Research Article
BibTex RIS Cite

Evaluation of Industrial Poly(tert-butyl acrylate) insulated A p-channel Organic Field-Effect Transistor (PtBA-p-OFET)

Year 2024, , 1762 - 1770, 31.07.2024
https://doi.org/10.29130/dubited.1460355

Abstract

Poly(tert-butyl acrylate) (PTB-p-A) has been investigated as a promising insulator layer for p-channel organic field effect transistors (p-OFETs) using the p-type semiconductor Poly(3-hexylthiophene-2,5-diyl (P3HT) due to its favorable insulating properties, good film-forming ability and electrical charge separation properties. Top-gate, bottom-contact PTBA-p-OFET devices are fabricated with Indium Thin Oxide (ITO) source/drain electrodes and a P3HT organic semiconductor layer. The frequency-dependent capacitance of the PTBA-p-OFETs was studied through a plot to determine the key parameters, including the threshold voltage (VTh), field-effect mobility (μFET), and the current on/off ratio (Ion/off) of the device. The PTB-p- OFETs exhibit field-effect mobility value of 6.13x10-4 (cm2/V.s), an on/off current ratio of 1.11x102, and a threshold voltage of -15.8 V. The capacitance-frequency characteristics of the capacitor structure were analyzed and found to have as 7.6 nF/cm2 per unit area. This work presents PTBA as a promising for high-performance p-OFET applications.

References

  • [1] A. Facchetti, “Semiconductors for organic transistors,” Mater. Today, vol. 10, no. 3, pp. 28–37, Mar. 2007, doi: 10.1016/S1369-7021(07)70017-2.
  • [2] R. Kim et al., “High‐Mobility Air‐Stable Naphthalene Diimide‐Based Copolymer Containing Extended π‐Conjugation for n‐Channel Organic Field Effect Transistors,” Adv. Funct. Mater., vol. 23, no. 46, pp. 5719–5727, Dec. 2013, doi: 10.1002/adfm.201301197.
  • [3] T. Marszalek, M. Wiatrowski, E. Dobruchowska, J. Jung, and J. Ulanski, “One-step technique for production of bi-functional low molecular semiconductor–polymer composites for flexible OFET applications,” J. Mater. Chem. C, vol. 1, no. 19, p. 3190, 2013, doi: 10.1039/c3tc30163j.
  • [4] C. Lee, W. Lee, M. Song, H. Kim, and Y. Kim, “Thermal Sensing Characteristics of Low-Voltage n-Channel Organic Field-Effect Transistors With Triple Layers of Naphthalenediimide-Containing Conjugated Polymer and Gate-Insulating Polymers,” IEEE Trans. Electron Devices, vol. 70, no. 2, pp. 720–725, Feb. 2023, doi: 10.1109/TED.2022.3228217.
  • [5] S. Kola, J. Sinha, and H. E. Katz, “Organic transistors in the new decade: Toward n‐channel, printed, and stabilized devices,” J. Polym. Sci. Part B Polym. Phys., vol. 50, no. 15, pp. 1090–1120, Aug. 2012, doi: 10.1002/polb.23054.
  • [6] S. Nam, J. Kim, H. Lee, H. Kim, C.-S. Ha, and Y. Kim, “Doping Effect of Organosulfonic Acid in Poly(3-hexylthiophene) Films for Organic Field-Effect Transistors,” ACS Appl. Mater. Interfaces, vol. 4, no. 3, pp. 1281–1288, Mar. 2012, doi: 10.1021/am300141m.
  • [7] C. D. Dimitrakopoulos, S. Purushothaman, J. Kymissis, A. Callegari, and J. M. Shaw, “Low-Voltage Organic Transistors on Plastic Comprising High-Dielectric Constant Gate Insulators,” Science (80-. )., vol. 283, no. 5403, pp. 822–824, Feb. 1999, doi: 10.1126/science.283.5403.822.
  • [8] G. Wang, J. Swensen, D. Moses, and A. J. Heeger, “Increased mobility from regioregular poly(3-hexylthiophene) field-effect transistors,” J. Appl. Phys., vol. 93, no. 10, pp. 6137–6141, May 2003, doi: 10.1063/1.1568526.
  • [9] H.-I. Un, J.-Y. Wang, and J. Pei, “Recent Efforts in Understanding and Improving the Nonideal Behaviors of Organic Field‐Effect Transistors,” Adv. Sci., vol. 6, no. 20, p. 1900375, Oct. 2019, doi: 10.1002/advs.201900375.
  • [10] Y. Zhou, K. Zhang, Z. Chen, and H. Zhang, “Molecular Design Concept for Enhancement Charge Carrier Mobility in OFETs: A Review,” Materials (Basel)., vol. 16, no. 20, p. 6645, Oct. 2023, doi: 10.3390/ma16206645.
  • [11] J. Wang, H. Wang, X. Yan, H. Huang, and D. Yan, “Organic heterojunction and its application for double channel field-effect transistors,” Appl. Phys. Lett., vol. 87, no. 9, p. 93507, Aug. 2005, doi: 10.1063/1.2037204.
  • [12] L. Feriancová et al., “Dithienylnaphthalenes and quaterthiophenes substituted with electron-withdrawing groups as n-type organic semiconductors for organic field-effect transistors,” J. Mater. Chem. C, vol. 10, no. 27, pp. 10058–10074, 2022, doi: 10.1039/D2TC01238C.
  • [13] H. Jia and T. Lei, “Emerging research directions for n-type conjugated polymers,” J. Mater. Chem. C, vol. 7, no. 41, pp. 12809–12821, 2019, doi: 10.1039/C9TC02632K.
  • [14] C.-H. Chen et al., “Novel Photoinduced Recovery of OFET Memories Based on Ambipolar Polymer Electret for Photorecorder Application,” Adv. Funct. Mater., vol. 29, no. 40, p. 1902991, Oct. 2019, doi: 10.1002/adfm.201902991.
  • [15] T. Kimoto et al., “Bis(methylthio)tetracenes: Synthesis, Crystal-Packing Structures, and OFET Properties,” J. Org. Chem., vol. 76, no. 12, pp. 5018–5025, Jun. 2011, doi: 10.1021/jo200696a.
  • [16] L. Fijahi et al., “High throughput processing of dinaphtho[2,3- b :2′,3′- f ]thieno[3,2- b ]thiophene (DNTT) organic semiconductors,” Nanoscale, vol. 15, no. 1, pp. 230–236, 2023, doi: 10.1039/D2NR05625A.
  • [17] S. A. Shin, J.-H. Kim, J. B. Park, and D.-H. Hwang, “Semiconducting Polymers Consisting of Anthracene and Benzotriazole Units for Organic Solar Cells,” J. Nanosci. Nanotechnol., vol. 15, no. 2, pp. 1515–1519, Feb. 2015, doi: 10.1166/jnn.2015.9325.
  • [18] M. Yi, J. Guo, W. Li, L. Xie, Q. Fan, and W. Huang, “High-mobility flexible pentacene-based organic field-effect transistors with PMMA/PVP double gate insulator layers and the investigation on their mechanical flexibility and thermal stability,” RSC Adv., vol. 5, no. 115, pp. 95273–95279, 2015, doi: 10.1039/C5RA18996A.
  • [19] J. Smith et al., “Percolation behaviour in high mobility p-channel polymer/small-molecule blend organic field-effect transistors,” Org. Electron., vol. 12, no. 1, pp. 143–147, Jan. 2011, doi: 10.1016/j.orgel.2010.10.017.
  • [20] G. Lu et al., “Synthesis, Characterization, and Transistor Response of Semiconducting Silole Polymers with Substantial Hole Mobility and Air Stability. Experiment and Theory,” J. Am. Chem. Soc., vol. 130, no. 24, pp. 7670–7685, Jun. 2008, doi: 10.1021/ja800424m. [21] T. Umeda, S. Tokito, and D. Kumaki, “High-mobility and air-stable organic thin-film transistors with highly ordered semiconducting polymer films,” J. Appl. Phys., vol. 101, no. 5, p. 54517, Mar. 2007, doi: 10.1063/1.2711780.
  • [22] C. J. Newsome, T. Kawase, T. Shimoda, and D. J. Brennan, “Phase behavior of polymer semiconductor films and its influence on the mobility in FET devices,” Nov. 2003, p. 16, doi: 10.1117/12.504515.
  • [23] M. D. Ogden, C. J. Orme, and F. F. Stewart, “Effects of alkyl substitution on the physical properties and gas transport behavior in selected poly(R-phenoxyphosphazenes),” Polymer (Guildf)., vol. 52, no. 18, pp. 3879–3886, Aug. 2011, doi: 10.1016/j.polymer.2011.07.010.
  • [24] L. Fernandes, H. Gaspar, J. P. C. Tomé, F. Figueira, and G. Bernardo, “Thermal stability of low-bandgap copolymers PTB7 and PTB7-Th and their bulk heterojunction composites,” Polym. Bull., vol. 75, no. 2, pp. 515–532, Feb. 2018, doi: 10.1007/s00289-017-2045-8.
  • [25] V. Tamilavan, M. Song, S.-H. Jin, and M. H. Hyun, “Synthesis of conjugated polymers with broad absorption bands and photovoltaic properties as bulk heterojuction solar cells,” Polymer (Guildf)., vol. 52, no. 11, pp. 2384–2390, May 2011, doi: 10.1016/j.polymer.2011.03.040.
  • [26] X. Wu et al., “Hydrophobic Poly( tert ‐butyl acrylate) Photonic Crystals towards Robust Energy‐Saving Performance,” Angew. Chemie Int. Ed., vol. 58, no. 38, pp. 13556–13564, Sep. 2019, doi: 10.1002/anie.201907464.
  • [27] A. Demir, A. Atahan, S. Bağcı, M. Aslan, and M. Saif Islam, “Organic/inorganic interfaced field-effect transistor properties with a novel organic semiconducting material,” Philos. Mag., vol. 96, no. 3, pp. 274–285, Jan. 2016, doi: 10.1080/14786435.2015.1130277.
  • [28] L. Herlogsson et al., “Low‐Voltage Polymer Field‐Effect Transistors Gated via a Proton Conductor,” Adv. Mater., vol. 19, no. 1, pp. 97–101, Jan. 2007, doi: 10.1002/adma.200600871.
  • [29] F. Bordi, C. Cametti, and R. H. Colby, “Dielectric spectroscopy and conductivity of polyelectrolyte solutions,” J. Phys. Condens. Matter, vol. 16, no. 49, pp. R1423–R1463, Dec. 2004, doi: 10.1088/0953-8984/16/49/R01.
  • [30] P. Paoprasert et al., “Dipolar Chromophore Functional Layers in Organic Field Effect Transistors,” Adv. Mater., vol. 20, no. 21, pp. 4180–4184, Nov. 2008, doi: 10.1002/adma.200800951.
  • [31] C. A. Nguyen, P. S. Lee, and S. G. Mhaisalkar, “Investigation of turn-on voltage shift in organic ferroelectric transistor with high polarity gate dielectric,” Org. Electron., vol. 8, no. 4, pp. 415–422, Aug. 2007, doi: 10.1016/j.orgel.2007.01.010.
  • [32] X.-H. Zhang, B. Domercq, and B. Kippelen, “High-performance and electrically stable C60 organic field-effect transistors,” Appl. Phys. Lett., vol. 91, no. 9, p. 92114, Aug. 2007, doi: 10.1063/1.2778472.
  • [33] B. Chandar Shekar, J. Lee, and S.-W. Rhee, “Organic thin film transistors: Materials, processes and devices,” Korean J. Chem. Eng., vol. 21, no. 1, pp. 267–285, Jan. 2004, doi: 10.1007/BF02705409.
  • [34] G. Xu, Z. Bao, and J. T. Groves, “Langmuir−Blodgett Films of Regioregular Poly(3-hexylthiophene) as Field-Effect Transistors,” Langmuir, vol. 16, no. 4, pp. 1834–1841, Feb. 2000, doi: 10.1021/la9904455.
  • [35] A. Demır, S. Bağcı, S. E. San, and Z. Doğruyol, “Pentacene-Based Organic Thin Film Transistor With SiO2 Gate Dielectric,” Surf. Rev. Lett., vol. 22, no. 03, p. 1550038, Jun. 2015, doi: 10.1142/S0218625X15500389.
  • [36] M. Gurel, F. K. Cavus, A. Demir, E. Doganci, A. Alli, and S. Alli, “Synthesis and electrical characterization of poly[(linoleic acid)‐ g ‐(styrene)‐ g ‐( ε ‐caprolactone)] graft copolymers as gate insulator for OFET devices,” Polym. Int., vol. 72, no. 8, pp. 727–737, Aug. 2023, doi: 10.1002/pi.6531.

Endüstriyel Poli(tert-butil akrilat) yalıtımlı bir p-kanal Organik Alan Etkili Transistörün (PtBA-p-OFET) Değerlendirilmesi

Year 2024, , 1762 - 1770, 31.07.2024
https://doi.org/10.29130/dubited.1460355

Abstract

Poli(ters-bütil akrilat) (PTB-p-A), üst-kapı, alt-kontak tipinde üretilen p-kanal organik alan etkili transistörlerde (p-OFET'lerde) p-tipi yarı iletken olan Poli(3-hekzil tiofen-2,5-diil) (P3HT)'nin kullanılmasıyla izolatör katman olarak araştırılmıştır. Bunun sebebi, PTBA'nın olumlu izolatör özellikleri, iyi film oluşturma yeteneği ve elektrik yükü ayırma özellikleridir. İndiyum kalay oksit (İTO) kaynak/oluk elektrodları ve P3HT organik yarı iletken tabakası kullanılarak PTBA-p-OFET cihazları üretilmiştir. PTBA-p-OFET'lerin frekans bağımlı kapasitesi, eşik gerilimi (VTh), alan etkili hareketliliği (μFET) ve akım aç/kapat oranı (Ion/off) gibi ana parametreleri belirlemek için karakteristik grafikler çizilmiştir. PTB-p- OFET'ler 6,13x10-4 (cm2/V.s) değerinde alan etkili hareketliliği, 1,11x102 akım aç/kapat oranı ve -15,8 V eşik gerilimine sahiptir. Kondansatör yapısının kapasite-frekans özellikleri incelenmiş ve birim alan başına 7,6 nF/cm2 olduğu bulunmuştur. Bu çalışma, PtBA'nın yüksek performanslı p-OFET uygulamaları için umut verici bir malzeme olabileceğini göstermektedir.

References

  • [1] A. Facchetti, “Semiconductors for organic transistors,” Mater. Today, vol. 10, no. 3, pp. 28–37, Mar. 2007, doi: 10.1016/S1369-7021(07)70017-2.
  • [2] R. Kim et al., “High‐Mobility Air‐Stable Naphthalene Diimide‐Based Copolymer Containing Extended π‐Conjugation for n‐Channel Organic Field Effect Transistors,” Adv. Funct. Mater., vol. 23, no. 46, pp. 5719–5727, Dec. 2013, doi: 10.1002/adfm.201301197.
  • [3] T. Marszalek, M. Wiatrowski, E. Dobruchowska, J. Jung, and J. Ulanski, “One-step technique for production of bi-functional low molecular semiconductor–polymer composites for flexible OFET applications,” J. Mater. Chem. C, vol. 1, no. 19, p. 3190, 2013, doi: 10.1039/c3tc30163j.
  • [4] C. Lee, W. Lee, M. Song, H. Kim, and Y. Kim, “Thermal Sensing Characteristics of Low-Voltage n-Channel Organic Field-Effect Transistors With Triple Layers of Naphthalenediimide-Containing Conjugated Polymer and Gate-Insulating Polymers,” IEEE Trans. Electron Devices, vol. 70, no. 2, pp. 720–725, Feb. 2023, doi: 10.1109/TED.2022.3228217.
  • [5] S. Kola, J. Sinha, and H. E. Katz, “Organic transistors in the new decade: Toward n‐channel, printed, and stabilized devices,” J. Polym. Sci. Part B Polym. Phys., vol. 50, no. 15, pp. 1090–1120, Aug. 2012, doi: 10.1002/polb.23054.
  • [6] S. Nam, J. Kim, H. Lee, H. Kim, C.-S. Ha, and Y. Kim, “Doping Effect of Organosulfonic Acid in Poly(3-hexylthiophene) Films for Organic Field-Effect Transistors,” ACS Appl. Mater. Interfaces, vol. 4, no. 3, pp. 1281–1288, Mar. 2012, doi: 10.1021/am300141m.
  • [7] C. D. Dimitrakopoulos, S. Purushothaman, J. Kymissis, A. Callegari, and J. M. Shaw, “Low-Voltage Organic Transistors on Plastic Comprising High-Dielectric Constant Gate Insulators,” Science (80-. )., vol. 283, no. 5403, pp. 822–824, Feb. 1999, doi: 10.1126/science.283.5403.822.
  • [8] G. Wang, J. Swensen, D. Moses, and A. J. Heeger, “Increased mobility from regioregular poly(3-hexylthiophene) field-effect transistors,” J. Appl. Phys., vol. 93, no. 10, pp. 6137–6141, May 2003, doi: 10.1063/1.1568526.
  • [9] H.-I. Un, J.-Y. Wang, and J. Pei, “Recent Efforts in Understanding and Improving the Nonideal Behaviors of Organic Field‐Effect Transistors,” Adv. Sci., vol. 6, no. 20, p. 1900375, Oct. 2019, doi: 10.1002/advs.201900375.
  • [10] Y. Zhou, K. Zhang, Z. Chen, and H. Zhang, “Molecular Design Concept for Enhancement Charge Carrier Mobility in OFETs: A Review,” Materials (Basel)., vol. 16, no. 20, p. 6645, Oct. 2023, doi: 10.3390/ma16206645.
  • [11] J. Wang, H. Wang, X. Yan, H. Huang, and D. Yan, “Organic heterojunction and its application for double channel field-effect transistors,” Appl. Phys. Lett., vol. 87, no. 9, p. 93507, Aug. 2005, doi: 10.1063/1.2037204.
  • [12] L. Feriancová et al., “Dithienylnaphthalenes and quaterthiophenes substituted with electron-withdrawing groups as n-type organic semiconductors for organic field-effect transistors,” J. Mater. Chem. C, vol. 10, no. 27, pp. 10058–10074, 2022, doi: 10.1039/D2TC01238C.
  • [13] H. Jia and T. Lei, “Emerging research directions for n-type conjugated polymers,” J. Mater. Chem. C, vol. 7, no. 41, pp. 12809–12821, 2019, doi: 10.1039/C9TC02632K.
  • [14] C.-H. Chen et al., “Novel Photoinduced Recovery of OFET Memories Based on Ambipolar Polymer Electret for Photorecorder Application,” Adv. Funct. Mater., vol. 29, no. 40, p. 1902991, Oct. 2019, doi: 10.1002/adfm.201902991.
  • [15] T. Kimoto et al., “Bis(methylthio)tetracenes: Synthesis, Crystal-Packing Structures, and OFET Properties,” J. Org. Chem., vol. 76, no. 12, pp. 5018–5025, Jun. 2011, doi: 10.1021/jo200696a.
  • [16] L. Fijahi et al., “High throughput processing of dinaphtho[2,3- b :2′,3′- f ]thieno[3,2- b ]thiophene (DNTT) organic semiconductors,” Nanoscale, vol. 15, no. 1, pp. 230–236, 2023, doi: 10.1039/D2NR05625A.
  • [17] S. A. Shin, J.-H. Kim, J. B. Park, and D.-H. Hwang, “Semiconducting Polymers Consisting of Anthracene and Benzotriazole Units for Organic Solar Cells,” J. Nanosci. Nanotechnol., vol. 15, no. 2, pp. 1515–1519, Feb. 2015, doi: 10.1166/jnn.2015.9325.
  • [18] M. Yi, J. Guo, W. Li, L. Xie, Q. Fan, and W. Huang, “High-mobility flexible pentacene-based organic field-effect transistors with PMMA/PVP double gate insulator layers and the investigation on their mechanical flexibility and thermal stability,” RSC Adv., vol. 5, no. 115, pp. 95273–95279, 2015, doi: 10.1039/C5RA18996A.
  • [19] J. Smith et al., “Percolation behaviour in high mobility p-channel polymer/small-molecule blend organic field-effect transistors,” Org. Electron., vol. 12, no. 1, pp. 143–147, Jan. 2011, doi: 10.1016/j.orgel.2010.10.017.
  • [20] G. Lu et al., “Synthesis, Characterization, and Transistor Response of Semiconducting Silole Polymers with Substantial Hole Mobility and Air Stability. Experiment and Theory,” J. Am. Chem. Soc., vol. 130, no. 24, pp. 7670–7685, Jun. 2008, doi: 10.1021/ja800424m. [21] T. Umeda, S. Tokito, and D. Kumaki, “High-mobility and air-stable organic thin-film transistors with highly ordered semiconducting polymer films,” J. Appl. Phys., vol. 101, no. 5, p. 54517, Mar. 2007, doi: 10.1063/1.2711780.
  • [22] C. J. Newsome, T. Kawase, T. Shimoda, and D. J. Brennan, “Phase behavior of polymer semiconductor films and its influence on the mobility in FET devices,” Nov. 2003, p. 16, doi: 10.1117/12.504515.
  • [23] M. D. Ogden, C. J. Orme, and F. F. Stewart, “Effects of alkyl substitution on the physical properties and gas transport behavior in selected poly(R-phenoxyphosphazenes),” Polymer (Guildf)., vol. 52, no. 18, pp. 3879–3886, Aug. 2011, doi: 10.1016/j.polymer.2011.07.010.
  • [24] L. Fernandes, H. Gaspar, J. P. C. Tomé, F. Figueira, and G. Bernardo, “Thermal stability of low-bandgap copolymers PTB7 and PTB7-Th and their bulk heterojunction composites,” Polym. Bull., vol. 75, no. 2, pp. 515–532, Feb. 2018, doi: 10.1007/s00289-017-2045-8.
  • [25] V. Tamilavan, M. Song, S.-H. Jin, and M. H. Hyun, “Synthesis of conjugated polymers with broad absorption bands and photovoltaic properties as bulk heterojuction solar cells,” Polymer (Guildf)., vol. 52, no. 11, pp. 2384–2390, May 2011, doi: 10.1016/j.polymer.2011.03.040.
  • [26] X. Wu et al., “Hydrophobic Poly( tert ‐butyl acrylate) Photonic Crystals towards Robust Energy‐Saving Performance,” Angew. Chemie Int. Ed., vol. 58, no. 38, pp. 13556–13564, Sep. 2019, doi: 10.1002/anie.201907464.
  • [27] A. Demir, A. Atahan, S. Bağcı, M. Aslan, and M. Saif Islam, “Organic/inorganic interfaced field-effect transistor properties with a novel organic semiconducting material,” Philos. Mag., vol. 96, no. 3, pp. 274–285, Jan. 2016, doi: 10.1080/14786435.2015.1130277.
  • [28] L. Herlogsson et al., “Low‐Voltage Polymer Field‐Effect Transistors Gated via a Proton Conductor,” Adv. Mater., vol. 19, no. 1, pp. 97–101, Jan. 2007, doi: 10.1002/adma.200600871.
  • [29] F. Bordi, C. Cametti, and R. H. Colby, “Dielectric spectroscopy and conductivity of polyelectrolyte solutions,” J. Phys. Condens. Matter, vol. 16, no. 49, pp. R1423–R1463, Dec. 2004, doi: 10.1088/0953-8984/16/49/R01.
  • [30] P. Paoprasert et al., “Dipolar Chromophore Functional Layers in Organic Field Effect Transistors,” Adv. Mater., vol. 20, no. 21, pp. 4180–4184, Nov. 2008, doi: 10.1002/adma.200800951.
  • [31] C. A. Nguyen, P. S. Lee, and S. G. Mhaisalkar, “Investigation of turn-on voltage shift in organic ferroelectric transistor with high polarity gate dielectric,” Org. Electron., vol. 8, no. 4, pp. 415–422, Aug. 2007, doi: 10.1016/j.orgel.2007.01.010.
  • [32] X.-H. Zhang, B. Domercq, and B. Kippelen, “High-performance and electrically stable C60 organic field-effect transistors,” Appl. Phys. Lett., vol. 91, no. 9, p. 92114, Aug. 2007, doi: 10.1063/1.2778472.
  • [33] B. Chandar Shekar, J. Lee, and S.-W. Rhee, “Organic thin film transistors: Materials, processes and devices,” Korean J. Chem. Eng., vol. 21, no. 1, pp. 267–285, Jan. 2004, doi: 10.1007/BF02705409.
  • [34] G. Xu, Z. Bao, and J. T. Groves, “Langmuir−Blodgett Films of Regioregular Poly(3-hexylthiophene) as Field-Effect Transistors,” Langmuir, vol. 16, no. 4, pp. 1834–1841, Feb. 2000, doi: 10.1021/la9904455.
  • [35] A. Demır, S. Bağcı, S. E. San, and Z. Doğruyol, “Pentacene-Based Organic Thin Film Transistor With SiO2 Gate Dielectric,” Surf. Rev. Lett., vol. 22, no. 03, p. 1550038, Jun. 2015, doi: 10.1142/S0218625X15500389.
  • [36] M. Gurel, F. K. Cavus, A. Demir, E. Doganci, A. Alli, and S. Alli, “Synthesis and electrical characterization of poly[(linoleic acid)‐ g ‐(styrene)‐ g ‐( ε ‐caprolactone)] graft copolymers as gate insulator for OFET devices,” Polym. Int., vol. 72, no. 8, pp. 727–737, Aug. 2023, doi: 10.1002/pi.6531.
There are 35 citations in total.

Details

Primary Language English
Subjects General Physics, Physical Chemistry (Other)
Journal Section Articles
Authors

Ahmet Demir 0000-0002-8702-1941

Ahmad Badreddin Musatat 0000-0002-4137-4901

Publication Date July 31, 2024
Submission Date March 28, 2024
Acceptance Date April 23, 2024
Published in Issue Year 2024

Cite

APA Demir, A., & Musatat, A. B. (2024). Evaluation of Industrial Poly(tert-butyl acrylate) insulated A p-channel Organic Field-Effect Transistor (PtBA-p-OFET). Duzce University Journal of Science and Technology, 12(3), 1762-1770. https://doi.org/10.29130/dubited.1460355
AMA Demir A, Musatat AB. Evaluation of Industrial Poly(tert-butyl acrylate) insulated A p-channel Organic Field-Effect Transistor (PtBA-p-OFET). DÜBİTED. July 2024;12(3):1762-1770. doi:10.29130/dubited.1460355
Chicago Demir, Ahmet, and Ahmad Badreddin Musatat. “Evaluation of Industrial Poly(tert-Butyl Acrylate) Insulated A P-Channel Organic Field-Effect Transistor (PtBA-P-OFET)”. Duzce University Journal of Science and Technology 12, no. 3 (July 2024): 1762-70. https://doi.org/10.29130/dubited.1460355.
EndNote Demir A, Musatat AB (July 1, 2024) Evaluation of Industrial Poly(tert-butyl acrylate) insulated A p-channel Organic Field-Effect Transistor (PtBA-p-OFET). Duzce University Journal of Science and Technology 12 3 1762–1770.
IEEE A. Demir and A. B. Musatat, “Evaluation of Industrial Poly(tert-butyl acrylate) insulated A p-channel Organic Field-Effect Transistor (PtBA-p-OFET)”, DÜBİTED, vol. 12, no. 3, pp. 1762–1770, 2024, doi: 10.29130/dubited.1460355.
ISNAD Demir, Ahmet - Musatat, Ahmad Badreddin. “Evaluation of Industrial Poly(tert-Butyl Acrylate) Insulated A P-Channel Organic Field-Effect Transistor (PtBA-P-OFET)”. Duzce University Journal of Science and Technology 12/3 (July 2024), 1762-1770. https://doi.org/10.29130/dubited.1460355.
JAMA Demir A, Musatat AB. Evaluation of Industrial Poly(tert-butyl acrylate) insulated A p-channel Organic Field-Effect Transistor (PtBA-p-OFET). DÜBİTED. 2024;12:1762–1770.
MLA Demir, Ahmet and Ahmad Badreddin Musatat. “Evaluation of Industrial Poly(tert-Butyl Acrylate) Insulated A P-Channel Organic Field-Effect Transistor (PtBA-P-OFET)”. Duzce University Journal of Science and Technology, vol. 12, no. 3, 2024, pp. 1762-70, doi:10.29130/dubited.1460355.
Vancouver Demir A, Musatat AB. Evaluation of Industrial Poly(tert-butyl acrylate) insulated A p-channel Organic Field-Effect Transistor (PtBA-p-OFET). DÜBİTED. 2024;12(3):1762-70.