Research Article
BibTex RIS Cite

Soğuk Hava Deposu Paneli Üretiminin Çevresel Sürdürülebilirlik Değerlendirmesi

Year 2024, , 2104 - 2114, 23.10.2024
https://doi.org/10.29130/dubited.1425233

Abstract

Günümüzün giderek artan çevresel sürdürülebilirlik endişeleri, inşaat alanlarında ve endüstriyel sektörlerde büyük bir değişime yol açmıştır. Bu bağlamda, soğuk hava depoları gibi önemli yapılar için inşaat malzemeleri seçimi hem çevresel etkiler hem de enerji verimliliği açısından önemli bir rol oynamaktadır. Bu çalışmanın amacı, 80 mm, 100 mm, 120 mm, 150 mm, 180 mm ve 200 mm kalınlıklardaki soğuk hava deposu panellerinin çevresel yüklerini değerlendirmektir. Bu yüklere ana katkıyı sağlayan üretim girdilerinin ortaya konması için 100 mm kalınlığına sahip soğuk hava deposu paneli özelinde çevresel etkiler irdelenmiştir. Çevresel etkiler, Yaşam Döngüsü Değerlendirmesi (LCA) yöntemi ile ISO 14040/44 metodolojisine uygun olarak sistem sınırı "beşikten kapıya” şeklinde analiz edilmiştir. Bu çalışma, Türkiye’de üretilen soğuk hava deposu panellerinin küresel ısınma potansiyeli (GWP), kümülatif enerji talebi (CED) ve su ayak izi olmak üzere üç farklı çevresel etki kategorilerine odaklanmıştır. Çevresel etkilerin değerlendirilmesinde panel üreticisi firmadan temin edilen üretim envanteri bilgilerinden faydalanılmıştır. Analizler için Simapro v. 8.5 LCA yazılımı kullanılmıştır. Analiz sonuçları, soğuk hava deposu panel üretiminde galvaniz sac kullanımının küresel ısınma etkisi açısından sıcak nokta olduğunu göstermektedir. Su ayak izinde en büyük payın yalıtım malzemesi olarak kullanılan poliüretana ait olduğu tespit edilmiştir. Ayrıca CED’e göre yenilenemeyen biyokütle ve yenilenemeyen nükleerin en çok etkilenen kategoriler olduğu, galvaniz sac ve poliüretan kullanımı yenilenemeyen ve yenilenebilir kaynaklar açısından en önemli sıcak noktalar olduğu belirlendi. Soğuk hava deposu panelinin çevresel performansının iyileştirilmesine yardımcı olmak için üretimde biyo bazlı ve daha az çevresel etkiye sahip hammaddelerin kullanılması ve bunların çevresel etkilerinin yaşam döngüsü temelinde beşikten mezara ölçülmesi tavsiye edilir.

Thanks

The authors would like to extend a special thanks to "Teknopanel Çatı ve Cephe Panelleri Üretim San. ve Tic. A.Ş." for the data used in the analysis and for contributing to the successful conduct of this study.

References

  • [1] E. Küçüktopcu and B. Cemek, “A study on environmental impact of insulation thickness of poultry building walls,” Energy, vol. 150, 2018, doi: 10.1016/j.energy.2018.02.153.
  • [2] M. De Falco, M. Capocelli, G. Losito, and V. Piemonte, “LCA perspective to assess the environmental impact of a novel PCM-based cold storage unit for the civil air conditioning,” J Clean Prod, vol. 165, 2017, doi: 10.1016/j.jclepro.2017.07.153.
  • [3] N. Mukhopadhyay, “Heat conduction model development of a cold storage using EPS insulation,” Modelling, Measurement and Control B, vol. 85, no. 1, 2016.
  • [4] A. P. Sartori et al., “Development and characterization of sandwich panels for thermal insulation in a cold storage chamber,” Journal of Cellular Plastics, vol. 59, no. 3, 2023, doi: 10.1177/0021955X231162799.
  • [5] Teknopanel, “Cold Storage Sandwich Panels”, [Online]. Available: https://www.teknopanel.com/en-us/product/cold-storage-sandwich-panels
  • [6] M. Sun, D. Wowk, C. Mechefske, E. Alexander, and I. Y. Kim, “Surface and honeycomb core damage in adhesively bonded aluminum sandwich panels subjected to low-velocity impact,” Compos B Eng, vol. 230, 2022, doi: 10.1016/j.compositesb.2021.109506.
  • [7] A. E. Akan, “Determination and Modeling of Optimum Insulation Thickness for Thermal Insulation of Buildings in All City Centers of Turkey,” Int J Thermophys, vol. 42, no. 4, 2021, doi: 10.1007/s10765-021-02799-9.
  • [8] A. Michel Murillo et al., “Analysis of the influence of thickness on fire reaction performance in polyisocyanurate core sandwich panels,” Journal of Materials Research and Technology, vol. 9, no. 5, 2020, doi: 10.1016/j.jmrt.2020.06.088.
  • [9] M. Celiński, K. Sałasińska, K. Mizera, and P. Kozikowski, “Fire behavior of sandwich panels with different cores,” in Advances in the Toxicity of Construction and Building Materials, 2022. doi: 10.1016/B978-0-12-824533-0.00003-7.
  • [10] B. Sala et al., “Creep behaviour of eco-friendly sandwich composite materials under hygrothermal conditions,” Compos B Eng, vol. 247, 2022, doi: 10.1016/j.compositesb.2022.110291.
  • [11] E. Yılmaz, “Kompozit inşaat malzemelerinin çevresel sürdürülebilirliğine yönelik bir çerçeve.” Ph. D. dissertation, Dept. Composite Material Technologies, Duzce Univ …, 2018.
  • [12] M. Proença, M. Garrido, J. R. Correia, and M. G. Gomes, “Fire resistance behaviour of GFRP-polyurethane composite sandwich panels for building floors,” Compos B Eng, vol. 224, 2021, doi: 10.1016/j.compositesb.2021.109171.
  • [13] J. Xu, T. Wu, W. Sun, and C. Peng, “Characterization of Insulation Performance, Poststability, and Foaming Process of Rigid Polyurethane Sandwich Panel for Cold Storage Warehouse,” Journal of Materials in Civil Engineering, vol. 29, no. 9, 2017, doi: 10.1061/(asce)mt.1943-5533.0001984.
  • [14] T. Santos, J. Almeida, J. D. Silvestre, and P. Faria, “Life cycle assessment of mortars: A review on technical potential and drawbacks,” Construction and Building Materials, vol. 288. 2021. doi: 10.1016/j.conbuildmat.2021.123069.
  • [15] O. Adiyanto, E. Mohamad, R. Jaafar, and M. Faishal, “Life cycle assessment of eco-brick production using PET particle reinforced epoxy resin composites,” Multidisciplinary Science Journal, vol. 5, no. 3, 2023, doi: 10.31893/multiscience.202302.
  • [16] S. Paul, M. S. Islam, and T. E. Elahi, “Potential of waste rice husk ash and cement in making compressed stabilized earth blocks: Strength, durability and life cycle assessment,” Journal of Building Engineering, vol. 73, 2023, doi: 10.1016/j.jobe.2023.106727.
  • [17] E. Yılmaz, B. Aykanat, and B. Çomak, “Environmental life cycle assessment of rockwool filled aluminum sandwich facade panels in Turkey,” Journal of Building Engineering, vol. 50, 2022, doi: 10.1016/j.jobe.2022.104234.
  • [18] Teknopanel, “PUR/PIR yalıtımlı soğuk hava deposu paneli”, [Online]. Available: https://www.teknopanel.com.tr/tr-tr/urun-detay/soguk-depo-panelleri-soguk-depo-paneli-mersin
  • [19] TS EN 14509, “Self-supporting Double Skin Metal Faced Insulating Panels - Factory Made Products - Specifications,” Turkish Standards Institution, p. 177.
  • [20] TS EN 13501-1, “Fire classification of construction products and building elements - Part 1: Classification using data from reaction to fire tests,” Turkish Standards Institution.
  • [21] ISO, “ISO 14040 International Standard. Environmental management — Life cycle assessment — Principles and framework.,” International Organization for Standardization (ISO), Geneva. Switzerland., 2006.
  • [22] R. Zulcão, J. L. Calmon, T. A. Rebello, and D. R. Vieira, “Life cycle assessment of the ornamental stone processing waste use in cement-based building materials,” Constr Build Mater, 2020, doi: 10.1016/j.conbuildmat.2020.119523.
  • [23] K. Jeong, C. Ji, H. Kim, T. Hong, K. Cho, and J. Lee, “An integrated assessment of the environmental, human health, and economic impacts based on life cycle assessment: A case study of the concrete and steel sumps,” J Clean Prod, 2019, doi: 10.1016/j.jclepro.2019.118032.
  • [24] B. Petrovic, J. A. Myhren, X. Zhang, M. Wallhagen, and O. Eriksson, “Life cycle assessment of building materials for a single-family house in Sweden,” in Energy Procedia, 2019. doi: 10.1016/j.egypro.2019.01.913.
  • [25] D. A. Ramos Huarachi, G. Gonçalves, A. C. de Francisco, M. H. G. Canteri, and C. M. Piekarski, “Life cycle assessment of traditional and alternative bricks: A review,” Environmental Impact Assessment Review. 2020. doi: 10.1016/j.eiar.2019.106335.
  • [26] N. Benli̇ Yıldız, H. Arslan, and E. Yılmaz, “Life Cycle Assessment of Building Materials: Literature Rewiew,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi. 2020.
  • [27] Ecoinvent, “Ecoinvent,” Ecoinvent Database v3.5, Swiss Centre for Life Cycle Inventories: St Gallen, Switzerland, 2018, [Online]. Available: https://www.ecoinvent.org/
  • [28] R. K. Rosenbaum et al., “Life cycle impact assessment,” Life cycle assessment: theory and practice, pp. 167–270, 2018.
  • [29] T. Hiraishi et al., 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol. Intergovernmental Panel on Climate Change, 2014.
  • [30] A. M. Boulay et al., “The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE),” International Journal of Life Cycle Assessment, 2018, doi: 10.1007/s11367-017-1333-8.

Environmental Sustainability Assessment of Cold Storage Panel Production

Year 2024, , 2104 - 2114, 23.10.2024
https://doi.org/10.29130/dubited.1425233

Abstract

Today's ever-increasing environmental sustainability concerns have led to a major shift in construction sites and industrial sectors. In this context, the choice of construction materials for important structures such as cold storages plays an important role in terms of both environmental impacts and energy efficiency. The aim of this study is to evaluate the environmental loads of cold storage panels with thicknesses of 80 mm, 100 mm, 120 mm, 150 mm, 180 mm and 200 mm. In order to reveal the production inputs that cause these loads, the environmental effects were examined specifically for the 100 mm thick cold storage panel. Environmental impacts were analyzed using the Life Cycle Assessment (LCA) method in accordance with the ISO 14040/44 methodology as a system boundary "cradle to gate". This study focused on three different environmental impact categories of cold storage panels produced in Türkiye: global warming potential (GWP), cumulative energy demand (CED) and water footprint. In the evaluation of environmental impacts, production inventory information obtained from the panel manufacturer was used. For analyses, Simapro v. 8.5 LCA software was used. Analysis results show that the use of galvanized sheet metal in cold storage panel production is a hot spot in terms of global warming effect. It has been determined that the largest share in the water footprint belongs to polyurethane used as insulation material. Additionally, according to the CED, non-renewable fossil and non-renewable nuclear were determined to be the most affected categories, and the use of galvanized sheet metal and polyurethane were determined to be the most important hot spots in terms of non-renewable and renewable resources. To help improve the environmental performance of the cold storage panel, it is recommended to use bio-based and less environmentally impactful raw materials in production and to measure their environmental impact on a life cycle basis from cradle to grave.

Thanks

The authors would like to extend a special thanks to "Teknopanel Çatı ve Cephe Panelleri Üretim San. ve Tic. A.Ş." for the data used in the analysis and for contributing to the successful conduct of this study.

References

  • [1] E. Küçüktopcu and B. Cemek, “A study on environmental impact of insulation thickness of poultry building walls,” Energy, vol. 150, 2018, doi: 10.1016/j.energy.2018.02.153.
  • [2] M. De Falco, M. Capocelli, G. Losito, and V. Piemonte, “LCA perspective to assess the environmental impact of a novel PCM-based cold storage unit for the civil air conditioning,” J Clean Prod, vol. 165, 2017, doi: 10.1016/j.jclepro.2017.07.153.
  • [3] N. Mukhopadhyay, “Heat conduction model development of a cold storage using EPS insulation,” Modelling, Measurement and Control B, vol. 85, no. 1, 2016.
  • [4] A. P. Sartori et al., “Development and characterization of sandwich panels for thermal insulation in a cold storage chamber,” Journal of Cellular Plastics, vol. 59, no. 3, 2023, doi: 10.1177/0021955X231162799.
  • [5] Teknopanel, “Cold Storage Sandwich Panels”, [Online]. Available: https://www.teknopanel.com/en-us/product/cold-storage-sandwich-panels
  • [6] M. Sun, D. Wowk, C. Mechefske, E. Alexander, and I. Y. Kim, “Surface and honeycomb core damage in adhesively bonded aluminum sandwich panels subjected to low-velocity impact,” Compos B Eng, vol. 230, 2022, doi: 10.1016/j.compositesb.2021.109506.
  • [7] A. E. Akan, “Determination and Modeling of Optimum Insulation Thickness for Thermal Insulation of Buildings in All City Centers of Turkey,” Int J Thermophys, vol. 42, no. 4, 2021, doi: 10.1007/s10765-021-02799-9.
  • [8] A. Michel Murillo et al., “Analysis of the influence of thickness on fire reaction performance in polyisocyanurate core sandwich panels,” Journal of Materials Research and Technology, vol. 9, no. 5, 2020, doi: 10.1016/j.jmrt.2020.06.088.
  • [9] M. Celiński, K. Sałasińska, K. Mizera, and P. Kozikowski, “Fire behavior of sandwich panels with different cores,” in Advances in the Toxicity of Construction and Building Materials, 2022. doi: 10.1016/B978-0-12-824533-0.00003-7.
  • [10] B. Sala et al., “Creep behaviour of eco-friendly sandwich composite materials under hygrothermal conditions,” Compos B Eng, vol. 247, 2022, doi: 10.1016/j.compositesb.2022.110291.
  • [11] E. Yılmaz, “Kompozit inşaat malzemelerinin çevresel sürdürülebilirliğine yönelik bir çerçeve.” Ph. D. dissertation, Dept. Composite Material Technologies, Duzce Univ …, 2018.
  • [12] M. Proença, M. Garrido, J. R. Correia, and M. G. Gomes, “Fire resistance behaviour of GFRP-polyurethane composite sandwich panels for building floors,” Compos B Eng, vol. 224, 2021, doi: 10.1016/j.compositesb.2021.109171.
  • [13] J. Xu, T. Wu, W. Sun, and C. Peng, “Characterization of Insulation Performance, Poststability, and Foaming Process of Rigid Polyurethane Sandwich Panel for Cold Storage Warehouse,” Journal of Materials in Civil Engineering, vol. 29, no. 9, 2017, doi: 10.1061/(asce)mt.1943-5533.0001984.
  • [14] T. Santos, J. Almeida, J. D. Silvestre, and P. Faria, “Life cycle assessment of mortars: A review on technical potential and drawbacks,” Construction and Building Materials, vol. 288. 2021. doi: 10.1016/j.conbuildmat.2021.123069.
  • [15] O. Adiyanto, E. Mohamad, R. Jaafar, and M. Faishal, “Life cycle assessment of eco-brick production using PET particle reinforced epoxy resin composites,” Multidisciplinary Science Journal, vol. 5, no. 3, 2023, doi: 10.31893/multiscience.202302.
  • [16] S. Paul, M. S. Islam, and T. E. Elahi, “Potential of waste rice husk ash and cement in making compressed stabilized earth blocks: Strength, durability and life cycle assessment,” Journal of Building Engineering, vol. 73, 2023, doi: 10.1016/j.jobe.2023.106727.
  • [17] E. Yılmaz, B. Aykanat, and B. Çomak, “Environmental life cycle assessment of rockwool filled aluminum sandwich facade panels in Turkey,” Journal of Building Engineering, vol. 50, 2022, doi: 10.1016/j.jobe.2022.104234.
  • [18] Teknopanel, “PUR/PIR yalıtımlı soğuk hava deposu paneli”, [Online]. Available: https://www.teknopanel.com.tr/tr-tr/urun-detay/soguk-depo-panelleri-soguk-depo-paneli-mersin
  • [19] TS EN 14509, “Self-supporting Double Skin Metal Faced Insulating Panels - Factory Made Products - Specifications,” Turkish Standards Institution, p. 177.
  • [20] TS EN 13501-1, “Fire classification of construction products and building elements - Part 1: Classification using data from reaction to fire tests,” Turkish Standards Institution.
  • [21] ISO, “ISO 14040 International Standard. Environmental management — Life cycle assessment — Principles and framework.,” International Organization for Standardization (ISO), Geneva. Switzerland., 2006.
  • [22] R. Zulcão, J. L. Calmon, T. A. Rebello, and D. R. Vieira, “Life cycle assessment of the ornamental stone processing waste use in cement-based building materials,” Constr Build Mater, 2020, doi: 10.1016/j.conbuildmat.2020.119523.
  • [23] K. Jeong, C. Ji, H. Kim, T. Hong, K. Cho, and J. Lee, “An integrated assessment of the environmental, human health, and economic impacts based on life cycle assessment: A case study of the concrete and steel sumps,” J Clean Prod, 2019, doi: 10.1016/j.jclepro.2019.118032.
  • [24] B. Petrovic, J. A. Myhren, X. Zhang, M. Wallhagen, and O. Eriksson, “Life cycle assessment of building materials for a single-family house in Sweden,” in Energy Procedia, 2019. doi: 10.1016/j.egypro.2019.01.913.
  • [25] D. A. Ramos Huarachi, G. Gonçalves, A. C. de Francisco, M. H. G. Canteri, and C. M. Piekarski, “Life cycle assessment of traditional and alternative bricks: A review,” Environmental Impact Assessment Review. 2020. doi: 10.1016/j.eiar.2019.106335.
  • [26] N. Benli̇ Yıldız, H. Arslan, and E. Yılmaz, “Life Cycle Assessment of Building Materials: Literature Rewiew,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi. 2020.
  • [27] Ecoinvent, “Ecoinvent,” Ecoinvent Database v3.5, Swiss Centre for Life Cycle Inventories: St Gallen, Switzerland, 2018, [Online]. Available: https://www.ecoinvent.org/
  • [28] R. K. Rosenbaum et al., “Life cycle impact assessment,” Life cycle assessment: theory and practice, pp. 167–270, 2018.
  • [29] T. Hiraishi et al., 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol. Intergovernmental Panel on Climate Change, 2014.
  • [30] A. M. Boulay et al., “The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE),” International Journal of Life Cycle Assessment, 2018, doi: 10.1007/s11367-017-1333-8.
There are 30 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Articles
Authors

Emrah Yılmaz 0000-0002-9040-3940

Publication Date October 23, 2024
Submission Date January 24, 2024
Acceptance Date June 21, 2024
Published in Issue Year 2024

Cite

APA Yılmaz, E. (2024). Environmental Sustainability Assessment of Cold Storage Panel Production. Duzce University Journal of Science and Technology, 12(4), 2104-2114. https://doi.org/10.29130/dubited.1425233
AMA Yılmaz E. Environmental Sustainability Assessment of Cold Storage Panel Production. DÜBİTED. October 2024;12(4):2104-2114. doi:10.29130/dubited.1425233
Chicago Yılmaz, Emrah. “Environmental Sustainability Assessment of Cold Storage Panel Production”. Duzce University Journal of Science and Technology 12, no. 4 (October 2024): 2104-14. https://doi.org/10.29130/dubited.1425233.
EndNote Yılmaz E (October 1, 2024) Environmental Sustainability Assessment of Cold Storage Panel Production. Duzce University Journal of Science and Technology 12 4 2104–2114.
IEEE E. Yılmaz, “Environmental Sustainability Assessment of Cold Storage Panel Production”, DÜBİTED, vol. 12, no. 4, pp. 2104–2114, 2024, doi: 10.29130/dubited.1425233.
ISNAD Yılmaz, Emrah. “Environmental Sustainability Assessment of Cold Storage Panel Production”. Duzce University Journal of Science and Technology 12/4 (October 2024), 2104-2114. https://doi.org/10.29130/dubited.1425233.
JAMA Yılmaz E. Environmental Sustainability Assessment of Cold Storage Panel Production. DÜBİTED. 2024;12:2104–2114.
MLA Yılmaz, Emrah. “Environmental Sustainability Assessment of Cold Storage Panel Production”. Duzce University Journal of Science and Technology, vol. 12, no. 4, 2024, pp. 2104-1, doi:10.29130/dubited.1425233.
Vancouver Yılmaz E. Environmental Sustainability Assessment of Cold Storage Panel Production. DÜBİTED. 2024;12(4):2104-1.