Yeterince Yakın Seyahat Eden Satıcı Problemi (YYSESP), her hedefin disk şeklinde bir mahalleye sahip olduğu ve bu mahalledeki herhangi bir noktaya ulaşıldığında ziyaret edilmiş sayıldığı klasik Seyahat Eden Satıcı Problemi'nin bir çeşididir. Bu genelleme, YYSESP'yi robotik yol planlama ve kablosuz ağ optimizasyonu gibi gerçek dünya uygulamaları için önemli bir model haline getirir. Bu çalışma, verimli keşif ve sömürü için OpenMP'den yararlanan YYSESPiçin paralel bir memetik algoritma önermektedir. Yaklaşımımız, paralel bir geçiş operatörünü paralel yerel optimizasyon prosedürleri ve yenilikçi arama operatörleriyle entegre eder. Deneysel sonuçlar, paralel uygulamanın hesaplama verimliliğini önemli ölçüde artırdığını ve sıralı versiyondan daha hızlı yüksek kaliteli çözümler ürettiğini göstermektedir. Ölçeklenebilir bir paralel algoritma ile literatürdeki problem örneklerinin en iyi sonuçlarını elde etmeyi başardık.
The Close-Enough Traveling Salesman Problem (CETSP) is a generalization of the classical TSP, where each target is associated with a disk-shaped neighborhood and is considered visited when any point within this region is reached. This variant has strong practical applications such as robotic path planning and wireless network optimization. In this study, a parallel memetic algorithm is proposed for the CETSP, implemented using OpenMP to enhance the efficiency of both exploration and exploitation processes. The algorithm incorporates a parallel crossover operator, parallel local search procedures, and customized search strategies. Experimental evaluations were conducted on 24 established benchmark instances. The results indicate that parallel implementation achieves notable improvements in both computational efficiency and solution quality compared to its sequential counterpart. Specifically, the proposed method attained new best-known solutions in seven instances. For example, on the bubbles6 instance, the solution cost was reduced from 1229.66 to 1221.05 (a 0.70% improvement), while on team3_300, it decreased from 464.20 to 461.89 (a 0.50% improvement). Across large-scale instances, the algorithm demonstrated performance gains ranging from 0.1% to 1.2% relative to existing methods, while maintaining competitive results on smaller problems. These findings confirm that parallelization can meaningfully enhance both computational speed and optimization performance in solving the CETSP.
This study does not involve human or animal participants. All procedures followed scientific and ethical principles, and all referenced studies are appropriately cited.
This research received no external funding.
I would like to thank Tansel Dokeroglu for his valuable support in the composition of this article.
| Primary Language | English |
|---|---|
| Subjects | Machine Learning Algorithms |
| Journal Section | Research Article |
| Authors | |
| Submission Date | February 27, 2025 |
| Acceptance Date | December 6, 2025 |
| Publication Date | January 21, 2026 |
| Published in Issue | Year 2026 Volume: 14 Issue: 1 |