Research Article
BibTex RIS Cite

Nanokil ile Takviye Edilmiş Mg Kompozitlerin Mikroyapılarının Sertliklerinin ve Yoğunluklarının Araştırılması

Year 2025, , 471 - 478, 30.01.2025
https://doi.org/10.29130/dubited.1525745

Abstract

Magnezyum (Mg), mühendislikte yaygın bir malzeme olarak öne çıkmakta ve düşük yoğunluk, sertlik, yüksek sönüm kapasitesi, üstün eğilme direnci ve etkileyici spesifik mukavemet gibi benzersiz kombinasyonu nedeniyle biyomalzeme olarak hayati bir işlev görmektedir. Yüksek reaktivitesine ve zorlu mühendislik uygulamaları için mekanik özelliklerinin yetersiz olmasına rağmen, güçlendirici nanoparçacıkların eklenmesi, magnezyum bazlı kompozitlerin performansını artırma potansiyeli göstermiştir. Bu çalışma, toz metalurjisi yaklaşımı kullanılarak nanokil ile güçlendirilmiş magnezyum kompozitlerinin mikro yapı değerlendirmesi, sertlik ve yoğunluğunu araştırmaktadır. Nanokil, ağırlık yüzdeleri olarak %1, %3, %5 ve %7 oranlarında bir güçlendirme elemanı olarak tercih edilmiştir. Kompozitlerin yoğunlukları, Archimedes prensibi kullanılarak ölçülmüştür ve nanokilin eklenmesinin genellikle kompozitlerin yoğunluğunu artırdığı, çünkü nanokilin saf magnezyumdan daha yüksek bir yoğunluğa sahip olduğu görülmüştür. Ancak, %5 nanokil içeren kompozit, %3 nanokil içeren kompozitten daha düşük yoğunluk göstermiştir, bu durum aglomerasyonların iç boşlukları artırması ile ilişkilendirilebilir. Vickers sertlik testi için, numune 600, 1000 ve 2000 mesh zımpara ile zımparalandı ve ardından 6μ ve 3μ elmas süspansiyonları ile parlatıldı. AOB Vickers Mikrosertlik testi kullanılarak yapılan sertlik ölçümleri, en yüksek sertlik değerinin %7 ağırlık yüzdesine sahip nanokil içeren kompozitte gözlemlendiğini ve nanokil eklemenin sertliği artırdığını göstermiştir. Ancak, %3 nanokil içeren kompozit diğer güçlendirilmiş kompozitlere göre daha düşük sertlik göstermiştir. Yapıların optik görüntüleri, kontaminasyonu belirten metalografik noktaları ortaya çıkarmıştır. Bu bulgular, nanokil ile güçlendirilmiş magnezyum kompozitlerinin yapısal ve mekanik davranışlarının anlaşılmasına katkıda bulunur ve bu tür malzemelerin otomotiv, havacılık ve tıp alanlarındaki çeşitli uygulamalar için optimize edilme potansiyelini gösterir.

References

  • [1] E. Tekoğlu et al., "Metal matrix composite with superior ductility at 800° C: 3D printed In718+ ZrB2 by laser powder bed fusion," Composites Part B: Engineering, vol. 268, p. 111052, 2024.
  • [2] J. Wu, X. Cheng, J. Wu, J. Chen, and X. Pei, "The development of magnesium‐based biomaterials in bone tissue engineering: A review," Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 112, no. 1, p. e35326, 2024.
  • [3] F. Aydın, "Recent advances in mechanical properties of Mg matrix composites: a review," Materials Science and Technology, vol. 40, no. 5, pp. 339-376, 2024.
  • [4] M. Güden, O. Akil, A. Tasdemirci, M. Ciftcioglu, and I. W. Hall, "Effect of strain rate on the compressive mechanical behavior of a continuous alumina fiber reinforced ZE41A magnesium alloy based composite," Materials Science and Engineering: A, vol. 425, no. 1-2, pp. 145-155, 2006.
  • [5] W. Zhang and J. Xu, "Advanced lightweight materials for Automobiles: A review," Materials & Design, vol. 221, p. 110994, 2022.
  • [6] S. V. S. Prasad, S. B. Prasad, K. Verma, R. K. Mishra, V. Kumar, and S. Singh, "The role and significance of Magnesium in modern day research-A review," Journal of Magnesium and alloys, vol. 10, no. 1, pp. 1-61, 2022.
  • [7] Y. Yang, X. Xiong, J. Chen, X. Peng, D. Chen, and F. Pan, "Research advances in magnesium and magnesium alloys worldwide in 2020," Journal of Magnesium and Alloys, vol. 9, no. 3, pp. 705-747, 2021.
  • [8] S. Sambasivam et al., "Significance of reinforcement in Mg-based MMCs for various applications: a review," Materials Today: Proceedings, vol. 416, no. 1-2, pp. 155-165, 2023.
  • [9] A. Ercetin et al., "Microstructural and Mechanical Behavior Investigations of Nb-Reinforced Mg–Sn–Al–Zn–Mn Matrix Magnesium Composites," Metals, vol. 13, no. 6, p. 1097, 2023.
  • [10] L. K. Pillari, K. Lessoway, and L. Bichler, "Carbon nanotube and graphene reinforced magnesium matrix composites: a state-of-the-art review," Journal of Magnesium and Alloys, vol. 11, no. 6, p. 1825-1905, 2023.
  • [11] P. Monish, K. K. L. Hari, and K. Rajkumar, "Manufacturing and characterisation of magnesium composites reinforced by nanoparticles: a review," Materials Science and Technology, vol. 39, no. 15, pp. 1858-1876, 2023.
  • [12] X. Zhou, D. Su, C. Wu, and L. Liu, "Tensile mechanical properties and strengthening mechanism of hybrid carbon nanotube and silicon carbide nanoparticle-reinforced magnesium alloy composites," Journal of Nanomaterials, vol. 2012, pp. 83-83, 2012.
  • [13] F. Zeng et al., "Fabrication and mechanical properties of mesoporous silica nanoparticles reinforced magnesium matrix composite," Journal of Alloys and Compounds, vol. 728, pp. 413-423, 2017.
  • [14] M. Subramani, S.-J. Huang, and K. Borodianskiy, "Effect of SiC nanoparticles on AZ31 magnesium alloy," Materials, vol. 15, no. 3, p. 1004, 2022.
  • [15] K. B. Nie, X. J. Wang, L. Xu, K. Wu, X. S. Hu, and M. Y. Zheng, "Effect of hot extrusion on microstructures and mechanical properties of SiC nanoparticles reinforced magnesium matrix composite," Journal of Alloys and Compounds, vol. 512, no. 1, pp. 355-360, 2012.
  • [16] S. C. Tjong, "Novel nanoparticle‐reinforced metal matrix composites with enhanced mechanical properties," Advanced engineering materials, vol. 9, no. 8, pp. 639-652, 2007.
  • [17] J. Lan, Y. Yang, and X. Li, "Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method," Materials Science and Engineering: A, vol. 386, no. 1-2, pp. 284-290, 2004.
  • [18] Y.-X. Luo et al., "Research progress on nanoparticles reinforced magnesium alloys," Journal of Materials Research and Technology, vol. 30, no. 2, pp. 5166-5191, 2024.
  • [19] K. B. Nie, X. J. Wang, K. K. Deng, X. S. Hu, and K. Wu, "Magnesium matrix composite reinforced by nanoparticles–a review," Journal of magnesium and alloys, vol. 9, no. 1, pp. 57-77, 2021.
  • [20] H. Dieringa, "Properties of magnesium alloys reinforced with nanoparticles and carbon nanotubes: a review," Journal of Materials Science, vol. 46, pp. 289-306, 2011.
  • [21] K. Nie, K. Deng, X. Wang, and K. Wu, "Characterization and strengthening mechanism of SiC nanoparticles reinforced magnesium matrix composite fabricated by ultrasonic vibration assisted squeeze casting," Journal of Materials Research, vol. 32, no. 13, pp. 2609-2620, 2017.
  • [22] D. A. K. Reddy et al., "Investigating the mechanical properties of titanium dioxide reinforced magnesium composites," Materials Today: Proceedings, vol. 11, no. 6, pp. 1619-1632, 2023.
  • [23] P. S. R. Kumar, D. R. Smart, and S. J. Alexis, "Evaluation of mechanical properties of MWCNT/nanoclay reinforced aluminium alloy metal matrix composite," in IOP Conference Series: Materials Science and Engineering, 2018, vol. 346, no. 1, p. 012013: IOP Publishing.

The Microstructure, Hardness and Density Investigation of Mg Composites Reinforced with Nanoclay

Year 2025, , 471 - 478, 30.01.2025
https://doi.org/10.29130/dubited.1525745

Abstract

Magnesium (Mg) stands out as a prevalent material in engineering, finding essential utility as a biomaterial due to its unique combination of low density, stiffness, high damping capacity, superior bending resistance, and impressive specific strength. Despite its high reactivity and somewhat inadequate mechanical properties for rigorous engineering applications, the incorporation of reinforcing nanoparticles has shown significant potential in enhancing the performance of magnesium-based composites. This study investigates the microstructure evaluation, hardness, and density of magnesium composites reinforced with nanoclay using a powder metallurgy approach. Nanoclay was preferred as a reinforcement element at weight percentages of 1%, 3%, 5%, and 7%. The densities of the composites were measured using the Archimedean principle, revealing that the addition of nanoclay generally increases the density of the composites due to the higher density of nanoclay compared to pure magnesium. However, the composite with 5% nanoclay exhibited a lower density than the one with 3% nanoclay, likely due to agglomerations leading to increased internal voids. Surface preparation for Vickers hardness testing involved sanding with 600, 1000, and 2000 mesh sanders, followed by polishing with 6μ and 3μ diamond suspensions. Hardness measurements, conducted using an AOB Vickers microhardness tester, indicated that the highest hardness value was observed in the composite with a 7% weight percentage of nanoclay, demonstrating that nanoclay addition enhances hardness. However, the composite with 3% nanoclay showed lower hardness compared to other reinforced composites. Optical images of the structures revealed metallographic spots indicative of contamination. These findings contribute to the understanding of the structural and mechanical behavior of nanoclay-reinforced magnesium composites, highlighting the potential for optimizing such materials for various applications in automotive, aerospace, and medical fields.

References

  • [1] E. Tekoğlu et al., "Metal matrix composite with superior ductility at 800° C: 3D printed In718+ ZrB2 by laser powder bed fusion," Composites Part B: Engineering, vol. 268, p. 111052, 2024.
  • [2] J. Wu, X. Cheng, J. Wu, J. Chen, and X. Pei, "The development of magnesium‐based biomaterials in bone tissue engineering: A review," Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 112, no. 1, p. e35326, 2024.
  • [3] F. Aydın, "Recent advances in mechanical properties of Mg matrix composites: a review," Materials Science and Technology, vol. 40, no. 5, pp. 339-376, 2024.
  • [4] M. Güden, O. Akil, A. Tasdemirci, M. Ciftcioglu, and I. W. Hall, "Effect of strain rate on the compressive mechanical behavior of a continuous alumina fiber reinforced ZE41A magnesium alloy based composite," Materials Science and Engineering: A, vol. 425, no. 1-2, pp. 145-155, 2006.
  • [5] W. Zhang and J. Xu, "Advanced lightweight materials for Automobiles: A review," Materials & Design, vol. 221, p. 110994, 2022.
  • [6] S. V. S. Prasad, S. B. Prasad, K. Verma, R. K. Mishra, V. Kumar, and S. Singh, "The role and significance of Magnesium in modern day research-A review," Journal of Magnesium and alloys, vol. 10, no. 1, pp. 1-61, 2022.
  • [7] Y. Yang, X. Xiong, J. Chen, X. Peng, D. Chen, and F. Pan, "Research advances in magnesium and magnesium alloys worldwide in 2020," Journal of Magnesium and Alloys, vol. 9, no. 3, pp. 705-747, 2021.
  • [8] S. Sambasivam et al., "Significance of reinforcement in Mg-based MMCs for various applications: a review," Materials Today: Proceedings, vol. 416, no. 1-2, pp. 155-165, 2023.
  • [9] A. Ercetin et al., "Microstructural and Mechanical Behavior Investigations of Nb-Reinforced Mg–Sn–Al–Zn–Mn Matrix Magnesium Composites," Metals, vol. 13, no. 6, p. 1097, 2023.
  • [10] L. K. Pillari, K. Lessoway, and L. Bichler, "Carbon nanotube and graphene reinforced magnesium matrix composites: a state-of-the-art review," Journal of Magnesium and Alloys, vol. 11, no. 6, p. 1825-1905, 2023.
  • [11] P. Monish, K. K. L. Hari, and K. Rajkumar, "Manufacturing and characterisation of magnesium composites reinforced by nanoparticles: a review," Materials Science and Technology, vol. 39, no. 15, pp. 1858-1876, 2023.
  • [12] X. Zhou, D. Su, C. Wu, and L. Liu, "Tensile mechanical properties and strengthening mechanism of hybrid carbon nanotube and silicon carbide nanoparticle-reinforced magnesium alloy composites," Journal of Nanomaterials, vol. 2012, pp. 83-83, 2012.
  • [13] F. Zeng et al., "Fabrication and mechanical properties of mesoporous silica nanoparticles reinforced magnesium matrix composite," Journal of Alloys and Compounds, vol. 728, pp. 413-423, 2017.
  • [14] M. Subramani, S.-J. Huang, and K. Borodianskiy, "Effect of SiC nanoparticles on AZ31 magnesium alloy," Materials, vol. 15, no. 3, p. 1004, 2022.
  • [15] K. B. Nie, X. J. Wang, L. Xu, K. Wu, X. S. Hu, and M. Y. Zheng, "Effect of hot extrusion on microstructures and mechanical properties of SiC nanoparticles reinforced magnesium matrix composite," Journal of Alloys and Compounds, vol. 512, no. 1, pp. 355-360, 2012.
  • [16] S. C. Tjong, "Novel nanoparticle‐reinforced metal matrix composites with enhanced mechanical properties," Advanced engineering materials, vol. 9, no. 8, pp. 639-652, 2007.
  • [17] J. Lan, Y. Yang, and X. Li, "Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method," Materials Science and Engineering: A, vol. 386, no. 1-2, pp. 284-290, 2004.
  • [18] Y.-X. Luo et al., "Research progress on nanoparticles reinforced magnesium alloys," Journal of Materials Research and Technology, vol. 30, no. 2, pp. 5166-5191, 2024.
  • [19] K. B. Nie, X. J. Wang, K. K. Deng, X. S. Hu, and K. Wu, "Magnesium matrix composite reinforced by nanoparticles–a review," Journal of magnesium and alloys, vol. 9, no. 1, pp. 57-77, 2021.
  • [20] H. Dieringa, "Properties of magnesium alloys reinforced with nanoparticles and carbon nanotubes: a review," Journal of Materials Science, vol. 46, pp. 289-306, 2011.
  • [21] K. Nie, K. Deng, X. Wang, and K. Wu, "Characterization and strengthening mechanism of SiC nanoparticles reinforced magnesium matrix composite fabricated by ultrasonic vibration assisted squeeze casting," Journal of Materials Research, vol. 32, no. 13, pp. 2609-2620, 2017.
  • [22] D. A. K. Reddy et al., "Investigating the mechanical properties of titanium dioxide reinforced magnesium composites," Materials Today: Proceedings, vol. 11, no. 6, pp. 1619-1632, 2023.
  • [23] P. S. R. Kumar, D. R. Smart, and S. J. Alexis, "Evaluation of mechanical properties of MWCNT/nanoclay reinforced aluminium alloy metal matrix composite," in IOP Conference Series: Materials Science and Engineering, 2018, vol. 346, no. 1, p. 012013: IOP Publishing.
There are 23 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Articles
Authors

Mikail Aslan 0000-0003-0578-5049

Publication Date January 30, 2025
Submission Date July 31, 2024
Acceptance Date November 13, 2024
Published in Issue Year 2025

Cite

APA Aslan, M. (2025). The Microstructure, Hardness and Density Investigation of Mg Composites Reinforced with Nanoclay. Duzce University Journal of Science and Technology, 13(1), 471-478. https://doi.org/10.29130/dubited.1525745
AMA Aslan M. The Microstructure, Hardness and Density Investigation of Mg Composites Reinforced with Nanoclay. DÜBİTED. January 2025;13(1):471-478. doi:10.29130/dubited.1525745
Chicago Aslan, Mikail. “The Microstructure, Hardness and Density Investigation of Mg Composites Reinforced With Nanoclay”. Duzce University Journal of Science and Technology 13, no. 1 (January 2025): 471-78. https://doi.org/10.29130/dubited.1525745.
EndNote Aslan M (January 1, 2025) The Microstructure, Hardness and Density Investigation of Mg Composites Reinforced with Nanoclay. Duzce University Journal of Science and Technology 13 1 471–478.
IEEE M. Aslan, “The Microstructure, Hardness and Density Investigation of Mg Composites Reinforced with Nanoclay”, DÜBİTED, vol. 13, no. 1, pp. 471–478, 2025, doi: 10.29130/dubited.1525745.
ISNAD Aslan, Mikail. “The Microstructure, Hardness and Density Investigation of Mg Composites Reinforced With Nanoclay”. Duzce University Journal of Science and Technology 13/1 (January 2025), 471-478. https://doi.org/10.29130/dubited.1525745.
JAMA Aslan M. The Microstructure, Hardness and Density Investigation of Mg Composites Reinforced with Nanoclay. DÜBİTED. 2025;13:471–478.
MLA Aslan, Mikail. “The Microstructure, Hardness and Density Investigation of Mg Composites Reinforced With Nanoclay”. Duzce University Journal of Science and Technology, vol. 13, no. 1, 2025, pp. 471-8, doi:10.29130/dubited.1525745.
Vancouver Aslan M. The Microstructure, Hardness and Density Investigation of Mg Composites Reinforced with Nanoclay. DÜBİTED. 2025;13(1):471-8.