Review
BibTex RIS Cite

Drug Delivery Based on Nanoparticulate Systems

Year 2024, , 1993 - 2015, 23.10.2024
https://doi.org/10.29130/dubited.1469423

Abstract

The administration route of an active ingredient and the materials used to deliver it are as important as the synthesis of that active ingredient. For the treatment to be effective, the active ingredient must be present in the right amount and in the right place at the right time. Therefore, researchers have been studying a wide variety of drug delivery systems, taking into account the route of administration of the drug, its half-life, and its effective and toxic amounts. Because of its numerous benefits, nanotechnology has attracted attention in pharmaceutical research as well as many other fields. Nanoparticles have the potential to disperse hydrophobic drugs in an aqueous solution, deliver drugs to the targeted site, and thus selectively direct therapeutic agents such as antineoplastic drugs. This study provides a detailed discussion of the many inorganic, polymeric, and lipid-based nanoparticulate systems designed for drug delivery.

References

  • [1] K. Çetin, K. Şarkaya, and A. Denizli, “Clinical applications and future clinical trials of the drug delivery system,” in Nanotechnology for Drug Delivery and Pharmaceuticals, R. P. Singh, J. Singh, K. R. Singh, and C. O. Adetunji, Eds., Elsevier, 2023, pp. 259–294. doi: 10.1016/B978-0-323-95325-2.00020-1.
  • [2] S. Logothetidis, “Nanotechnology: Principles and applications,” NanoScience and Technology, vol. 59, pp. 1–22, 2012, doi: 10.1007/978-3-642-22227-6_1.
  • [3] F. Akbar, M. Kolahdouz, S. Larimian, B. Radfar, and H. H. Radamson, “Graphene synthesis, characterization and its applications in nanophotonics, nanoelectronics, and nanosensing,” Journal of Materials Science: Materials in Electronics, vol. 26, no. 7, pp. 4347–4379, 2015, doi: 10.1007/S10854-015-2725-9.
  • [4] Ş. Çalık Bostancı, A. Boyraz, T. Şenel Zor, E. Zor, O. Aslan, and H. Bingöl, “Zenginleştirilmiş Öğrenme Ortamındaki Nanobilim ve Nanoteknoloji Eğitiminin Öğrencilerin Görüş ve Farkındalıklarına Etkisi,” Ahmet Keleşoğlu Eğitim Fakültesi Dergisi, vol. 5, no. 3, pp. 1058–1086, 2023, doi: 10.38151/akef.2023.99.
  • [5] D. Frank et al., “Overview of the role of nanotechnological innovations in the detection and treatment of solid tumors,” Int J Nanomedicine, p. 589, 2014, doi: 10.2147/IJN.S50941.
  • [6] H. Yavuz, K. Çetin, S. Akgönüllü, D. Battal, and A. Denizli, “Therapeutic protein and drug imprinted nanostructures as controlled delivery tools,” in Design and Development of New Nanocarriers, Alexandru Mihai Grumezescu, Ed., William Andrew Publishing, 2018, pp. 439–473. doi: 10.1016/B978-0-12-813627-0.00012-0.
  • [7] K. M. El-Say and H. S. El-Sawy, “Polymeric nanoparticles: Promising platform for drug delivery,” Int J Pharm, vol. 528, no. 1–2, pp. 675–691, 2017, doi: 10.1016/J.IJPHARM.2017.06.052.
  • [8] T. Patel, J. Zhou, J. M. Piepmeier, and W. M. Saltzman, “Polymeric nanoparticles for drug delivery to the central nervous system,” Adv Drug Deliv Rev, vol. 64, no. 7, pp. 701–705, 2012, doi: 10.1016/J.ADDR.2011.12.006.
  • [9] K. C. de Castro, J. M. Costa, and M. G. N. Campos, “Drug-loaded polymeric nanoparticles: a review,” Int J Polym Mater, vol. 71, no. 1, pp. 1–13, 2022, doi: 10.1080/00914037.2020.1798436.
  • [10] B. Shaqour, A. Samaro, B. Verleije, K. Beyers, C. Vervaet, and P. Cos, “Production of Drug Delivery Systems Using Fused Filament Fabrication: A Systematic Review,” Pharmaceutics, vol. 12, no. 6, p. 517, 2020, doi: 10.3390/PHARMACEUTICS12060517.
  • [11] F. Tao et al., “Chitosan-based drug delivery systems: From synthesis strategy to osteomyelitis treatment – A review,” Carbohydr Polym, vol. 251, p. 117063, 2021, doi: 10.1016/J.CARBPOL.2020.117063.
  • [12] E. Tamahkar, M. Bakhshpour, and A. Denizli, “Molecularly imprinted composite bacterial cellulose nanofibers for antibiotic release,” J Biomater Sci Polym Ed, vol. 30, no. 6, pp. 450–461, 2019, doi: 10.1080/09205063.2019.1580665.
  • [13] H. Li et al., “The protein corona and its effects on nanoparticle-based drug delivery systems,” Acta Biomater, vol. 129, pp. 57–72, 2021, doi: 10.1016/J.ACTBIO.2021.05.019.
  • [14] K. Çetin, S. Aslıyüce, N. Idil, and A. Denizli, “Preparation of lysozyme loaded gelatin microcryogels and investigation of their antibacterial properties,” J Biomater Sci Polym Ed, vol. 32, no. 2, pp. 189–204, 2021, doi: 10.1080/09205063.2020.1825303.
  • [15] Z. Zhang, S. Ai, Z. Yang, and X. Li, “Peptide-based supramolecular hydrogels for local drug delivery,” Adv Drug Deliv Rev, vol. 174, pp. 482–503, 2021, doi: 10.1016/J.ADDR.2021.05.010.
  • [16] F. Mo, K. Jiang, D. Zhao, Y. Wang, J. Song, and W. Tan, “DNA hydrogel-based gene editing and drug delivery systems,” Adv Drug Deliv Rev, vol. 168, pp. 79–98, 2021, doi: 10.1016/J.ADDR.2020.07.018.
  • [17] X. Li et al., “Recent advances in targeted delivery of non-coding RNA-based therapeutics for atherosclerosis,” Molecular Therapy, vol. 30, no. 10, pp. 3118–3132, 2022, doi: 10.1016/J.YMTHE.2022.07.018.
  • [18] S. Esthar et al., “An anti-inflammatory controlled nano drug release and pH-responsive poly lactic acid appended magnetic nanosphere for drug delivery applications,” Mater Today Commun, vol. 34, p. 105365, 2023, doi: 10.1016/J.MTCOMM.2023.105365.
  • [19] A. Behl, V. S. Parmar, S. Malhotra, and A. K. Chhillar, “Biodegradable diblock copolymeric PEG-PCL nanoparticles: Synthesis, characterization and applications as anticancer drug delivery agents,” Polymer (Guildf), vol. 207, p. 122901, 2020, doi: 10.1016/J.POLYMER.2020.122901.
  • [20] L. P. Jahromi, M. Ghazali, H. Ashrafi, and A. Azadi, “A comparison of models for the analysis of the kinetics of drug release from PLGA-based nanoparticles,” Heliyon, p. e03451, 2017, doi: 10.1016/j.heliyon.2020.e03451.
  • [21] L. Shi et al., “Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery,” Nanoscale, vol. 13, no. 24, pp. 10748–10764, 2021, doi: 10.1039/D1NR02065J.
  • [22] N. Mangiacotte, G. Prosperi-Porta, L. Liu, M. Dodd, and H. Sheardown, “Mucoadhesive Nanoparticles for Drug Delivery to the Anterior Eye,” Nanomaterials, vol. 10, no. 7, p. 1400, Jul. 2020, doi: 10.3390/NANO10071400.
  • [23] K. Çetin and A. Denizli, “Polyethylenimine-functionalized microcryogels for controlled release of diclofenac sodium,” React Funct Polym, vol. 170, p. 105125, 2022, doi: 10.1016/J.REACTFUNCTPOLYM.2021.105125.
  • [24] M. Bakhshpour, H. Yavuz, and A. Denizli, “Controlled release of mitomycin C from PHEMAH–Cu(II) cryogel membranes,” Artif Cells Nanomed Biotechnol, vol. 46, no. sup1, pp. 946–954, 2018, doi: 10.1080/21691401.2018.1439840.
  • [25] J. Luo et al., “Constructing a drug release model by central composite design to investigate the interaction between drugs and temperature-sensitive controlled release nanoparticles,” Eur J Pharm Biopharm, vol. 183, pp. 24–32, 2023, doi: 10.1016/J.EJPB.2022.12.009.
  • [26] D. D. Lasic and Y. Barenholz, “Liposomes: Past, Present, and Future,” Handbook of Nonmedical Applications of Liposomes: From Gene Delivery and Diagnostics to Ecology, pp. 299–316, 2019, doi: 10.1201/9780429291470-21.
  • [27] C. Has and P. Sunthar, “A comprehensive review on recent preparation techniques of liposomes,” J Liposome Res, vol. 30, no. 4, pp. 336–365, 2020, doi: 10.1080/08982104.2019.1668010.
  • [28] H. Nsairat et al., “Liposome bilayer stability: emphasis on cholesterol and its alternatives,” J Liposome Res, 2023, doi: 10.1080/08982104.2023.2226216.
  • [29] S. Pande, “Liposomes for drug delivery: review of vesicular composition, factors affecting drug release and drug loading in liposomes,” Artif Cells Nanomed Biotechnol, vol. 51, no. 1, pp. 428–440, 2023, doi: 10.1080/21691401.2023.2247036.
  • [30] A. Gonzalez Gomez and Z. Hosseinidoust, “Liposomes for Antibiotic Encapsulation and Delivery,” ACS Infect Dis, vol. 6, no. 5, pp. 896–908, 2020, doi: 10.1021/ACSINFECDIS.9B00357
  • [31] P. Kumari, S. Kaur, S. Sharma, and H. K. Kashyap, “Impact of amphiphilic molecules on the structure and stability of homogeneous sphingomyelin bilayer: Insights from atomistic simulations,” Journal of Chemical Physics, vol. 148, no. 16, 2018, doi: 10.1063/1.5021310/196112.
  • [32] P. Kesharwani, K. Kumari, R. Gururani, S. Jain, and S. Sharma, “Approaches to Address PK-PD Challenges of Conventional Liposome Formulation with Special Reference to Cancer, Alzheimer’s, Diabetes, and Glaucoma: An Update on Modified Liposomal Drug Delivery System,” Curr Drug Metab, vol. 23, no. 9, pp. 678–692, 2022, doi: 10.2174/1389200223666220609141459.
  • [33] S. Maritim, P. Boulas, and Y. Lin, “Comprehensive analysis of liposome formulation parameters and their influence on encapsulation, stability and drug release in glibenclamide liposomes,” Int J Pharm, vol. 592, p. 120051, 2021, doi: 10.1016/J.IJPHARM.2020.120051.
  • [34] L. van der Koog, T. B. Gandek, and A. Nagelkerke, “Liposomes and Extracellular Vesicles as Drug Delivery Systems: A Comparison of Composition, Pharmacokinetics, and Functionalization,” Adv Healthc Mater, vol. 11, no. 5, p. 2100639, 2022, doi: 10.1002/ADHM.202100639.
  • [35] S. Amatya et al., “Drug release testing methods of polymeric particulate drug formulations,” J Pharm Investig, vol. 43, no. 4, pp. 259–266, 2013, doi: 10.1007/S40005-013-0072-5/TABLES/2.
  • [36] S. Modi and B. D. Anderson, “Determination of drug release kinetics from nanoparticles: Overcoming pitfalls of the dynamic dialysis method,” Mol Pharm, vol. 10, no. 8, pp. 3076–3089, 2013, doi: 10.1021/MP400154A
  • [37] S. J. Wallace, J. Li, R. L. Nation, and B. J. Boyd, “Drug release from nanomedicines: Selection of appropriate encapsulation and release methodology,” Drug Deliv Transl Res, vol. 2, no. 4, pp. 284–292, 2012, doi: 10.1007/S13346-012-0064-4
  • [38] E. A. Grego et al., “Polymeric Nanoparticle-Based Vaccine Adjuvants and Delivery Vehicles,” Curr Top Microbiol Immunol, vol. 433, pp. 29–76, 2021, doi: 10.1007/82_2020_226
  • [39] R. Amato et al., “Liposome-Mediated Delivery Improves the Efficacy of Lisosan G against Retinopathy in Diabetic Mice,” Cells, vol. 12, no. 20, p. 2448, Oct. 2023, doi: 10.3390/CELLS12202448.
  • [40] A. Artzy-Schnirman et al., “Advanced human-relevant in vitro pulmonary platforms for respiratory therapeutics,” Adv Drug Deliv Rev, vol. 176, p. 113901, 2021, doi: 10.1016/J.ADDR.2021.113901.
  • [41] Y. Yamada, Satrialdi, M. Hibino, D. Sasaki, J. Abe, and H. Harashima, “Power of mitochondrial drug delivery systems to produce innovative nanomedicines,” Adv Drug Deliv Rev, vol. 154–155, pp. 187–209, 2020, doi: 10.1016/J.ADDR.2020.09.010.
  • [42] K. Thapa Magar, G. F. Boafo, X. Li, Z. Chen, and W. He, “Liposome-based delivery of biological drugs,” Chinese Chemical Letters, vol. 33, no. 2, pp. 587–596, 2022, doi: 10.1016/J.CCLET.2021.08.020.
  • [43] S. Jain, S. V. Deore, R. Ghadi, D. Chaudhari, K. Kuche, and S. S. Katiyar, “Tumor microenvironment responsive VEGF-antibody functionalized pH sensitive liposomes of docetaxel for augmented breast cancer therapy,” Mater Sci Eng C, vol. 121, p. 111832, 2021, doi: 10.1016/J.MSEC.2020.111832.
  • [44] R. Swami et al., “pH sensitive liposomes assisted specific and improved breast cancer therapy using co-delivery of SIRT1 shRNA and Docetaxel,” Mater Sci Eng C, vol. 120, p. 111664, 2021, doi: 10.1016/J.MSEC.2020.111664.
  • [45] S. Portilla, L. Fernández, D. Gutiérrez, A. Rodríguez, and P. García, “Encapsulation of the Antistaphylococcal Endolysin LysRODI in pH-Sensitive Liposomes,” Antibiotics vol. 9, no. 5, p. 242, 2020, doi: 10.3390/ANTIBIOTICS9050242.
  • [46] X. Ding et al., “Designing Aptamer-Gold Nanoparticle-Loaded pH-Sensitive Liposomes Encapsulate Morin for Treating Cancer,” Nanoscale Res Lett, vol. 15, no. 1, pp. 1–17, 2020, doi: 10.1186/S11671-020-03297-X.
  • [47] Y. Il Park et al., “pH-sensitive multi-drug liposomes targeting folate receptor β for efficient treatment of non-small cell lung cancer,” J Control Release, vol. 330, pp. 1–14, 2021, doi: 10.1016/J.JCONREL.2020.12.011.
  • [48] Y. Chen et al., “Co-delivery of doxorubicin and epacadostat via heparin coated pH-sensitive liposomes to suppress the lung metastasis of melanoma,” Int J Pharm, vol. 584, p. 119446, 2020, doi: 10.1016/J.IJPHARM.2020.119446.
  • [49] A. Ibrahim Bekraki, “Liposomes-and niosomes-based drug delivery systems for tuberculosis treatment,” in Nanotechnology Based Approaches for Tuberculosis Treatment, P. Kesharwani, Ed., Elsevier, 2020, pp. 107–122. doi: 10.1016/B978-0-12-819811-7.00007-2.
  • [50] S. Khoee and M. Yaghoobian, “Niosomes: a novel approach in modern drug delivery systems,” in Nanostructures for Drug Delivery, E. Andronescu and A. M. Grumezescu, Ed., Elsevier, 2017, pp. 207–237, doi: 10.1016/B978-0-323-46143-6.00006-3.
  • [51] E. Desmet, M. Van Gele, and J. Lambert, “Topically applied lipid- and surfactant-based nanoparticles in the treatment of skin disorders,” Expert Opin Drug Deliv, vol. 14, no. 1, pp. 109–122, 2017, doi: 10.1080/17425247.2016.1206073.
  • [52] M. Ning, Y. Guo, H. Pan, X. Chen, and Z. Gu, “Preparation, in Vitro and in Vivo Evaluation of Liposomal/Niosomal Gel Delivery Systems for Clotrimazole,” Drug Dev Ind Pharm, vol. 31, no. 4–5, pp. 375–383, 2005, doi: 10.1081/DDC-54315.
  • [53] G. Amoabediny et al., “Overview of preparation methods of polymeric and lipid-based (niosome, solid lipid, liposome) nanoparticles: A comprehensive review,” Int J Polym Mater, vol. 67, no. 6, pp. 383–400, 2018, doi: 10.1080/00914037.2017.1332623.
  • [54] J. Wen, M. Al Galloni, N. Yin, and A. Rashidinejad, “Liposomes and Niosomes,” Emulsion-based Systems for Delivery of Food Active Compounds: Formation, Application, Health and Safety, pp. 263–292, 2018, doi: 10.1002/9781119247159.CH10.
  • [55] F. Sakar et al., “Nano drug delivery systems and gamma radiation sterilization,” Pharm Dev Technol, vol. 22, no. 6, pp. 775–784, 2017, doi: 10.3109/10837450.2016.1163393.
  • [56] M. Nasr, S. Mansour, N. D. Mortada, and A. A. Elshamy, “Vesicular aceclofenac systems: A comparative study between liposomes and niosomes,” J Microencapsul, vol. 25, no. 7, pp. 499–512, 2008, doi: 10.1080/02652040802055411.
  • [57] S. J. Purohit, M. Tharmavaram, D. Rawtani, P. Prajapati, H. Pandya, and A. Dey, “Niosomes as cutting edge nanocarrier for controlled and targeted delivery of essential oils and biomolecules,” J Drug Deliv Sci Technol, vol. 73, p. 103438, 2022, doi: 10.1016/J.JDDST.2022.103438.
  • [58] P. Bhardwaj, P. Tripathi, R. Gupta, and S. Pandey, “Niosomes: A review on niosomal research in the last decade,” J Drug Deliv Sci Technol, vol. 56, p. 101581, 2020, doi: 10.1016/J.JDDST.2020.101581.
  • [59] G. P. Kumar and P. Rajeshwarrao, “Nonionic surfactant vesicular systems for effective drug delivery—an overview,” Acta Pharm Sin B, vol. 1, no. 4, pp. 208–219, 2011, doi: 10.1016/J.APSB.2011.09.002.
  • [60] A. Z. M. Khalifa and B. K. Abdul Rasool, “Optimized Mucoadhesive Coated Niosomes as a Sustained Oral Delivery System of Famotidine,” AAPS PharmSciTech, vol. 18, no. 8, pp. 3064–3075, 2017, doi: 10.1208/S12249-017-0780-7
  • [61] Z. Sezgin Bayindir, A. Beşikci, and N. Yüksel, “Paclitaxel-loaded niosomes for intravenous administration: pharmacokineticsand tissue distribution in rats,” Turk J Med Sci, vol. 45, no. 6, pp. 1403–1412, 2015, doi: 10.3906/sag-1408-129.
  • [62] H. A. Saafan et al., “Intratracheal Administration of Chloroquine-Loaded Niosomes Minimize Systemic Drug Exposure,” Pharmaceutics, vol. 13, no. 10, p. 1677, Oct. 2021, doi: 10.3390/PHARMACEUTICS13101677.
  • [63] M. Dehghani et al., “Triamcinolone-loaded self nano-emulsifying drug delivery systems for ocular use: An alternative to invasive ocular surgeries and injections,” Int J Pharm, vol. 653, p. 123840, Mar. 2024, doi: 10.1016/J.IJPHARM.2024.123840.
  • [64] Y. T. H. Tran, G. N. Tran, A. L. Hoang, and G. T. T. Vu, “Niosomes loaded with diclofenac for transdermal administration: Physico-chemical characterization, ex vivo and in vivo skin permeation studies,” J Appl Pharm Sci, vol. 10, no. 12, pp. 53–61, 2020, doi: 10.7324/JAPS.2020.101207.
  • [65] H. F. Salem, R. M. Kharshoum, H. A. Abou-Taleb, H. O. Farouk, and R. M. Zaki, “Fabrication and Appraisal of Simvastatin via Tailored Niosomal Nanovesicles for Transdermal Delivery Enhancement: In Vitro and In Vivo Assessment,” Pharmaceutics 2021, Vol. 13, Page 138, vol. 13, no. 2, p. 138, 2021, doi: 10.3390/PHARMACEUTICS13020138.
  • [66] S. S. Pandey et al., “Topical delivery of cyclosporine loaded tailored niosomal nanocarriers for improved skin penetration and deposition in psoriasis: Optimization, ex vivo and animal studies,” J Drug Deliv Sci Technol, vol. 63, p. 102441, 2021, doi: 10.1016/J.JDDST.2021.102441.
  • [67] A. Shah, S. Boldhane, A. Pawar, and C. Bothiraja, “Advanced development of a non-ionic surfactant and cholesterol material based niosomal gel formulation for the topical delivery of anti-acne drugs,” Mater Adv, vol. 1, no. 6, pp. 1763–1774, 2020, doi: 10.1039/D0MA00298D.
  • [68] K. Sridhar, B. S. Inbaraj, and B. H. Chen, “Recent Advances on Nanoparticle Based Strategies for Improving Carotenoid Stability and Biological Activity,” Antioxidants, vol. 10, no. 5, p. 713, 2021, doi: 10.3390/ANTIOX10050713.
  • [69] H. A. Gad, R. S. Elezaby, M. Mansour, and R. M. Hathout, “Novel Approaches of Solid Lipid Nanoparticles as Drug Carrier,” Nanoengineering of Biomaterials: Drug Delivery & Biomedical Applications, 2 Volumes, vol. 1–2, pp. 107–143, 2021, doi: 10.1002/9783527832095.CH5.
  • [70] J. Ye, Q. Wang, X. Zhou, and N. Zhang, “Injectable actarit-loaded solid lipid nanoparticles as passive targeting therapeutic agents for rheumatoid arthritis,” Int J Pharm, vol. 352, no. 1–2, pp. 273–279, 2008, doi: 10.1016/J.IJPHARM.2007.10.014.
  • [71] N. Osman, N. Devnarain, C. A. Omolo, V. Fasiku, Y. Jaglal, and T. Govender, “Surface modification of nano-drug delivery systems for enhancing antibiotic delivery and activity,” Wiley Interdiscip Rev Nanomed Nanobiotechnol, vol. 14, no. 1, p. e1758, Jan. 2022, doi: 10.1002/WNAN.1758.
  • [72] Y. Mirchandani, V. B. Patravale, and S. Brijesh, “Solid lipid nanoparticles for hydrophilic drugs,” J Control Release, vol. 335, pp. 457–464, 2021, doi: 10.1016/J.JCONREL.2021.05.032.
  • [73] S. Bertoni, B. Albertini, J. Ronowicz-Pilarczyk, and N. Passerini, “Tailoring the release of drugs having different water solubility by hybrid polymer-lipid microparticles with a biphasic structure,” Eur J Pharm Biopharm, vol. 190, pp. 171–183, 2023, doi: 10.1016/J.EJPB.2023.07.017.
  • [74] N. K. Garg, B. Singh, R. K. Tyagi, G. Sharma, and O. P. Katare, “Effective transdermal delivery of methotrexate through nanostructured lipid carriers in an experimentally induced arthritis model,” Colloids Surf B Biointerfaces, vol. 147, pp. 17–24, 2016, doi: 10.1016/J.COLSURFB.2016.07.046.
  • [75] M. J. Ansari et al., “Enhanced oral bioavailability of insulin-loaded solid lipid nanoparticles: pharmacokinetic bioavailability of insulin-loaded solid lipid nanoparticles in diabetic rats,” Drug Deliv, vol. 23, no. 6, pp. 1972–1979, 2016, doi: 10.3109/10717544.2015.1039666.
  • [76] R. Arora, S. S. Katiyar, V. Kushwah, and S. Jain, “Solid lipid nanoparticles and nanostructured lipid carrier-based nanotherapeutics in treatment of psoriasis: a comparative study,” Expert Opin Drug Deliv, vol. 14, no. 2, pp. 165–177, 2017, doi: 10.1080/17425247.2017.1264386.
  • [77] M. Chountoulesi and C. Demetzos, “Promising Nanotechnology Approaches in Treatment of Autoimmune Diseases of Central Nervous System,” Brain Sciences, vol. 10, no. 6, p. 338, 2020, doi: 10.3390/BRAINSCI10060338.
  • [78] A. Schröfel, G. Kratošová, I. Šafařík, M. Šafaříková, I. Raška, and L. M. Shor, “Applications of biosynthesized metallic nanoparticles – A review,” Acta Biomater, vol. 10, no. 10, pp. 4023–4042, 2014, doi: 10.1016/J.ACTBIO.2014.05.022.
  • [79] H. M. Yadav et al., “Metal oxide-based composites: synthesis and characterization,” in Advances in Metal Oxides and Their Composites for Emerging Applications, S. D. Delekar, Ed., Elsevier, 2022, pp. 57–96. doi: 10.1016/B978-0-323-85705-5.00010-5.
  • [80] M. İ. Özgün, A. B. Batıbay, B. Ünal, Y. R. Eker, and A. Terlemez, “Investigation of the Use of TiO2 Obtained from Endodontic NiTi Files in Dye-Sensitized Solar Cells,” Necmettin Erbakan University Journal of Science and Engineering, vol. 5, no. 1, pp. 1–8, 2023, doi: 10.47112/neufmbd.2023.4.
  • [81] E. R. Cooper, “Nanoparticles: A personal experience for formulating poorly water soluble drugs,” J Control Release, vol. 141, no. 3, pp. 300–302, 2010, doi: 10.1016/J.JCONREL.2009.10.006.
  • [82] S. Vijayaram et al., “Applications of Green Synthesized Metal Nanoparticles — a Review,” Biological Trace Element Research 2023 202:1, vol. 202, no. 1, pp. 360–386, 2023, doi: 10.1007/S12011-023-03645-9.
  • [83] K. Thanki, R. P. Gangwal, A. T. Sangamwar, and S. Jain, “Oral delivery of anticancer drugs: Challenges and opportunities,” J Control Release, vol. 170, no. 1, pp. 15–40, 2013, doi: 10.1016/J.JCONREL.2013.04.020.
  • [84] V. Chandrakala, V. Aruna, and G. Angajala, “Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems,” Emergent Materials 2021 5:6, vol. 5, no. 6, pp. 1593–1615, 2022, doi: 10.1007/S42247-021-00335-X.
  • [85] M. D. K. Glasgow and M. B. Chougule, “Recent Developments in Active Tumor Targeted Multifunctional Nanoparticles for Combination Chemotherapy in Cancer Treatment and Imaging,” J Biomed Nanotechnol, vol. 11, no. 11, pp. 1859–18982015, doi: 10.1166/JBN.2015.2145.
  • [86] E. Alphandéry, “Natural Metallic Nanoparticles for Application in Nano-Oncology,” Int J Mol Sci, vol. 21, no. 12, p. 4412, 2020, doi: 10.3390/IJMS21124412.
  • [87] E. R. Evans, P. Bugga, V. Asthana, and R. Drezek, “Metallic nanoparticles for cancer immunotherapy,” Materials Today, vol. 21, no. 6, pp. 673–685, 2018, doi: 10.1016/J.MATTOD.2017.11.022.
  • [88] Neha Desai, M. Momin, T. Khan, S. Gharat, R. S. Ningthoujam, and A. Omri, “Metallic nanoparticles as drug delivery system for the treatment of cancer,” Expert Opin Drug Deliv, vol. 18, no. 9, pp. 1261–1290, 2021, doi: 10.1080/17425247.2021.1912008.
  • [89] X. F. Zhang, Z. G. Liu, W. Shen, and S. Gurunathan, “Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches,” Int J Mol Sci 2016, Vol. 17, Page 1534, vol. 17, no. 9, p. 1534, 2016, doi: 10.3390/IJMS17091534.
  • [90] S. Prakash, D. Nallathamby, X.-H. N. Xu, and P. D. Nallathamby, “Study of cytotoxic and therapeutic effects of stable and purified silver nanoparticles on tumor cells,” Nanoscale, vol. 2, no. 6, pp. 942–952, 2010, doi: 10.1039/C0NR00080A.
  • [91] S. Haque, C. C. Norbert, R. Acharyya, S. Mukherjee, M. Kathirvel, and C. R. Patra, “Biosynthesized silver nanoparticles for cancer therapy and in vivo bioimaging,” Cancers (Basel), vol. 13, no. 23, p. 6114, 2021, doi: 10.3390/CANCERS13236114/S1.
  • [92] M. M. Rageh, R. H. El-Gebaly, and M. M. Afifi, “Antitumor activity of silver nanoparticles in Ehrlich carcinoma-bearing mice,” Naunyn Schmiedebergs Arch Pharmacol, vol. 391, no. 12, pp. 1421–1430, 2018, doi: 10.1007/S00210-018-1558-5/TABLES/1.
  • [93] T. Shi, X. Sun, and Q.-Y. He, “Cytotoxicity of Silver Nanoparticles Against Bacteria and Tumor Cells,” Curr Protein Pept Sci, vol. 18, no. 999, pp. 1–1, 2016, doi: 10.2174/1389203718666161108092149.
  • [94] M. Irulappan Sriram, S. Barath Mani Kanth, K. Kalishwaralal, S. Gurunathan, and M. Irulappan Sriram Selvaraj Barath Mani Kanth Kalimuthu Kalishwaralal Sangiliyandi gurunathan, “Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model,” Int J Nanomedicine, vol. 5, no. 1, pp. 753–762, 2010, doi: 10.2147/IJN.S11727.
  • [95] B. Chakraborty et al., “Immunomodulatory properties of silver nanoparticles contribute to anticancer strategy for murine fibrosarcoma,” Cell Mol Immunol, vol. 13, no. 2, pp. 191–205, 2015, doi: 10.1038/cmi.2015.05.
  • [96] B. Lee, M. J. Lee, S. J. Yun, K. Kim, I. H. Choi, and S. Park, “Silver nanoparticles induce reactive oxygen species-mediated cell cycle delay and synergistic cytotoxicity with 3-bromopyruvate in Candida albicans, but not in Saccharomyces cerevisiae,” Int J Nanomedicine, vol. 14, p. 4801, 2019, doi: 10.2147/IJN.S205736.
  • [97] R. R. Miranda, I. Sampaio, and V. Zucolotto, “Exploring silver nanoparticles for cancer therapy and diagnosis,” Colloids Surf B Biointerfaces, vol. 210, p. 112254, 2022, doi: 10.1016/J.COLSURFB.2021.112254.
  • [98] A. Fehaid and A. Taniguchi, “Silver nanoparticles reduce the apoptosis induced by tumor necrosis factor-α,” Sci Technol Adv Mater, vol. 19, no. 1, pp. 526–534, 2018, doi: 10.1080/14686996.2018.1487761.
  • [99] M. R. Garcia Garcia et al., “Silver nanoparticles induce a non-immunogenic tumor cell death,” J Immunotoxicol, vol. 20, no. 1, 2023, doi: 10.1080/1547691X.2023.2175078.
  • [100] N. Y. Elamin, A. Modwi, W. Abd El-Fattah, and A. Rajeh, “Synthesis and structural of Fe3O4 magnetic nanoparticles and its effect on the structural optical, and magnetic properties of novel Poly(methyl methacrylate)/ Polyaniline composite for electromagnetic and optical applications,” Opt Mater (Amst), vol. 135, p. 113323, Jan. 2023, doi: 10.1016/J.OPTMAT.2022.113323.
  • [101] T. Vangijzegem, D. Stanicki, and S. Laurent, “Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics,” Expert Opin Drug Deliv, vol. 16, no. 1, pp. 69–78, Jan. 2019, doi: 10.1080/17425247.2019.1554647.
  • [102] H. N. Pham et al., “Magnetic inductive heating of organs of mouse models treated by copolymer coated Fe3O4 nanoparticles*,” Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 8, no. 2, p. 025013, 2017, doi: 10.1088/2043-6254/AA5E23.
  • [103] S. Ayyanaar et al., “ROS-responsive chitosan coated magnetic iron oxide nanoparticles as potential vehicles for targeted drug delivery in cancer therapy,” Int J Nanomedicine, vol. 15, pp. 3333–3346, 2020, doi: 10.2147/IJN.S249240.
  • [104] S. O. Aisida, P. A. Akpa, I. Ahmad, T. kai Zhao, M. Maaza, and F. I. Ezema, “Bio-inspired encapsulation and functionalization of iron oxide nanoparticles for biomedical applications,” Eur Polym J, vol. 122, p. 109371, 2020, doi: 10.1016/J.EURPOLYMJ.2019.109371.
  • [105] M. Suciu et al., “Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements,” Beilstein J Nanotechnol 11:94, vol. 11, no. 1, pp. 1092–1109, 2020, doi: 10.3762/BJNANO.11.94.
  • [106] S. Ayyanaar et al., “Iron oxide nanoparticle core-shell magnetic microspheres: Applications toward targeted drug delivery,” Nanomedicine, vol. 24, p. 102134, 2020, doi: 10.1016/J.NANO.2019.102134.
  • [107] K. Çetin, F. Denizli, H. Yavuz, D. Türkmen, and A. Denizli, “Magnetic Nanoparticles and Their Biomedical Applications,” Hacettepe J Biol Chem, pp. 143–152, 2019, doi: 10.15671/hjbc.622644.
  • [108] E. C. Dreaden, L. A. Austin, M. A. MacKey, and M. A. El-Sayed, “Size matters: gold nanoparticles in targeted cancer drug delivery,” http://dx.doi.org/10.4155/tde.12.21, vol. 3, no. 4, pp. 457–478, 2012, doi: 10.4155/TDE.12.21.
  • [109] O. Veiseh et al., “Inhibition of Tumor-Cell Invasion with Chlorotoxin-Bound Superparamagnetic Nanoparticles,” Small, vol. 5, no. 2, pp. 256–264, 2009, doi: 10.1002/SMLL.200800646.
  • [110] X. Zhang, “Gold Nanoparticles: Recent Advances in the Biomedical Applications,” Cell Biochem Biophys, vol. 72, no. 3, pp. 771–775, 2015, doi: 10.1007/S12013-015-0529-4/FIGURES/2.
  • [111] K. Hori et al., “Intracellular delivery and photothermal therapeutic effects of polyhistidine peptide-modified gold nanoparticles,” J Biotechnol, vol. 354, pp. 34–44, 2022, doi: 10.1016/J.JBIOTEC.2022.06.006.
  • [112] S. Zhang and Y. Cheng, “Boronic acid-engineered gold nanoparticles for cytosolic protein delivery,” Biomater Sci, vol. 8, no. 13, pp. 3741–3750, 2020, doi: 10.1039/D0BM00679C.
  • [113] S. Pouya, M. Kazemi, S. Pouya, A. Dehshahri, and Z. Sobhani, “Evaluation of CTAB coated gold nanoparticles as a potential carrier for gene delivery,” Trends in Pharmaceutical Sciences, vol. 8, no. 3, pp. 147–154, 2022, doi: 10.30476/TIPS.2022.95505.1146.
  • [114] X. Xu, Y. Liu, Y. Yang, J. Wu, M. Cao, and L. Sun, “One-pot synthesis of functional peptide-modified gold nanoparticles for gene delivery,” Colloids Surf A Physicochem Eng Asp, vol. 640, p. 128491, 2022, doi: 10.1016/J.COLSURFA.2022.128491.
  • [115] L. Bai, J. Zhao, M. Wang, Y. Feng, and J. Ding, “Matrix-Metalloproteinase-Responsive Gene Delivery Surface for Enhanced in Situ Endothelialization,” ACS Appl Mater Interfaces, vol. 12, no. 36, pp. 40121–40132, 2020, doi: 10.1021/ACSAMI.0C11971
  • [116] D. Zhang et al., “HSA-templated self-generation of gold nanoparticles for tumor vaccine delivery and combinational therapy,” J Mater Chem B, vol. 10, no. 42, pp. 8750–8759, 2022, doi: 10.1039/D2TB01483A.
  • [117] S. Thambiraj, S. Hema, and D. Ravi Shankaran, “Functionalized gold nanoparticles for drug delivery applications,” Mater Today Proc, vol. 5, no. 8, pp. 16763–16773, 2018, doi: 10.1016/J.MATPR.2018.06.030.
  • [118] N. P. Singh, V. K. Gupta, and A. P. Singh, “Graphene and carbon nanotube reinforced epoxy nanocomposites: A review,” Polymer (Guildf), vol. 180, p. 121724, 2019, doi: 10.1016/J.POLYMER.2019.121724.
  • [119] T. A. Land, T. Michely, R. J. Behm, J. C. Hemminger, and G. Comsa, “STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition,” Surf Sci, vol. 264, no. 3, pp. 261–270, 1992, doi: 10.1016/0039-6028(92)90183-7.
  • [120] M. H. Islam et al., “Graphene and CNT-Based Smart Fiber-Reinforced Composites: A Review,” Adv Funct Mater, vol. 32, no. 40, p. 2205723, 2022, doi: 10.1002/ADFM.202205723.
  • [121] F. Lahourpour, A. Boochani, S. S. Parhizgar, and S. M. Elahi, “Structural, electronic and optical properties of graphene-like nano-layers MoX2(X:S,Se,Te): DFT study,” J Theor Appl Phys, vol. 13, no. 3, pp. 191–201, 2019, doi: 10.1007/S40094-019-0333-4.
  • [122] H. Chang and H. Wu, “Graphene-Based Nanomaterials: Synthesis, Properties, and Optical and Optoelectronic Applications,” Adv Funct Mater, vol. 23, no. 16, pp. 1984–1997, 2013, doi: 10.1002/ADFM.201202460.
  • [123] D. Maiti, X. Tong, X. Mou, and K. Yang, “Carbon-Based Nanomaterials for Biomedical Applications: A Recent Study,” Front Pharmacol, vol. 9, p. 430833, 2019, doi: 10.3389/FPHAR.2018.01401/BIBTEX.
  • [124] N. F. Chiu, T. Y. Huang, H. C. Lai, and K. C. Liu, “Graphene oxide-based SPR biosensor chip for immunoassay applications,” Nanoscale Res Lett, vol. 9, no. 1, p. 445, 2014, doi: 10.1186/1556-276X-9-445.
  • [125] X. Huang, F. Liu, P. Jiang, and T. Tanaka, “Is graphene oxide an insulating material?,” Proceedings of IEEE International Conference on Solid Dielectrics, ICSD, pp. 904–907, 2013, doi: 10.1109/ICSD.2013.6619690.
  • [126] İ. Akın, E. Zor, and H. Bingöl, “GO@Fe3O4 Katkılı Polimerik Kompozit Membranların Hazırlanması ve Karakterizasyonu,” Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, vol. 5, no. 2, pp. 38–52, 2023, doi: 10.47112/neufmbd.2023.8.
  • [127] N. Rao, R. Singh, and L. Bashambu, “Carbon-based nanomaterials: Synthesis and prospective applications,” Mater Today Proc, vol. 44, pp. 608–614, 2021, doi: 10.1016/J.MATPR.2020.10.593.
  • [128] S. Zheng, J. Xiong, L. Wang, D. Zhai, Y. Xu, and F. Lin, “e-Graphene: A Computational Platform for the Prediction of Graphene-Based Drug Delivery System by Quantum Genetic Algorithm and Cascade Protocol,” Front Chem, vol. 9, p. 664355, 2021, doi: 10.3389/FCHEM.2021.664355/BIBTEX.
  • [129] Z. Guo et al., “Surface Functionalization of Graphene-Based Materials: Biological Behavior, Toxicology, and Safe-By-Design Aspects,” Adv Biol, vol. 5, no. 9, p. 2100637, 2021, doi: 10.1002/ADBI.202100637.
  • [130] J. Jampilek and K. Kralova, “Advances in Drug Delivery Nanosystems Using Graphene-Based Materials and Carbon Nanotubes,” Materials, vol. 14, no. 5, p. 1059, 2021, doi: 10.3390/MA14051059.
  • [131] R. Jha, A. Singh, P. K. Sharma, and N. K. Fuloria, “Smart carbon nanotubes for drug delivery system: A comprehensive study,” J Drug Deliv Sci Technol, vol. 58, p. 101811, 2020, doi: 10.1016/J.JDDST.2020.101811.
  • [132] A. T. Lawal, “Recent developments in electrochemical sensors based on graphene for bioanalytical applications,” Sens Biosensing Res, vol. 41, p. 100571, 2023, doi: 10.1016/J.SBSR.2023.100571.
  • [133] X. Zhang et al., “Understanding the Mechanical and Conductive Properties of Carbon Nanotube Fibers for Smart Electronics,” Adv Mater, vol. 32, no. 5, p. 1902028, 2020, doi: 10.1002/ADMA.201902028.
  • [134] H. Dai, “Carbon nanotubes: opportunities and challenges,” Surf Sci, vol. 500, no. 1–3, pp. 218–241, 2002, doi: 10.1016/S0039-6028(01)01558-8.
  • [135] A. V. V. V. Ravi Kiran, G. Kusuma Kumari, and P. T. Krishnamurthy, “Carbon nanotubes in drug delivery: Focus on anticancer therapies,” J Drug Deliv Sci Technol, vol. 59, p. 101892, 2020, doi: 10.1016/J.JDDST.2020.101892.
  • [136] M. Barani, M. Khatami, B. Behnam, R. Rajendram, P. Kesharwani, and A. Sahebkar, “Aptamer-conjugated carbon nanotubes or graphene for targeted cancer therapy and diagnosis,” Aptamers Engineered Nanocarriers for Cancer Therapy, pp. 277–294, 2023, doi: 10.1016/B978-0-323-85881-6.00018-X.
  • [137] L. Meng, X. Zhang, Q. Lu, Z. Fei, and P. J. Dyson, “Single walled carbon nanotubes as drug delivery vehicles: Targeting doxorubicin to tumors,” Biomaterials, vol. 33, no. 6, pp. 1689–1698, 2012, doi: 10.1016/J.BIOMATERIALS.2011.11.004.
  • [138] R. Chadar, O. Afzal, S. M. Alqahtani, and P. Kesharwani, “Carbon nanotubes as an emerging nanocarrier for the delivery of doxorubicin for improved chemotherapy,” Colloids Surf B Biointerfaces, vol. 208, p. 112044, 2021, doi: 10.1016/J.COLSURFB.2021.112044.
  • [139] M. Zarghami Dehaghani et al., “Theoretical Encapsulation of Fluorouracil (5-FU) Anti-Cancer Chemotherapy Drug into Carbon Nanotubes (CNT) and Boron Nitride Nanotubes (BNNT),” Molecules, vol. 26, no. 16, p. 4920, 2021, doi: 10.3390/MOLECULES26164920.
  • [140] F. F. Contreras-Torres, D. Salas-Treviño, A. Soto-Domínguez, and G. De Jesús García-Rivas, “Carbon Nanotubes in Tumor-Targeted Chemotherapeutic Formulations: A Review of Opportunities and Challenges,” ACS Appl Nano Mater, vol. 5, no. 7, pp. 8649–8679, 2022, doi: 10.1021/ACSANM.2C01118.
  • [141] S. Eskandari, A. Barzegar, and K. Mahnam, “Absorption of daunorubicin and etoposide drugs by hydroxylated and carboxylated carbon nanotube for drug delivery: theoretical and experimental studies,” J Biomol Struct Dyn, vol. 40, no. 20, pp. 10057–10064, 2022, doi: 10.1080/07391102.2021.1938232.
  • [142] M. Dahri, H. Akbarialiabad, A. M. Jahromi, and R. Maleki, “Loading and release of cancer chemotherapy drugs utilizing simultaneous temperature and pH-responsive nanohybrid,” BMC Pharmacol Toxicol, vol. 22, no. 1, pp. 1–10, 2021, doi: 10.1186/S40360-021-00508-8.
  • [143] S. Karimzadeh, B. Safaei, and T. C. Jen, “Theorical investigation of adsorption mechanism of doxorubicin anticancer drug on the pristine and functionalized single-walled carbon nanotube surface as a drug delivery vehicle: A DFT study,” J Mol Liq, vol. 322, p. 114890, 2021, doi: 10.1016/J.MOLLIQ.2020.114890.
  • [144] H. Zare et al., “Carbon nanotubes: Smart drug/gene delivery carriers,” Int J Nanomedicine, vol. 16, pp. 1681–1706, 2021, doi: 10.2147/IJN.S299448.
  • [145] Z. Wang, J. Tao, J. Chen, and Q. Liu, “Carbon Nanotubes Enhance the Chemotherapy Sensitivity of Tumors with Multidrug Resistance,” Lett Drug Des Discov, vol. 17, no. 4, pp. 366–378, 2019, doi: 10.2174/1570180816666190405110858.
  • [146] S. K. Debnath and R. Srivastava, “Drug Delivery With Carbon-Based Nanomaterials as Versatile Nanocarriers: Progress and Prospects,” Front Nanotechnol, vol. 3, p. 644564, 2021, doi: 10.3389/FNANO.2021.644564.
  • [147] A. Khoshoei, E. Ghasemy, F. Poustchi, M. A. Shahbazi, and R. Maleki, “Engineering the pH-Sensitivity of the Graphene and Carbon Nanotube Based Nanomedicines in Smart Cancer Therapy by Grafting Trimetyl Chitosan,” Pharm Res, vol. 37, no. 8, pp. 1–13, 2020, doi: 10.1007/S11095-020-02881-1.
  • [148] W. Gao et al., “3D CNT/MXene microspheres for combined photothermal/photodynamic/chemo for cancer treatment,” Front Bioeng Biotechnol, vol. 10, p. 996177, 2022, doi: 10.3389/FBIOE.2022.996177.
  • [149] K. de Almeida Barcelos, J. Garg, D. C. Ferreira Soares, A. L. B. de Barros, Y. Zhao, and L. Alisaraie, “Recent advances in the applications of CNT-based nanomaterials in pharmaceutical nanotechnology and biomedical engineering,” J Drug Deliv Sci Technol, vol. 87, p. 104834, 2023, doi: 10.1016/J.JDDST.2023.104834.
  • [150] M. Das et al., “Carbon nanotube embedded cyclodextrin polymer derived injectable nanocarrier: A multiple faceted platform for stimulation of multi-drug resistance reversal,” Carbohydr Polym, vol. 247, p. 116751, 2020, doi: 10.1016/J.CARBPOL.2020.116751.
  • [151] L. Paseta et al., “Functionalized graphene-based polyamide thin film nanocomposite membranes for organic solvent nanofiltration,” Sep Purif Technol, vol. 247, p. 116995, 2020, doi: 10.1016/J.SEPPUR.2020.116995.
  • [152] W. Chen et al., “Construction of Aptamer-siRNA Chimera/PEI/5-FU/Carbon Nanotube/Collagen Membranes for the Treatment of Peritoneal Dissemination of Drug-Resistant Gastric Cancer,” Adv Healthc Mater, vol. 9, no. 21, p. 2001153, 2020, doi: 10.1002/ADHM.202001153.
  • [153] A. Yaghoubi and A. Ramazani, “Anticancer DOX delivery system based on CNTs: Functionalization, targeting and novel technologies,” J Control Release, vol. 327, pp. 198–224, Nov. 2020, doi: 10.1016/J.JCONREL.2020.08.001.
  • [154] W. A. A. Mohamed et al., “Quantum dots synthetization and future prospect applications,” Nanotechnol Rev, vol. 10, no. 1, pp. 1926–1940, 2021, doi: 10.1515/NTREV-2021-0118.
  • [155] M. Çadırcı, K. Şarkaya, and A. Allı, “Dielectric properties of CdSe quantum dots-loaded cryogel for potential future electronic applications,” Mater Sci Semicond Process, vol. 119, p. 105269, 2020, doi: 10.1016/J.MSSP.2020.105269.
  • [156] C. T. Matea et al., “Quantum dots in imaging, drug delivery and sensor applications,” Int J Nanomedicine, vol. 12, pp. 5421–5431, 2017, doi: 10.2147/IJN.S138624.
  • [157] T. Sahu, Y. K. Ratre, S. Chauhan, L. V. K. S. Bhaskar, M. P. Nair, and H. K. Verma, “Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science,” J Drug Deliv Sci Technol, vol. 63, p. 102487, 2021, doi: 10.1016/J.JDDST.2021.102487.
  • [158] A. K. Babu et al., “An overview of polymer surface coated synthetic quantum dots as therapeutics and sensors applications,” Prog Biophys Mol Biol, vol. 184, pp. 1–12, 2023, doi: 10.1016/J.PBIOMOLBIO.2023.08.004.
  • [159] P. Sharma, V. Jain, and M. Tailang, “Advancement of Nanocarrier-Based Engineering for Specific Drug Delivery for Cancer Therapy,” In Targeted Cancer Therapy in Biomedical Engineering Singapore: Springer Nature Singapore, pp. 465–486, 2023, doi: 10.1007/978-981-19-9786-0_13.
  • [160] P. K. Singh, S. Singh, K. Sachan, V. Verma, and S. Garg, “Recent Development and Advancement in Quantum Dots in Pharmaceutical and Biomedical Fields for the Delivery of Drugs,” Curr Nanosci, vol. 20, no. 4, pp. 425–435, 2023, doi: 10.2174/1573413719666230517111856.
  • [161] S. Khizar et al., “Nanocarriers based novel and effective drug delivery system,” Int J Pharm, vol. 632, p. 122570, 2023, doi: 10.1016/J.IJPHARM.2022.122570.
  • [162] U. Badıllı, F. Mollarasouli, N. K. Bakirhan, Y. Ozkan, and S. A. Ozkan, “Role of quantum dots in pharmaceutical and biomedical analysis, and its application in drug delivery,” TrAC Trends in Analytical Chemistry, vol. 131, p. 116013, 2020, doi: 10.1016/J.TRAC.2020.116013.
  • [163] Y. Deng et al., “Application of the Nano-Drug Delivery System in Treatment of Cardiovascular Diseases,” Front Bioeng Biotechnol, vol. 7, p. 513812, 2020, doi: 10.3389/FBIOE.2019.00489/BIBTEX.
  • [164] M. Sohail et al., “Nanocarrier-based Drug Delivery System for Cancer Therapeutics: A Review of the Last Decade,” Curr Med Chem, vol. 28, no. 19, pp. 3753–3772, 2020, doi: 10.2174/0929867327666201005111722.
  • [165] A. A. H. Abdellatif et al., “Nano-scale delivery: A comprehensive review of nano-structured devices, preparative techniques, site-specificity designs, biomedical applications, commercial products, and references to safety, cellular uptake, and organ toxicity,” Nanotechnol Rev, vol. 10, no. 1, pp. 1493–1559, 2021, doi: 10.1515/NTREV-2021-0096
  • [166] M. Pourmadadi et al., “Letrozole-Loaded Nano-formulations as a Drug Delivery System for Cancer Therapy: Recent Developments,” BioNanoScience 2023 13:4, vol. 13, no. 4, pp. 1593–1608, 2023, doi: 10.1007/S12668-023-01196-W.
  • [167] M. D. Villalva, V. Agarwal, M. Ulanova, P. S. Sachdev, and N. Braidy, “Quantum dots as a theranostic approach in Alzheimer’s disease: a systematic review,” Nanomedicine, vol. 16, no. 18, pp. 1595–1611, Jun. 2021, doi: 10.2217/NNM-2021-0104.
  • [168] X. Lu, X. Hou, H. Tang, X. Yi, and J. Wang, “A High-Quality CdSe/CdS/ZnS Quantum-Dot-Based FRET Aptasensor for the Simultaneous Detection of Two Different Alzheimer’s Disease Core Biomarkers,” Nanomaterials, vol. 12, no. 22, p. 4031, 2022, doi: 10.3390/NANO12224031.
  • [169] E. Morales-Narváez, H. Montón, A. Fomicheva, and A. Merkoçi, “Signal enhancement in antibody microarrays using quantum dots nanocrystals: Application to potential Alzheimer’s disease biomarker screening,” Anal Chem, vol. 84, no. 15, pp. 6821–6827, 2012, doi: 10.1021/AC301369E.
  • [170] S. Yasamineh et al., “A state-of-the-art review on the recent advances of niosomes as a targeted drug delivery system,” Int J Pharm, vol. 624, p. 121878, Aug. 2022, doi: 10.1016/J.IJPHARM.2022.121878.
  • [171] A. Kumar et al., “Current and Future Nano-Carrier-Based Approaches in the Treatment of Alzheimer’s Disease,” Brain Sciences, vol. 13, no. 2, p. 213, 2023, doi: 10.3390/BRAINSCI13020213.
  • [172] A. A. Khafoor, A. S. Karim, and S. M. Sajadi, “Recent progress in synthesis of nano based liposomal drug delivery systems: A glance to their medicinal applications,” Results in Surfaces and Interfaces, vol. 11, p. 100124, 2023, doi: 10.1016/J.RSURFI.2023.100124.
  • [173] S. S. Qi, J. H. Sun, H. H. Yu, and S. Q. Yu, “Co-delivery nanoparticles of anti-cancer drugs for improving chemotherapy efficacy,” Drug Deliv, vol. 24, no. 1, pp. 1909–1926, 2017, doi: 10.1080/10717544.2017.1410256.
  • [174] M. X. Zhao and B. J. Zhu, “The Research and Applications of Quantum Dots as Nano-Carriers for Targeted Drug Delivery and Cancer Therapy,” Nanoscale Res Lett, vol. 11, no. 1, pp. 1–9, 2016, doi: 10.1186/S11671-016-1394-9/FIGURES/8.
  • [175] M. A. Jahangir et al., “Quantum Dots: Next Generation of Smart Nano-Systems,” Pharm Nanotechnol, vol. 7, no. 3, pp. 234–245, 2019, doi: 10.2174/2211738507666190429113906.
  • [176] C. E. Probst, P. Zrazhevskiy, V. Bagalkot, and X. Gao, “Quantum dots as a platform for nanoparticle drug delivery vehicle design,” Adv Drug Deliv Rev, vol. 65, no. 5. pp. 703–718, 2013. doi: 10.1016/j.addr.2012.09.036.

Nanopartikül Sistemlere Dayalı İlaç Taşıma

Year 2024, , 1993 - 2015, 23.10.2024
https://doi.org/10.29130/dubited.1469423

Abstract

Bir etkin maddenin veriliş yolu ve vermek için kullanılan malzemeler, o etkin maddenin sentezi kadar önemlidir. Tedavinin etkili olabilmesi için etken maddenin doğru miktarda ve doğru zamanda doğru yerde bulunması gerekir. Bu nedenle araştırmacılar, ilacın veriliş yolunu, yarı ömrünü, etkili ve toksik miktarlarını dikkate alarak çok çeşitli ilaç taşıyıcı sistemler üzerinde çalışmaktadır. Nanoteknoloji, sayısız faydaları nedeniyle pek çok alanda olduğu gibi farmasötik araştırmalarda da ilgi çekmektedir. Nanopartiküller, hidrofobik ilaçları sulu bir çözelti içinde dağıtma, ilaçları hedeflenen bölgeye iletme ve dolayısıyla antineoplastik ilaçlar gibi terapötik ajanları seçici olarak yönlendirme potansiyeline sahiptir. Bu çalışma, ilaç dağıtımı için tasarlanmış birçok inorganik, polimerik ve lipit bazlı nanopartikül sistemin ayrıntılı bir tartışmasını sunmaktadır.

References

  • [1] K. Çetin, K. Şarkaya, and A. Denizli, “Clinical applications and future clinical trials of the drug delivery system,” in Nanotechnology for Drug Delivery and Pharmaceuticals, R. P. Singh, J. Singh, K. R. Singh, and C. O. Adetunji, Eds., Elsevier, 2023, pp. 259–294. doi: 10.1016/B978-0-323-95325-2.00020-1.
  • [2] S. Logothetidis, “Nanotechnology: Principles and applications,” NanoScience and Technology, vol. 59, pp. 1–22, 2012, doi: 10.1007/978-3-642-22227-6_1.
  • [3] F. Akbar, M. Kolahdouz, S. Larimian, B. Radfar, and H. H. Radamson, “Graphene synthesis, characterization and its applications in nanophotonics, nanoelectronics, and nanosensing,” Journal of Materials Science: Materials in Electronics, vol. 26, no. 7, pp. 4347–4379, 2015, doi: 10.1007/S10854-015-2725-9.
  • [4] Ş. Çalık Bostancı, A. Boyraz, T. Şenel Zor, E. Zor, O. Aslan, and H. Bingöl, “Zenginleştirilmiş Öğrenme Ortamındaki Nanobilim ve Nanoteknoloji Eğitiminin Öğrencilerin Görüş ve Farkındalıklarına Etkisi,” Ahmet Keleşoğlu Eğitim Fakültesi Dergisi, vol. 5, no. 3, pp. 1058–1086, 2023, doi: 10.38151/akef.2023.99.
  • [5] D. Frank et al., “Overview of the role of nanotechnological innovations in the detection and treatment of solid tumors,” Int J Nanomedicine, p. 589, 2014, doi: 10.2147/IJN.S50941.
  • [6] H. Yavuz, K. Çetin, S. Akgönüllü, D. Battal, and A. Denizli, “Therapeutic protein and drug imprinted nanostructures as controlled delivery tools,” in Design and Development of New Nanocarriers, Alexandru Mihai Grumezescu, Ed., William Andrew Publishing, 2018, pp. 439–473. doi: 10.1016/B978-0-12-813627-0.00012-0.
  • [7] K. M. El-Say and H. S. El-Sawy, “Polymeric nanoparticles: Promising platform for drug delivery,” Int J Pharm, vol. 528, no. 1–2, pp. 675–691, 2017, doi: 10.1016/J.IJPHARM.2017.06.052.
  • [8] T. Patel, J. Zhou, J. M. Piepmeier, and W. M. Saltzman, “Polymeric nanoparticles for drug delivery to the central nervous system,” Adv Drug Deliv Rev, vol. 64, no. 7, pp. 701–705, 2012, doi: 10.1016/J.ADDR.2011.12.006.
  • [9] K. C. de Castro, J. M. Costa, and M. G. N. Campos, “Drug-loaded polymeric nanoparticles: a review,” Int J Polym Mater, vol. 71, no. 1, pp. 1–13, 2022, doi: 10.1080/00914037.2020.1798436.
  • [10] B. Shaqour, A. Samaro, B. Verleije, K. Beyers, C. Vervaet, and P. Cos, “Production of Drug Delivery Systems Using Fused Filament Fabrication: A Systematic Review,” Pharmaceutics, vol. 12, no. 6, p. 517, 2020, doi: 10.3390/PHARMACEUTICS12060517.
  • [11] F. Tao et al., “Chitosan-based drug delivery systems: From synthesis strategy to osteomyelitis treatment – A review,” Carbohydr Polym, vol. 251, p. 117063, 2021, doi: 10.1016/J.CARBPOL.2020.117063.
  • [12] E. Tamahkar, M. Bakhshpour, and A. Denizli, “Molecularly imprinted composite bacterial cellulose nanofibers for antibiotic release,” J Biomater Sci Polym Ed, vol. 30, no. 6, pp. 450–461, 2019, doi: 10.1080/09205063.2019.1580665.
  • [13] H. Li et al., “The protein corona and its effects on nanoparticle-based drug delivery systems,” Acta Biomater, vol. 129, pp. 57–72, 2021, doi: 10.1016/J.ACTBIO.2021.05.019.
  • [14] K. Çetin, S. Aslıyüce, N. Idil, and A. Denizli, “Preparation of lysozyme loaded gelatin microcryogels and investigation of their antibacterial properties,” J Biomater Sci Polym Ed, vol. 32, no. 2, pp. 189–204, 2021, doi: 10.1080/09205063.2020.1825303.
  • [15] Z. Zhang, S. Ai, Z. Yang, and X. Li, “Peptide-based supramolecular hydrogels for local drug delivery,” Adv Drug Deliv Rev, vol. 174, pp. 482–503, 2021, doi: 10.1016/J.ADDR.2021.05.010.
  • [16] F. Mo, K. Jiang, D. Zhao, Y. Wang, J. Song, and W. Tan, “DNA hydrogel-based gene editing and drug delivery systems,” Adv Drug Deliv Rev, vol. 168, pp. 79–98, 2021, doi: 10.1016/J.ADDR.2020.07.018.
  • [17] X. Li et al., “Recent advances in targeted delivery of non-coding RNA-based therapeutics for atherosclerosis,” Molecular Therapy, vol. 30, no. 10, pp. 3118–3132, 2022, doi: 10.1016/J.YMTHE.2022.07.018.
  • [18] S. Esthar et al., “An anti-inflammatory controlled nano drug release and pH-responsive poly lactic acid appended magnetic nanosphere for drug delivery applications,” Mater Today Commun, vol. 34, p. 105365, 2023, doi: 10.1016/J.MTCOMM.2023.105365.
  • [19] A. Behl, V. S. Parmar, S. Malhotra, and A. K. Chhillar, “Biodegradable diblock copolymeric PEG-PCL nanoparticles: Synthesis, characterization and applications as anticancer drug delivery agents,” Polymer (Guildf), vol. 207, p. 122901, 2020, doi: 10.1016/J.POLYMER.2020.122901.
  • [20] L. P. Jahromi, M. Ghazali, H. Ashrafi, and A. Azadi, “A comparison of models for the analysis of the kinetics of drug release from PLGA-based nanoparticles,” Heliyon, p. e03451, 2017, doi: 10.1016/j.heliyon.2020.e03451.
  • [21] L. Shi et al., “Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery,” Nanoscale, vol. 13, no. 24, pp. 10748–10764, 2021, doi: 10.1039/D1NR02065J.
  • [22] N. Mangiacotte, G. Prosperi-Porta, L. Liu, M. Dodd, and H. Sheardown, “Mucoadhesive Nanoparticles for Drug Delivery to the Anterior Eye,” Nanomaterials, vol. 10, no. 7, p. 1400, Jul. 2020, doi: 10.3390/NANO10071400.
  • [23] K. Çetin and A. Denizli, “Polyethylenimine-functionalized microcryogels for controlled release of diclofenac sodium,” React Funct Polym, vol. 170, p. 105125, 2022, doi: 10.1016/J.REACTFUNCTPOLYM.2021.105125.
  • [24] M. Bakhshpour, H. Yavuz, and A. Denizli, “Controlled release of mitomycin C from PHEMAH–Cu(II) cryogel membranes,” Artif Cells Nanomed Biotechnol, vol. 46, no. sup1, pp. 946–954, 2018, doi: 10.1080/21691401.2018.1439840.
  • [25] J. Luo et al., “Constructing a drug release model by central composite design to investigate the interaction between drugs and temperature-sensitive controlled release nanoparticles,” Eur J Pharm Biopharm, vol. 183, pp. 24–32, 2023, doi: 10.1016/J.EJPB.2022.12.009.
  • [26] D. D. Lasic and Y. Barenholz, “Liposomes: Past, Present, and Future,” Handbook of Nonmedical Applications of Liposomes: From Gene Delivery and Diagnostics to Ecology, pp. 299–316, 2019, doi: 10.1201/9780429291470-21.
  • [27] C. Has and P. Sunthar, “A comprehensive review on recent preparation techniques of liposomes,” J Liposome Res, vol. 30, no. 4, pp. 336–365, 2020, doi: 10.1080/08982104.2019.1668010.
  • [28] H. Nsairat et al., “Liposome bilayer stability: emphasis on cholesterol and its alternatives,” J Liposome Res, 2023, doi: 10.1080/08982104.2023.2226216.
  • [29] S. Pande, “Liposomes for drug delivery: review of vesicular composition, factors affecting drug release and drug loading in liposomes,” Artif Cells Nanomed Biotechnol, vol. 51, no. 1, pp. 428–440, 2023, doi: 10.1080/21691401.2023.2247036.
  • [30] A. Gonzalez Gomez and Z. Hosseinidoust, “Liposomes for Antibiotic Encapsulation and Delivery,” ACS Infect Dis, vol. 6, no. 5, pp. 896–908, 2020, doi: 10.1021/ACSINFECDIS.9B00357
  • [31] P. Kumari, S. Kaur, S. Sharma, and H. K. Kashyap, “Impact of amphiphilic molecules on the structure and stability of homogeneous sphingomyelin bilayer: Insights from atomistic simulations,” Journal of Chemical Physics, vol. 148, no. 16, 2018, doi: 10.1063/1.5021310/196112.
  • [32] P. Kesharwani, K. Kumari, R. Gururani, S. Jain, and S. Sharma, “Approaches to Address PK-PD Challenges of Conventional Liposome Formulation with Special Reference to Cancer, Alzheimer’s, Diabetes, and Glaucoma: An Update on Modified Liposomal Drug Delivery System,” Curr Drug Metab, vol. 23, no. 9, pp. 678–692, 2022, doi: 10.2174/1389200223666220609141459.
  • [33] S. Maritim, P. Boulas, and Y. Lin, “Comprehensive analysis of liposome formulation parameters and their influence on encapsulation, stability and drug release in glibenclamide liposomes,” Int J Pharm, vol. 592, p. 120051, 2021, doi: 10.1016/J.IJPHARM.2020.120051.
  • [34] L. van der Koog, T. B. Gandek, and A. Nagelkerke, “Liposomes and Extracellular Vesicles as Drug Delivery Systems: A Comparison of Composition, Pharmacokinetics, and Functionalization,” Adv Healthc Mater, vol. 11, no. 5, p. 2100639, 2022, doi: 10.1002/ADHM.202100639.
  • [35] S. Amatya et al., “Drug release testing methods of polymeric particulate drug formulations,” J Pharm Investig, vol. 43, no. 4, pp. 259–266, 2013, doi: 10.1007/S40005-013-0072-5/TABLES/2.
  • [36] S. Modi and B. D. Anderson, “Determination of drug release kinetics from nanoparticles: Overcoming pitfalls of the dynamic dialysis method,” Mol Pharm, vol. 10, no. 8, pp. 3076–3089, 2013, doi: 10.1021/MP400154A
  • [37] S. J. Wallace, J. Li, R. L. Nation, and B. J. Boyd, “Drug release from nanomedicines: Selection of appropriate encapsulation and release methodology,” Drug Deliv Transl Res, vol. 2, no. 4, pp. 284–292, 2012, doi: 10.1007/S13346-012-0064-4
  • [38] E. A. Grego et al., “Polymeric Nanoparticle-Based Vaccine Adjuvants and Delivery Vehicles,” Curr Top Microbiol Immunol, vol. 433, pp. 29–76, 2021, doi: 10.1007/82_2020_226
  • [39] R. Amato et al., “Liposome-Mediated Delivery Improves the Efficacy of Lisosan G against Retinopathy in Diabetic Mice,” Cells, vol. 12, no. 20, p. 2448, Oct. 2023, doi: 10.3390/CELLS12202448.
  • [40] A. Artzy-Schnirman et al., “Advanced human-relevant in vitro pulmonary platforms for respiratory therapeutics,” Adv Drug Deliv Rev, vol. 176, p. 113901, 2021, doi: 10.1016/J.ADDR.2021.113901.
  • [41] Y. Yamada, Satrialdi, M. Hibino, D. Sasaki, J. Abe, and H. Harashima, “Power of mitochondrial drug delivery systems to produce innovative nanomedicines,” Adv Drug Deliv Rev, vol. 154–155, pp. 187–209, 2020, doi: 10.1016/J.ADDR.2020.09.010.
  • [42] K. Thapa Magar, G. F. Boafo, X. Li, Z. Chen, and W. He, “Liposome-based delivery of biological drugs,” Chinese Chemical Letters, vol. 33, no. 2, pp. 587–596, 2022, doi: 10.1016/J.CCLET.2021.08.020.
  • [43] S. Jain, S. V. Deore, R. Ghadi, D. Chaudhari, K. Kuche, and S. S. Katiyar, “Tumor microenvironment responsive VEGF-antibody functionalized pH sensitive liposomes of docetaxel for augmented breast cancer therapy,” Mater Sci Eng C, vol. 121, p. 111832, 2021, doi: 10.1016/J.MSEC.2020.111832.
  • [44] R. Swami et al., “pH sensitive liposomes assisted specific and improved breast cancer therapy using co-delivery of SIRT1 shRNA and Docetaxel,” Mater Sci Eng C, vol. 120, p. 111664, 2021, doi: 10.1016/J.MSEC.2020.111664.
  • [45] S. Portilla, L. Fernández, D. Gutiérrez, A. Rodríguez, and P. García, “Encapsulation of the Antistaphylococcal Endolysin LysRODI in pH-Sensitive Liposomes,” Antibiotics vol. 9, no. 5, p. 242, 2020, doi: 10.3390/ANTIBIOTICS9050242.
  • [46] X. Ding et al., “Designing Aptamer-Gold Nanoparticle-Loaded pH-Sensitive Liposomes Encapsulate Morin for Treating Cancer,” Nanoscale Res Lett, vol. 15, no. 1, pp. 1–17, 2020, doi: 10.1186/S11671-020-03297-X.
  • [47] Y. Il Park et al., “pH-sensitive multi-drug liposomes targeting folate receptor β for efficient treatment of non-small cell lung cancer,” J Control Release, vol. 330, pp. 1–14, 2021, doi: 10.1016/J.JCONREL.2020.12.011.
  • [48] Y. Chen et al., “Co-delivery of doxorubicin and epacadostat via heparin coated pH-sensitive liposomes to suppress the lung metastasis of melanoma,” Int J Pharm, vol. 584, p. 119446, 2020, doi: 10.1016/J.IJPHARM.2020.119446.
  • [49] A. Ibrahim Bekraki, “Liposomes-and niosomes-based drug delivery systems for tuberculosis treatment,” in Nanotechnology Based Approaches for Tuberculosis Treatment, P. Kesharwani, Ed., Elsevier, 2020, pp. 107–122. doi: 10.1016/B978-0-12-819811-7.00007-2.
  • [50] S. Khoee and M. Yaghoobian, “Niosomes: a novel approach in modern drug delivery systems,” in Nanostructures for Drug Delivery, E. Andronescu and A. M. Grumezescu, Ed., Elsevier, 2017, pp. 207–237, doi: 10.1016/B978-0-323-46143-6.00006-3.
  • [51] E. Desmet, M. Van Gele, and J. Lambert, “Topically applied lipid- and surfactant-based nanoparticles in the treatment of skin disorders,” Expert Opin Drug Deliv, vol. 14, no. 1, pp. 109–122, 2017, doi: 10.1080/17425247.2016.1206073.
  • [52] M. Ning, Y. Guo, H. Pan, X. Chen, and Z. Gu, “Preparation, in Vitro and in Vivo Evaluation of Liposomal/Niosomal Gel Delivery Systems for Clotrimazole,” Drug Dev Ind Pharm, vol. 31, no. 4–5, pp. 375–383, 2005, doi: 10.1081/DDC-54315.
  • [53] G. Amoabediny et al., “Overview of preparation methods of polymeric and lipid-based (niosome, solid lipid, liposome) nanoparticles: A comprehensive review,” Int J Polym Mater, vol. 67, no. 6, pp. 383–400, 2018, doi: 10.1080/00914037.2017.1332623.
  • [54] J. Wen, M. Al Galloni, N. Yin, and A. Rashidinejad, “Liposomes and Niosomes,” Emulsion-based Systems for Delivery of Food Active Compounds: Formation, Application, Health and Safety, pp. 263–292, 2018, doi: 10.1002/9781119247159.CH10.
  • [55] F. Sakar et al., “Nano drug delivery systems and gamma radiation sterilization,” Pharm Dev Technol, vol. 22, no. 6, pp. 775–784, 2017, doi: 10.3109/10837450.2016.1163393.
  • [56] M. Nasr, S. Mansour, N. D. Mortada, and A. A. Elshamy, “Vesicular aceclofenac systems: A comparative study between liposomes and niosomes,” J Microencapsul, vol. 25, no. 7, pp. 499–512, 2008, doi: 10.1080/02652040802055411.
  • [57] S. J. Purohit, M. Tharmavaram, D. Rawtani, P. Prajapati, H. Pandya, and A. Dey, “Niosomes as cutting edge nanocarrier for controlled and targeted delivery of essential oils and biomolecules,” J Drug Deliv Sci Technol, vol. 73, p. 103438, 2022, doi: 10.1016/J.JDDST.2022.103438.
  • [58] P. Bhardwaj, P. Tripathi, R. Gupta, and S. Pandey, “Niosomes: A review on niosomal research in the last decade,” J Drug Deliv Sci Technol, vol. 56, p. 101581, 2020, doi: 10.1016/J.JDDST.2020.101581.
  • [59] G. P. Kumar and P. Rajeshwarrao, “Nonionic surfactant vesicular systems for effective drug delivery—an overview,” Acta Pharm Sin B, vol. 1, no. 4, pp. 208–219, 2011, doi: 10.1016/J.APSB.2011.09.002.
  • [60] A. Z. M. Khalifa and B. K. Abdul Rasool, “Optimized Mucoadhesive Coated Niosomes as a Sustained Oral Delivery System of Famotidine,” AAPS PharmSciTech, vol. 18, no. 8, pp. 3064–3075, 2017, doi: 10.1208/S12249-017-0780-7
  • [61] Z. Sezgin Bayindir, A. Beşikci, and N. Yüksel, “Paclitaxel-loaded niosomes for intravenous administration: pharmacokineticsand tissue distribution in rats,” Turk J Med Sci, vol. 45, no. 6, pp. 1403–1412, 2015, doi: 10.3906/sag-1408-129.
  • [62] H. A. Saafan et al., “Intratracheal Administration of Chloroquine-Loaded Niosomes Minimize Systemic Drug Exposure,” Pharmaceutics, vol. 13, no. 10, p. 1677, Oct. 2021, doi: 10.3390/PHARMACEUTICS13101677.
  • [63] M. Dehghani et al., “Triamcinolone-loaded self nano-emulsifying drug delivery systems for ocular use: An alternative to invasive ocular surgeries and injections,” Int J Pharm, vol. 653, p. 123840, Mar. 2024, doi: 10.1016/J.IJPHARM.2024.123840.
  • [64] Y. T. H. Tran, G. N. Tran, A. L. Hoang, and G. T. T. Vu, “Niosomes loaded with diclofenac for transdermal administration: Physico-chemical characterization, ex vivo and in vivo skin permeation studies,” J Appl Pharm Sci, vol. 10, no. 12, pp. 53–61, 2020, doi: 10.7324/JAPS.2020.101207.
  • [65] H. F. Salem, R. M. Kharshoum, H. A. Abou-Taleb, H. O. Farouk, and R. M. Zaki, “Fabrication and Appraisal of Simvastatin via Tailored Niosomal Nanovesicles for Transdermal Delivery Enhancement: In Vitro and In Vivo Assessment,” Pharmaceutics 2021, Vol. 13, Page 138, vol. 13, no. 2, p. 138, 2021, doi: 10.3390/PHARMACEUTICS13020138.
  • [66] S. S. Pandey et al., “Topical delivery of cyclosporine loaded tailored niosomal nanocarriers for improved skin penetration and deposition in psoriasis: Optimization, ex vivo and animal studies,” J Drug Deliv Sci Technol, vol. 63, p. 102441, 2021, doi: 10.1016/J.JDDST.2021.102441.
  • [67] A. Shah, S. Boldhane, A. Pawar, and C. Bothiraja, “Advanced development of a non-ionic surfactant and cholesterol material based niosomal gel formulation for the topical delivery of anti-acne drugs,” Mater Adv, vol. 1, no. 6, pp. 1763–1774, 2020, doi: 10.1039/D0MA00298D.
  • [68] K. Sridhar, B. S. Inbaraj, and B. H. Chen, “Recent Advances on Nanoparticle Based Strategies for Improving Carotenoid Stability and Biological Activity,” Antioxidants, vol. 10, no. 5, p. 713, 2021, doi: 10.3390/ANTIOX10050713.
  • [69] H. A. Gad, R. S. Elezaby, M. Mansour, and R. M. Hathout, “Novel Approaches of Solid Lipid Nanoparticles as Drug Carrier,” Nanoengineering of Biomaterials: Drug Delivery & Biomedical Applications, 2 Volumes, vol. 1–2, pp. 107–143, 2021, doi: 10.1002/9783527832095.CH5.
  • [70] J. Ye, Q. Wang, X. Zhou, and N. Zhang, “Injectable actarit-loaded solid lipid nanoparticles as passive targeting therapeutic agents for rheumatoid arthritis,” Int J Pharm, vol. 352, no. 1–2, pp. 273–279, 2008, doi: 10.1016/J.IJPHARM.2007.10.014.
  • [71] N. Osman, N. Devnarain, C. A. Omolo, V. Fasiku, Y. Jaglal, and T. Govender, “Surface modification of nano-drug delivery systems for enhancing antibiotic delivery and activity,” Wiley Interdiscip Rev Nanomed Nanobiotechnol, vol. 14, no. 1, p. e1758, Jan. 2022, doi: 10.1002/WNAN.1758.
  • [72] Y. Mirchandani, V. B. Patravale, and S. Brijesh, “Solid lipid nanoparticles for hydrophilic drugs,” J Control Release, vol. 335, pp. 457–464, 2021, doi: 10.1016/J.JCONREL.2021.05.032.
  • [73] S. Bertoni, B. Albertini, J. Ronowicz-Pilarczyk, and N. Passerini, “Tailoring the release of drugs having different water solubility by hybrid polymer-lipid microparticles with a biphasic structure,” Eur J Pharm Biopharm, vol. 190, pp. 171–183, 2023, doi: 10.1016/J.EJPB.2023.07.017.
  • [74] N. K. Garg, B. Singh, R. K. Tyagi, G. Sharma, and O. P. Katare, “Effective transdermal delivery of methotrexate through nanostructured lipid carriers in an experimentally induced arthritis model,” Colloids Surf B Biointerfaces, vol. 147, pp. 17–24, 2016, doi: 10.1016/J.COLSURFB.2016.07.046.
  • [75] M. J. Ansari et al., “Enhanced oral bioavailability of insulin-loaded solid lipid nanoparticles: pharmacokinetic bioavailability of insulin-loaded solid lipid nanoparticles in diabetic rats,” Drug Deliv, vol. 23, no. 6, pp. 1972–1979, 2016, doi: 10.3109/10717544.2015.1039666.
  • [76] R. Arora, S. S. Katiyar, V. Kushwah, and S. Jain, “Solid lipid nanoparticles and nanostructured lipid carrier-based nanotherapeutics in treatment of psoriasis: a comparative study,” Expert Opin Drug Deliv, vol. 14, no. 2, pp. 165–177, 2017, doi: 10.1080/17425247.2017.1264386.
  • [77] M. Chountoulesi and C. Demetzos, “Promising Nanotechnology Approaches in Treatment of Autoimmune Diseases of Central Nervous System,” Brain Sciences, vol. 10, no. 6, p. 338, 2020, doi: 10.3390/BRAINSCI10060338.
  • [78] A. Schröfel, G. Kratošová, I. Šafařík, M. Šafaříková, I. Raška, and L. M. Shor, “Applications of biosynthesized metallic nanoparticles – A review,” Acta Biomater, vol. 10, no. 10, pp. 4023–4042, 2014, doi: 10.1016/J.ACTBIO.2014.05.022.
  • [79] H. M. Yadav et al., “Metal oxide-based composites: synthesis and characterization,” in Advances in Metal Oxides and Their Composites for Emerging Applications, S. D. Delekar, Ed., Elsevier, 2022, pp. 57–96. doi: 10.1016/B978-0-323-85705-5.00010-5.
  • [80] M. İ. Özgün, A. B. Batıbay, B. Ünal, Y. R. Eker, and A. Terlemez, “Investigation of the Use of TiO2 Obtained from Endodontic NiTi Files in Dye-Sensitized Solar Cells,” Necmettin Erbakan University Journal of Science and Engineering, vol. 5, no. 1, pp. 1–8, 2023, doi: 10.47112/neufmbd.2023.4.
  • [81] E. R. Cooper, “Nanoparticles: A personal experience for formulating poorly water soluble drugs,” J Control Release, vol. 141, no. 3, pp. 300–302, 2010, doi: 10.1016/J.JCONREL.2009.10.006.
  • [82] S. Vijayaram et al., “Applications of Green Synthesized Metal Nanoparticles — a Review,” Biological Trace Element Research 2023 202:1, vol. 202, no. 1, pp. 360–386, 2023, doi: 10.1007/S12011-023-03645-9.
  • [83] K. Thanki, R. P. Gangwal, A. T. Sangamwar, and S. Jain, “Oral delivery of anticancer drugs: Challenges and opportunities,” J Control Release, vol. 170, no. 1, pp. 15–40, 2013, doi: 10.1016/J.JCONREL.2013.04.020.
  • [84] V. Chandrakala, V. Aruna, and G. Angajala, “Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems,” Emergent Materials 2021 5:6, vol. 5, no. 6, pp. 1593–1615, 2022, doi: 10.1007/S42247-021-00335-X.
  • [85] M. D. K. Glasgow and M. B. Chougule, “Recent Developments in Active Tumor Targeted Multifunctional Nanoparticles for Combination Chemotherapy in Cancer Treatment and Imaging,” J Biomed Nanotechnol, vol. 11, no. 11, pp. 1859–18982015, doi: 10.1166/JBN.2015.2145.
  • [86] E. Alphandéry, “Natural Metallic Nanoparticles for Application in Nano-Oncology,” Int J Mol Sci, vol. 21, no. 12, p. 4412, 2020, doi: 10.3390/IJMS21124412.
  • [87] E. R. Evans, P. Bugga, V. Asthana, and R. Drezek, “Metallic nanoparticles for cancer immunotherapy,” Materials Today, vol. 21, no. 6, pp. 673–685, 2018, doi: 10.1016/J.MATTOD.2017.11.022.
  • [88] Neha Desai, M. Momin, T. Khan, S. Gharat, R. S. Ningthoujam, and A. Omri, “Metallic nanoparticles as drug delivery system for the treatment of cancer,” Expert Opin Drug Deliv, vol. 18, no. 9, pp. 1261–1290, 2021, doi: 10.1080/17425247.2021.1912008.
  • [89] X. F. Zhang, Z. G. Liu, W. Shen, and S. Gurunathan, “Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches,” Int J Mol Sci 2016, Vol. 17, Page 1534, vol. 17, no. 9, p. 1534, 2016, doi: 10.3390/IJMS17091534.
  • [90] S. Prakash, D. Nallathamby, X.-H. N. Xu, and P. D. Nallathamby, “Study of cytotoxic and therapeutic effects of stable and purified silver nanoparticles on tumor cells,” Nanoscale, vol. 2, no. 6, pp. 942–952, 2010, doi: 10.1039/C0NR00080A.
  • [91] S. Haque, C. C. Norbert, R. Acharyya, S. Mukherjee, M. Kathirvel, and C. R. Patra, “Biosynthesized silver nanoparticles for cancer therapy and in vivo bioimaging,” Cancers (Basel), vol. 13, no. 23, p. 6114, 2021, doi: 10.3390/CANCERS13236114/S1.
  • [92] M. M. Rageh, R. H. El-Gebaly, and M. M. Afifi, “Antitumor activity of silver nanoparticles in Ehrlich carcinoma-bearing mice,” Naunyn Schmiedebergs Arch Pharmacol, vol. 391, no. 12, pp. 1421–1430, 2018, doi: 10.1007/S00210-018-1558-5/TABLES/1.
  • [93] T. Shi, X. Sun, and Q.-Y. He, “Cytotoxicity of Silver Nanoparticles Against Bacteria and Tumor Cells,” Curr Protein Pept Sci, vol. 18, no. 999, pp. 1–1, 2016, doi: 10.2174/1389203718666161108092149.
  • [94] M. Irulappan Sriram, S. Barath Mani Kanth, K. Kalishwaralal, S. Gurunathan, and M. Irulappan Sriram Selvaraj Barath Mani Kanth Kalimuthu Kalishwaralal Sangiliyandi gurunathan, “Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model,” Int J Nanomedicine, vol. 5, no. 1, pp. 753–762, 2010, doi: 10.2147/IJN.S11727.
  • [95] B. Chakraborty et al., “Immunomodulatory properties of silver nanoparticles contribute to anticancer strategy for murine fibrosarcoma,” Cell Mol Immunol, vol. 13, no. 2, pp. 191–205, 2015, doi: 10.1038/cmi.2015.05.
  • [96] B. Lee, M. J. Lee, S. J. Yun, K. Kim, I. H. Choi, and S. Park, “Silver nanoparticles induce reactive oxygen species-mediated cell cycle delay and synergistic cytotoxicity with 3-bromopyruvate in Candida albicans, but not in Saccharomyces cerevisiae,” Int J Nanomedicine, vol. 14, p. 4801, 2019, doi: 10.2147/IJN.S205736.
  • [97] R. R. Miranda, I. Sampaio, and V. Zucolotto, “Exploring silver nanoparticles for cancer therapy and diagnosis,” Colloids Surf B Biointerfaces, vol. 210, p. 112254, 2022, doi: 10.1016/J.COLSURFB.2021.112254.
  • [98] A. Fehaid and A. Taniguchi, “Silver nanoparticles reduce the apoptosis induced by tumor necrosis factor-α,” Sci Technol Adv Mater, vol. 19, no. 1, pp. 526–534, 2018, doi: 10.1080/14686996.2018.1487761.
  • [99] M. R. Garcia Garcia et al., “Silver nanoparticles induce a non-immunogenic tumor cell death,” J Immunotoxicol, vol. 20, no. 1, 2023, doi: 10.1080/1547691X.2023.2175078.
  • [100] N. Y. Elamin, A. Modwi, W. Abd El-Fattah, and A. Rajeh, “Synthesis and structural of Fe3O4 magnetic nanoparticles and its effect on the structural optical, and magnetic properties of novel Poly(methyl methacrylate)/ Polyaniline composite for electromagnetic and optical applications,” Opt Mater (Amst), vol. 135, p. 113323, Jan. 2023, doi: 10.1016/J.OPTMAT.2022.113323.
  • [101] T. Vangijzegem, D. Stanicki, and S. Laurent, “Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics,” Expert Opin Drug Deliv, vol. 16, no. 1, pp. 69–78, Jan. 2019, doi: 10.1080/17425247.2019.1554647.
  • [102] H. N. Pham et al., “Magnetic inductive heating of organs of mouse models treated by copolymer coated Fe3O4 nanoparticles*,” Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 8, no. 2, p. 025013, 2017, doi: 10.1088/2043-6254/AA5E23.
  • [103] S. Ayyanaar et al., “ROS-responsive chitosan coated magnetic iron oxide nanoparticles as potential vehicles for targeted drug delivery in cancer therapy,” Int J Nanomedicine, vol. 15, pp. 3333–3346, 2020, doi: 10.2147/IJN.S249240.
  • [104] S. O. Aisida, P. A. Akpa, I. Ahmad, T. kai Zhao, M. Maaza, and F. I. Ezema, “Bio-inspired encapsulation and functionalization of iron oxide nanoparticles for biomedical applications,” Eur Polym J, vol. 122, p. 109371, 2020, doi: 10.1016/J.EURPOLYMJ.2019.109371.
  • [105] M. Suciu et al., “Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements,” Beilstein J Nanotechnol 11:94, vol. 11, no. 1, pp. 1092–1109, 2020, doi: 10.3762/BJNANO.11.94.
  • [106] S. Ayyanaar et al., “Iron oxide nanoparticle core-shell magnetic microspheres: Applications toward targeted drug delivery,” Nanomedicine, vol. 24, p. 102134, 2020, doi: 10.1016/J.NANO.2019.102134.
  • [107] K. Çetin, F. Denizli, H. Yavuz, D. Türkmen, and A. Denizli, “Magnetic Nanoparticles and Their Biomedical Applications,” Hacettepe J Biol Chem, pp. 143–152, 2019, doi: 10.15671/hjbc.622644.
  • [108] E. C. Dreaden, L. A. Austin, M. A. MacKey, and M. A. El-Sayed, “Size matters: gold nanoparticles in targeted cancer drug delivery,” http://dx.doi.org/10.4155/tde.12.21, vol. 3, no. 4, pp. 457–478, 2012, doi: 10.4155/TDE.12.21.
  • [109] O. Veiseh et al., “Inhibition of Tumor-Cell Invasion with Chlorotoxin-Bound Superparamagnetic Nanoparticles,” Small, vol. 5, no. 2, pp. 256–264, 2009, doi: 10.1002/SMLL.200800646.
  • [110] X. Zhang, “Gold Nanoparticles: Recent Advances in the Biomedical Applications,” Cell Biochem Biophys, vol. 72, no. 3, pp. 771–775, 2015, doi: 10.1007/S12013-015-0529-4/FIGURES/2.
  • [111] K. Hori et al., “Intracellular delivery and photothermal therapeutic effects of polyhistidine peptide-modified gold nanoparticles,” J Biotechnol, vol. 354, pp. 34–44, 2022, doi: 10.1016/J.JBIOTEC.2022.06.006.
  • [112] S. Zhang and Y. Cheng, “Boronic acid-engineered gold nanoparticles for cytosolic protein delivery,” Biomater Sci, vol. 8, no. 13, pp. 3741–3750, 2020, doi: 10.1039/D0BM00679C.
  • [113] S. Pouya, M. Kazemi, S. Pouya, A. Dehshahri, and Z. Sobhani, “Evaluation of CTAB coated gold nanoparticles as a potential carrier for gene delivery,” Trends in Pharmaceutical Sciences, vol. 8, no. 3, pp. 147–154, 2022, doi: 10.30476/TIPS.2022.95505.1146.
  • [114] X. Xu, Y. Liu, Y. Yang, J. Wu, M. Cao, and L. Sun, “One-pot synthesis of functional peptide-modified gold nanoparticles for gene delivery,” Colloids Surf A Physicochem Eng Asp, vol. 640, p. 128491, 2022, doi: 10.1016/J.COLSURFA.2022.128491.
  • [115] L. Bai, J. Zhao, M. Wang, Y. Feng, and J. Ding, “Matrix-Metalloproteinase-Responsive Gene Delivery Surface for Enhanced in Situ Endothelialization,” ACS Appl Mater Interfaces, vol. 12, no. 36, pp. 40121–40132, 2020, doi: 10.1021/ACSAMI.0C11971
  • [116] D. Zhang et al., “HSA-templated self-generation of gold nanoparticles for tumor vaccine delivery and combinational therapy,” J Mater Chem B, vol. 10, no. 42, pp. 8750–8759, 2022, doi: 10.1039/D2TB01483A.
  • [117] S. Thambiraj, S. Hema, and D. Ravi Shankaran, “Functionalized gold nanoparticles for drug delivery applications,” Mater Today Proc, vol. 5, no. 8, pp. 16763–16773, 2018, doi: 10.1016/J.MATPR.2018.06.030.
  • [118] N. P. Singh, V. K. Gupta, and A. P. Singh, “Graphene and carbon nanotube reinforced epoxy nanocomposites: A review,” Polymer (Guildf), vol. 180, p. 121724, 2019, doi: 10.1016/J.POLYMER.2019.121724.
  • [119] T. A. Land, T. Michely, R. J. Behm, J. C. Hemminger, and G. Comsa, “STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition,” Surf Sci, vol. 264, no. 3, pp. 261–270, 1992, doi: 10.1016/0039-6028(92)90183-7.
  • [120] M. H. Islam et al., “Graphene and CNT-Based Smart Fiber-Reinforced Composites: A Review,” Adv Funct Mater, vol. 32, no. 40, p. 2205723, 2022, doi: 10.1002/ADFM.202205723.
  • [121] F. Lahourpour, A. Boochani, S. S. Parhizgar, and S. M. Elahi, “Structural, electronic and optical properties of graphene-like nano-layers MoX2(X:S,Se,Te): DFT study,” J Theor Appl Phys, vol. 13, no. 3, pp. 191–201, 2019, doi: 10.1007/S40094-019-0333-4.
  • [122] H. Chang and H. Wu, “Graphene-Based Nanomaterials: Synthesis, Properties, and Optical and Optoelectronic Applications,” Adv Funct Mater, vol. 23, no. 16, pp. 1984–1997, 2013, doi: 10.1002/ADFM.201202460.
  • [123] D. Maiti, X. Tong, X. Mou, and K. Yang, “Carbon-Based Nanomaterials for Biomedical Applications: A Recent Study,” Front Pharmacol, vol. 9, p. 430833, 2019, doi: 10.3389/FPHAR.2018.01401/BIBTEX.
  • [124] N. F. Chiu, T. Y. Huang, H. C. Lai, and K. C. Liu, “Graphene oxide-based SPR biosensor chip for immunoassay applications,” Nanoscale Res Lett, vol. 9, no. 1, p. 445, 2014, doi: 10.1186/1556-276X-9-445.
  • [125] X. Huang, F. Liu, P. Jiang, and T. Tanaka, “Is graphene oxide an insulating material?,” Proceedings of IEEE International Conference on Solid Dielectrics, ICSD, pp. 904–907, 2013, doi: 10.1109/ICSD.2013.6619690.
  • [126] İ. Akın, E. Zor, and H. Bingöl, “GO@Fe3O4 Katkılı Polimerik Kompozit Membranların Hazırlanması ve Karakterizasyonu,” Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, vol. 5, no. 2, pp. 38–52, 2023, doi: 10.47112/neufmbd.2023.8.
  • [127] N. Rao, R. Singh, and L. Bashambu, “Carbon-based nanomaterials: Synthesis and prospective applications,” Mater Today Proc, vol. 44, pp. 608–614, 2021, doi: 10.1016/J.MATPR.2020.10.593.
  • [128] S. Zheng, J. Xiong, L. Wang, D. Zhai, Y. Xu, and F. Lin, “e-Graphene: A Computational Platform for the Prediction of Graphene-Based Drug Delivery System by Quantum Genetic Algorithm and Cascade Protocol,” Front Chem, vol. 9, p. 664355, 2021, doi: 10.3389/FCHEM.2021.664355/BIBTEX.
  • [129] Z. Guo et al., “Surface Functionalization of Graphene-Based Materials: Biological Behavior, Toxicology, and Safe-By-Design Aspects,” Adv Biol, vol. 5, no. 9, p. 2100637, 2021, doi: 10.1002/ADBI.202100637.
  • [130] J. Jampilek and K. Kralova, “Advances in Drug Delivery Nanosystems Using Graphene-Based Materials and Carbon Nanotubes,” Materials, vol. 14, no. 5, p. 1059, 2021, doi: 10.3390/MA14051059.
  • [131] R. Jha, A. Singh, P. K. Sharma, and N. K. Fuloria, “Smart carbon nanotubes for drug delivery system: A comprehensive study,” J Drug Deliv Sci Technol, vol. 58, p. 101811, 2020, doi: 10.1016/J.JDDST.2020.101811.
  • [132] A. T. Lawal, “Recent developments in electrochemical sensors based on graphene for bioanalytical applications,” Sens Biosensing Res, vol. 41, p. 100571, 2023, doi: 10.1016/J.SBSR.2023.100571.
  • [133] X. Zhang et al., “Understanding the Mechanical and Conductive Properties of Carbon Nanotube Fibers for Smart Electronics,” Adv Mater, vol. 32, no. 5, p. 1902028, 2020, doi: 10.1002/ADMA.201902028.
  • [134] H. Dai, “Carbon nanotubes: opportunities and challenges,” Surf Sci, vol. 500, no. 1–3, pp. 218–241, 2002, doi: 10.1016/S0039-6028(01)01558-8.
  • [135] A. V. V. V. Ravi Kiran, G. Kusuma Kumari, and P. T. Krishnamurthy, “Carbon nanotubes in drug delivery: Focus on anticancer therapies,” J Drug Deliv Sci Technol, vol. 59, p. 101892, 2020, doi: 10.1016/J.JDDST.2020.101892.
  • [136] M. Barani, M. Khatami, B. Behnam, R. Rajendram, P. Kesharwani, and A. Sahebkar, “Aptamer-conjugated carbon nanotubes or graphene for targeted cancer therapy and diagnosis,” Aptamers Engineered Nanocarriers for Cancer Therapy, pp. 277–294, 2023, doi: 10.1016/B978-0-323-85881-6.00018-X.
  • [137] L. Meng, X. Zhang, Q. Lu, Z. Fei, and P. J. Dyson, “Single walled carbon nanotubes as drug delivery vehicles: Targeting doxorubicin to tumors,” Biomaterials, vol. 33, no. 6, pp. 1689–1698, 2012, doi: 10.1016/J.BIOMATERIALS.2011.11.004.
  • [138] R. Chadar, O. Afzal, S. M. Alqahtani, and P. Kesharwani, “Carbon nanotubes as an emerging nanocarrier for the delivery of doxorubicin for improved chemotherapy,” Colloids Surf B Biointerfaces, vol. 208, p. 112044, 2021, doi: 10.1016/J.COLSURFB.2021.112044.
  • [139] M. Zarghami Dehaghani et al., “Theoretical Encapsulation of Fluorouracil (5-FU) Anti-Cancer Chemotherapy Drug into Carbon Nanotubes (CNT) and Boron Nitride Nanotubes (BNNT),” Molecules, vol. 26, no. 16, p. 4920, 2021, doi: 10.3390/MOLECULES26164920.
  • [140] F. F. Contreras-Torres, D. Salas-Treviño, A. Soto-Domínguez, and G. De Jesús García-Rivas, “Carbon Nanotubes in Tumor-Targeted Chemotherapeutic Formulations: A Review of Opportunities and Challenges,” ACS Appl Nano Mater, vol. 5, no. 7, pp. 8649–8679, 2022, doi: 10.1021/ACSANM.2C01118.
  • [141] S. Eskandari, A. Barzegar, and K. Mahnam, “Absorption of daunorubicin and etoposide drugs by hydroxylated and carboxylated carbon nanotube for drug delivery: theoretical and experimental studies,” J Biomol Struct Dyn, vol. 40, no. 20, pp. 10057–10064, 2022, doi: 10.1080/07391102.2021.1938232.
  • [142] M. Dahri, H. Akbarialiabad, A. M. Jahromi, and R. Maleki, “Loading and release of cancer chemotherapy drugs utilizing simultaneous temperature and pH-responsive nanohybrid,” BMC Pharmacol Toxicol, vol. 22, no. 1, pp. 1–10, 2021, doi: 10.1186/S40360-021-00508-8.
  • [143] S. Karimzadeh, B. Safaei, and T. C. Jen, “Theorical investigation of adsorption mechanism of doxorubicin anticancer drug on the pristine and functionalized single-walled carbon nanotube surface as a drug delivery vehicle: A DFT study,” J Mol Liq, vol. 322, p. 114890, 2021, doi: 10.1016/J.MOLLIQ.2020.114890.
  • [144] H. Zare et al., “Carbon nanotubes: Smart drug/gene delivery carriers,” Int J Nanomedicine, vol. 16, pp. 1681–1706, 2021, doi: 10.2147/IJN.S299448.
  • [145] Z. Wang, J. Tao, J. Chen, and Q. Liu, “Carbon Nanotubes Enhance the Chemotherapy Sensitivity of Tumors with Multidrug Resistance,” Lett Drug Des Discov, vol. 17, no. 4, pp. 366–378, 2019, doi: 10.2174/1570180816666190405110858.
  • [146] S. K. Debnath and R. Srivastava, “Drug Delivery With Carbon-Based Nanomaterials as Versatile Nanocarriers: Progress and Prospects,” Front Nanotechnol, vol. 3, p. 644564, 2021, doi: 10.3389/FNANO.2021.644564.
  • [147] A. Khoshoei, E. Ghasemy, F. Poustchi, M. A. Shahbazi, and R. Maleki, “Engineering the pH-Sensitivity of the Graphene and Carbon Nanotube Based Nanomedicines in Smart Cancer Therapy by Grafting Trimetyl Chitosan,” Pharm Res, vol. 37, no. 8, pp. 1–13, 2020, doi: 10.1007/S11095-020-02881-1.
  • [148] W. Gao et al., “3D CNT/MXene microspheres for combined photothermal/photodynamic/chemo for cancer treatment,” Front Bioeng Biotechnol, vol. 10, p. 996177, 2022, doi: 10.3389/FBIOE.2022.996177.
  • [149] K. de Almeida Barcelos, J. Garg, D. C. Ferreira Soares, A. L. B. de Barros, Y. Zhao, and L. Alisaraie, “Recent advances in the applications of CNT-based nanomaterials in pharmaceutical nanotechnology and biomedical engineering,” J Drug Deliv Sci Technol, vol. 87, p. 104834, 2023, doi: 10.1016/J.JDDST.2023.104834.
  • [150] M. Das et al., “Carbon nanotube embedded cyclodextrin polymer derived injectable nanocarrier: A multiple faceted platform for stimulation of multi-drug resistance reversal,” Carbohydr Polym, vol. 247, p. 116751, 2020, doi: 10.1016/J.CARBPOL.2020.116751.
  • [151] L. Paseta et al., “Functionalized graphene-based polyamide thin film nanocomposite membranes for organic solvent nanofiltration,” Sep Purif Technol, vol. 247, p. 116995, 2020, doi: 10.1016/J.SEPPUR.2020.116995.
  • [152] W. Chen et al., “Construction of Aptamer-siRNA Chimera/PEI/5-FU/Carbon Nanotube/Collagen Membranes for the Treatment of Peritoneal Dissemination of Drug-Resistant Gastric Cancer,” Adv Healthc Mater, vol. 9, no. 21, p. 2001153, 2020, doi: 10.1002/ADHM.202001153.
  • [153] A. Yaghoubi and A. Ramazani, “Anticancer DOX delivery system based on CNTs: Functionalization, targeting and novel technologies,” J Control Release, vol. 327, pp. 198–224, Nov. 2020, doi: 10.1016/J.JCONREL.2020.08.001.
  • [154] W. A. A. Mohamed et al., “Quantum dots synthetization and future prospect applications,” Nanotechnol Rev, vol. 10, no. 1, pp. 1926–1940, 2021, doi: 10.1515/NTREV-2021-0118.
  • [155] M. Çadırcı, K. Şarkaya, and A. Allı, “Dielectric properties of CdSe quantum dots-loaded cryogel for potential future electronic applications,” Mater Sci Semicond Process, vol. 119, p. 105269, 2020, doi: 10.1016/J.MSSP.2020.105269.
  • [156] C. T. Matea et al., “Quantum dots in imaging, drug delivery and sensor applications,” Int J Nanomedicine, vol. 12, pp. 5421–5431, 2017, doi: 10.2147/IJN.S138624.
  • [157] T. Sahu, Y. K. Ratre, S. Chauhan, L. V. K. S. Bhaskar, M. P. Nair, and H. K. Verma, “Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science,” J Drug Deliv Sci Technol, vol. 63, p. 102487, 2021, doi: 10.1016/J.JDDST.2021.102487.
  • [158] A. K. Babu et al., “An overview of polymer surface coated synthetic quantum dots as therapeutics and sensors applications,” Prog Biophys Mol Biol, vol. 184, pp. 1–12, 2023, doi: 10.1016/J.PBIOMOLBIO.2023.08.004.
  • [159] P. Sharma, V. Jain, and M. Tailang, “Advancement of Nanocarrier-Based Engineering for Specific Drug Delivery for Cancer Therapy,” In Targeted Cancer Therapy in Biomedical Engineering Singapore: Springer Nature Singapore, pp. 465–486, 2023, doi: 10.1007/978-981-19-9786-0_13.
  • [160] P. K. Singh, S. Singh, K. Sachan, V. Verma, and S. Garg, “Recent Development and Advancement in Quantum Dots in Pharmaceutical and Biomedical Fields for the Delivery of Drugs,” Curr Nanosci, vol. 20, no. 4, pp. 425–435, 2023, doi: 10.2174/1573413719666230517111856.
  • [161] S. Khizar et al., “Nanocarriers based novel and effective drug delivery system,” Int J Pharm, vol. 632, p. 122570, 2023, doi: 10.1016/J.IJPHARM.2022.122570.
  • [162] U. Badıllı, F. Mollarasouli, N. K. Bakirhan, Y. Ozkan, and S. A. Ozkan, “Role of quantum dots in pharmaceutical and biomedical analysis, and its application in drug delivery,” TrAC Trends in Analytical Chemistry, vol. 131, p. 116013, 2020, doi: 10.1016/J.TRAC.2020.116013.
  • [163] Y. Deng et al., “Application of the Nano-Drug Delivery System in Treatment of Cardiovascular Diseases,” Front Bioeng Biotechnol, vol. 7, p. 513812, 2020, doi: 10.3389/FBIOE.2019.00489/BIBTEX.
  • [164] M. Sohail et al., “Nanocarrier-based Drug Delivery System for Cancer Therapeutics: A Review of the Last Decade,” Curr Med Chem, vol. 28, no. 19, pp. 3753–3772, 2020, doi: 10.2174/0929867327666201005111722.
  • [165] A. A. H. Abdellatif et al., “Nano-scale delivery: A comprehensive review of nano-structured devices, preparative techniques, site-specificity designs, biomedical applications, commercial products, and references to safety, cellular uptake, and organ toxicity,” Nanotechnol Rev, vol. 10, no. 1, pp. 1493–1559, 2021, doi: 10.1515/NTREV-2021-0096
  • [166] M. Pourmadadi et al., “Letrozole-Loaded Nano-formulations as a Drug Delivery System for Cancer Therapy: Recent Developments,” BioNanoScience 2023 13:4, vol. 13, no. 4, pp. 1593–1608, 2023, doi: 10.1007/S12668-023-01196-W.
  • [167] M. D. Villalva, V. Agarwal, M. Ulanova, P. S. Sachdev, and N. Braidy, “Quantum dots as a theranostic approach in Alzheimer’s disease: a systematic review,” Nanomedicine, vol. 16, no. 18, pp. 1595–1611, Jun. 2021, doi: 10.2217/NNM-2021-0104.
  • [168] X. Lu, X. Hou, H. Tang, X. Yi, and J. Wang, “A High-Quality CdSe/CdS/ZnS Quantum-Dot-Based FRET Aptasensor for the Simultaneous Detection of Two Different Alzheimer’s Disease Core Biomarkers,” Nanomaterials, vol. 12, no. 22, p. 4031, 2022, doi: 10.3390/NANO12224031.
  • [169] E. Morales-Narváez, H. Montón, A. Fomicheva, and A. Merkoçi, “Signal enhancement in antibody microarrays using quantum dots nanocrystals: Application to potential Alzheimer’s disease biomarker screening,” Anal Chem, vol. 84, no. 15, pp. 6821–6827, 2012, doi: 10.1021/AC301369E.
  • [170] S. Yasamineh et al., “A state-of-the-art review on the recent advances of niosomes as a targeted drug delivery system,” Int J Pharm, vol. 624, p. 121878, Aug. 2022, doi: 10.1016/J.IJPHARM.2022.121878.
  • [171] A. Kumar et al., “Current and Future Nano-Carrier-Based Approaches in the Treatment of Alzheimer’s Disease,” Brain Sciences, vol. 13, no. 2, p. 213, 2023, doi: 10.3390/BRAINSCI13020213.
  • [172] A. A. Khafoor, A. S. Karim, and S. M. Sajadi, “Recent progress in synthesis of nano based liposomal drug delivery systems: A glance to their medicinal applications,” Results in Surfaces and Interfaces, vol. 11, p. 100124, 2023, doi: 10.1016/J.RSURFI.2023.100124.
  • [173] S. S. Qi, J. H. Sun, H. H. Yu, and S. Q. Yu, “Co-delivery nanoparticles of anti-cancer drugs for improving chemotherapy efficacy,” Drug Deliv, vol. 24, no. 1, pp. 1909–1926, 2017, doi: 10.1080/10717544.2017.1410256.
  • [174] M. X. Zhao and B. J. Zhu, “The Research and Applications of Quantum Dots as Nano-Carriers for Targeted Drug Delivery and Cancer Therapy,” Nanoscale Res Lett, vol. 11, no. 1, pp. 1–9, 2016, doi: 10.1186/S11671-016-1394-9/FIGURES/8.
  • [175] M. A. Jahangir et al., “Quantum Dots: Next Generation of Smart Nano-Systems,” Pharm Nanotechnol, vol. 7, no. 3, pp. 234–245, 2019, doi: 10.2174/2211738507666190429113906.
  • [176] C. E. Probst, P. Zrazhevskiy, V. Bagalkot, and X. Gao, “Quantum dots as a platform for nanoparticle drug delivery vehicle design,” Adv Drug Deliv Rev, vol. 65, no. 5. pp. 703–718, 2013. doi: 10.1016/j.addr.2012.09.036.
There are 176 citations in total.

Details

Primary Language English
Subjects Material Design and Behaviors
Journal Section Articles
Authors

Kemal Çetin 0000-0002-7393-7377

Koray Şarkaya 0000-0003-0177-5134

Publication Date October 23, 2024
Submission Date April 16, 2024
Acceptance Date May 28, 2024
Published in Issue Year 2024

Cite

APA Çetin, K., & Şarkaya, K. (2024). Drug Delivery Based on Nanoparticulate Systems. Duzce University Journal of Science and Technology, 12(4), 1993-2015. https://doi.org/10.29130/dubited.1469423
AMA Çetin K, Şarkaya K. Drug Delivery Based on Nanoparticulate Systems. DÜBİTED. October 2024;12(4):1993-2015. doi:10.29130/dubited.1469423
Chicago Çetin, Kemal, and Koray Şarkaya. “Drug Delivery Based on Nanoparticulate Systems”. Duzce University Journal of Science and Technology 12, no. 4 (October 2024): 1993-2015. https://doi.org/10.29130/dubited.1469423.
EndNote Çetin K, Şarkaya K (October 1, 2024) Drug Delivery Based on Nanoparticulate Systems. Duzce University Journal of Science and Technology 12 4 1993–2015.
IEEE K. Çetin and K. Şarkaya, “Drug Delivery Based on Nanoparticulate Systems”, DÜBİTED, vol. 12, no. 4, pp. 1993–2015, 2024, doi: 10.29130/dubited.1469423.
ISNAD Çetin, Kemal - Şarkaya, Koray. “Drug Delivery Based on Nanoparticulate Systems”. Duzce University Journal of Science and Technology 12/4 (October 2024), 1993-2015. https://doi.org/10.29130/dubited.1469423.
JAMA Çetin K, Şarkaya K. Drug Delivery Based on Nanoparticulate Systems. DÜBİTED. 2024;12:1993–2015.
MLA Çetin, Kemal and Koray Şarkaya. “Drug Delivery Based on Nanoparticulate Systems”. Duzce University Journal of Science and Technology, vol. 12, no. 4, 2024, pp. 1993-15, doi:10.29130/dubited.1469423.
Vancouver Çetin K, Şarkaya K. Drug Delivery Based on Nanoparticulate Systems. DÜBİTED. 2024;12(4):1993-2015.