gaussian Leonardo Polynomials”. Duzce University Journal of Science and Technology 12/3 (July 2024), 1572-1580. https://doi.org/10.29130/dubited.1373596.
JAMA Özçevik SB, Dertli A. Periods of Leonardo Sequences and Bivariate Gaussian Leonardo Polynomials. DÜBİTED. 2024;12:1572–1580.
MLA Özçevik, Selime Beyza and Abdullah Dertli. “Periods of Leonardo Sequences and Bivariate Gaussian Leonardo Polynomials”. Duzce University Journal of Science and Technology, vol. 12, no. 3, 2024, pp. 1572-80, doi:10.29130/dubited.1373596.
Vancouver Özçevik SB, Dertli A. Periods of Leonardo Sequences and Bivariate Gaussian Leonardo Polynomials. DÜBİTED. 2024;12(3):1572-80.