Research Article
BibTex RIS Cite

İnorganik Metallerin Çimento harçlarının Antibakteriyel, Fiziksel ve Mekanik Özelliklere Etkisinin İncelenmesi

Year 2025, Volume: 13 Issue: 3, 1112 - 1122, 31.07.2025
https://doi.org/10.29130/dubited.1659593

Abstract

Harçlar çevresel faktörlere maruz kalabilir ve bu durum sonrasında yapıda deformasyonlar gözlemlenebilir. Fiziksel ve yapısal özelliklere zarar veren bu deformasyonların inorganik metal kullanarak giderebileceği düşünülmektedir. Mevcut çalışmada, yukarıda belirtilen sorunları aşmak için farklı metal türleri (Kalay (Sn), Çinko (Zn)) kullanılarak çimento harçları üretilmiştir. Daha sonra fiziksel (yayılma, UPV), kimyasal (FTIR), mekanik (basınç ve eğilme), morfolojik (SEM-EDX) ve antibakteriyel özellikleri araştırılmıştır. Çalışmanın sonunda, C/S oranının değişmesi nedeniyle Si-O simetrik gerilmesinde kaymalar görüldü. Metaller matriste homojen bir şekilde dağılarak daha yüksek mekanik özellikler sağlamıştır. UPV değerleri metalin iletkenlik özelliği nedeniyle artarken, harcın işlenebilirliğini azaltmıştır. Ayrıca, Zn esaslı çimento harcı P. aeruginosa ATCC 2785'e karşı daha yüksek etkinlik göstermiştir. Yapılan çalışmanın literatüre ve endüstriye önemli katkı sağlayacağı düşünülmektedir.

References

  • [1] H. Viitanen et al., “Moisture and bio-deterioration risk of building materials and structures,” Journal of Building Physics, vol. 33, no. 3, pp. 201-224, 2010.
  • [2] A. Ślosarczyk, I. Klapiszewska, D. Skowrońska, M. Janczarek, T. Jesionowski and Ł. Klapiszewski, “A comprehensive review of building materials modified with metal and metal oxide nanoparticles against microbial multiplication and growth,” Chemical Engineering Journal, vol. 466, pp. 1-20, 2023.
  • [3] F. M. Othman, A. A. Abdul-hamead and N. A. Ahmeed, “Fabrication of advanced cement mortar for building anti-bacterial applications,” Al-Khwarizmi Engineering Journal, vol. 15, no. 1, pp. 89-96, 2019.
  • [4] M. Z. Guo, T. C. Ling and C. S. Poon, “Nano-TiO2-based architectural mortar for NO removal and bacteria inactivation: influence of coating and weathering conditions,” Cement and Concrete Composites, vol. 36, pp. 101-108, 2013.
  • [5] A. Folli, U. H. Jakobsen, G. L. Guerrini and D. E. Macphee, “Rhodamine B discolouration on TiO2 in the cement environment: a look at fundamental aspects of the self-cleaning effect in concretes,” Journal of Advanced Oxidation Technologies, vol. 12, no. 1, pp. 126-133, 2009.
  • [6] V. P. Singh, K. Sandeep, H. S. Kushwaha, S. Powara and R. Vaish, “Photocatalytic, hydrophobic and antimicrobial characteristics of ZnO nano needle embedded cement composites,” Construction and Building Materials, vol. 158, pp. 285-294, 2018.
  • [7] R. Zainul et al., “Influence of ZnO on antibacterial properties of portland cement,” International Journal on Advanced Science, Engineering & Information Technology, vol. 13, no. 6, pp. 2045-2051, 2023.
  • [8] I. Klapiszewska, A. Parus, Ł. Ławniczak, T. Jesionowski, Ł. Klapiszewski and A. Ślosarczyk, “Production of antibacterial cement composites containing ZnO/lignin and ZnO–SiO2/lignin hybrid admixtures,” Cement and Concrete Composites, vol. 124, 2021, Art. no. 104250.
  • [9] V. P. K. Maria et al., “Advances in ZnO nanoparticles in building material: Antimicrobial and photocatalytic applications–systematic literature review,” Construction and Building Materials, vol. 417, 2024, Art. no. 135337.
  • [10] K. Kolovos, S. Tsivilis and G. Kakali, “SEM examination of clinkers containing foreign elements,” Cement and Concrete Composites, vol. 27, no. 2, pp. 163-170, 2005.
  • [11] Y. Gao, Z. Song and Q. Xu, “Effect of SnSO4 on physical and chemical properties of cement,” Construction and Building Materials, vol. 168, pp. 490-500, 2018.
  • [12] N. Saiko, S. Kato and T. Kojima, “Influence of Sn on the hydration of tricalcium aluminate, Ca3Al2O6,” Journal of Thermal Analysis and Calorimetry, vol. 109, no. 1, pp. 273-286, 2012.
  • [13] EN 196-1:2016, “Methods of testing cement—part 1: determination of strength,” European Committee for Standardization: Brussels, Belgium, 2016.
  • [14] B. Poyraz and M. Dayı, “Polyimide strengthened cement mortar,” Journal of Polymer Engineering, vol. 44, no. 8, pp. 571-581, 2024.
  • [15] G. Yaldiz, M. Camlica and D. Erdonmez, “Investigation of some basil genotypes in terms of their effect on bacterial communication system, and antimicrobial activity,” Microbial Pathogenesis, vol. 182, 2023, Art. no. 106247.
  • [16] P. Yu, R. J. Kirkpatrick, B. Poe, B. F. McMillan and X. Cong, “Structure of Calcium Silicate Hydrate (C-S-H): near-, mid-, and far-infrared spectroscopy,” Journal of the American Ceramic Society, vol. 82, no. 3, pp. 742-48, 1999.
  • [17] J. Higl, D. Hinder, C. Rathgeber, B. Ramming and M. Lindén, “Detailed in situ ATR-FTIR spectroscopy study of the early stages of CSH formation during hydration of monoclinic C3S,” Cement and Concrete Research, vol. 142, 2021, Art. no. 106367.
  • [18] R. Zamiri et al., “Far-infrared optical constants of ZnO and ZnO/Ag nanostructures,” RSC Advances, vol. 4, no. 40, pp. 20902-20908, 2014.
  • [19] A. Ślosarczyk, A. Kwiecińska and E. Pełszyk, “Influence of selected metal oxides in micro and nanoscale on the mechanical and physical properties of the cement mortars,” Procedia Engineering, vol. 172, pp. 1031-1038, 2017.
  • [20] S. Dong et al., “Comparative study on the effects of five nano-metallic oxide particles on the long-term mechanical property and durability of cement mortar,” Buildings, vol. 13, no. 3, pp. 619, 2023.
  • [21] H. F. W. Taylor, Cement Chemistry, 2nd ed., London: Thomas Telford, 1997.
  • [22] C. Nwidi, “Modeling of compressive strength of concrete using pulse velocity values from a non-destructive testing of concrete,” Journal of Civil Engineering and Construction Technology, vol. 12, pp. 13-19, 2019.
  • [23] W. Xie, J. Chen and D. Duan, “Study on the flowability and strength of cement-based materials added with limestone powder and PVA fiber,” in Journal of Physics: Conference Series, vol. 2639, no. 1, 2023, Art. no. 012036, 2023.
  • [24] A. M. Mocioiu et al., “Self-cleaning and antibacterial properties of the cement mortar with ZnO/Hydroxyapatite Powders,” Inorganics, vol. 10, no. 12, pp. 241-251, 2022.

Influence Inorganic Metals on Antibacterial, Physical and Mechanical Properties of Cement Mortar

Year 2025, Volume: 13 Issue: 3, 1112 - 1122, 31.07.2025
https://doi.org/10.29130/dubited.1659593

Abstract

Mortars can be exposed to environmental factors and deformations can be observed in the structure after this circumstance. It is thought that using inorganic metal may handle these deformations which harm physical and structural properties. In the present study, cement mortars were produced using different types of metals ((Tin (Sn), Zinc (Zn)) to overcome the abovementioned problem. Then, the physical (flowability, UPV), chemical (FTIR), mechanical (compressive and flexural), morphological (SEM-EDX), and antibacterial properties have been investigated. At the end of the study, minor shifts were seen in the Si-O symmetric stretching due to alteration of the C/S ratio. Metals enabled higher mechanical properties by dispersing homogeneously in the matrix. UPV values increased because of metal’s conductivity property whereas those metals make it decrease flowability. Also, cement mortar having Zn revealed a higher efficiency against P. aeruginosa ATCC 2785. It is thought that the study will contribute significantly to the literature and the industry.

References

  • [1] H. Viitanen et al., “Moisture and bio-deterioration risk of building materials and structures,” Journal of Building Physics, vol. 33, no. 3, pp. 201-224, 2010.
  • [2] A. Ślosarczyk, I. Klapiszewska, D. Skowrońska, M. Janczarek, T. Jesionowski and Ł. Klapiszewski, “A comprehensive review of building materials modified with metal and metal oxide nanoparticles against microbial multiplication and growth,” Chemical Engineering Journal, vol. 466, pp. 1-20, 2023.
  • [3] F. M. Othman, A. A. Abdul-hamead and N. A. Ahmeed, “Fabrication of advanced cement mortar for building anti-bacterial applications,” Al-Khwarizmi Engineering Journal, vol. 15, no. 1, pp. 89-96, 2019.
  • [4] M. Z. Guo, T. C. Ling and C. S. Poon, “Nano-TiO2-based architectural mortar for NO removal and bacteria inactivation: influence of coating and weathering conditions,” Cement and Concrete Composites, vol. 36, pp. 101-108, 2013.
  • [5] A. Folli, U. H. Jakobsen, G. L. Guerrini and D. E. Macphee, “Rhodamine B discolouration on TiO2 in the cement environment: a look at fundamental aspects of the self-cleaning effect in concretes,” Journal of Advanced Oxidation Technologies, vol. 12, no. 1, pp. 126-133, 2009.
  • [6] V. P. Singh, K. Sandeep, H. S. Kushwaha, S. Powara and R. Vaish, “Photocatalytic, hydrophobic and antimicrobial characteristics of ZnO nano needle embedded cement composites,” Construction and Building Materials, vol. 158, pp. 285-294, 2018.
  • [7] R. Zainul et al., “Influence of ZnO on antibacterial properties of portland cement,” International Journal on Advanced Science, Engineering & Information Technology, vol. 13, no. 6, pp. 2045-2051, 2023.
  • [8] I. Klapiszewska, A. Parus, Ł. Ławniczak, T. Jesionowski, Ł. Klapiszewski and A. Ślosarczyk, “Production of antibacterial cement composites containing ZnO/lignin and ZnO–SiO2/lignin hybrid admixtures,” Cement and Concrete Composites, vol. 124, 2021, Art. no. 104250.
  • [9] V. P. K. Maria et al., “Advances in ZnO nanoparticles in building material: Antimicrobial and photocatalytic applications–systematic literature review,” Construction and Building Materials, vol. 417, 2024, Art. no. 135337.
  • [10] K. Kolovos, S. Tsivilis and G. Kakali, “SEM examination of clinkers containing foreign elements,” Cement and Concrete Composites, vol. 27, no. 2, pp. 163-170, 2005.
  • [11] Y. Gao, Z. Song and Q. Xu, “Effect of SnSO4 on physical and chemical properties of cement,” Construction and Building Materials, vol. 168, pp. 490-500, 2018.
  • [12] N. Saiko, S. Kato and T. Kojima, “Influence of Sn on the hydration of tricalcium aluminate, Ca3Al2O6,” Journal of Thermal Analysis and Calorimetry, vol. 109, no. 1, pp. 273-286, 2012.
  • [13] EN 196-1:2016, “Methods of testing cement—part 1: determination of strength,” European Committee for Standardization: Brussels, Belgium, 2016.
  • [14] B. Poyraz and M. Dayı, “Polyimide strengthened cement mortar,” Journal of Polymer Engineering, vol. 44, no. 8, pp. 571-581, 2024.
  • [15] G. Yaldiz, M. Camlica and D. Erdonmez, “Investigation of some basil genotypes in terms of their effect on bacterial communication system, and antimicrobial activity,” Microbial Pathogenesis, vol. 182, 2023, Art. no. 106247.
  • [16] P. Yu, R. J. Kirkpatrick, B. Poe, B. F. McMillan and X. Cong, “Structure of Calcium Silicate Hydrate (C-S-H): near-, mid-, and far-infrared spectroscopy,” Journal of the American Ceramic Society, vol. 82, no. 3, pp. 742-48, 1999.
  • [17] J. Higl, D. Hinder, C. Rathgeber, B. Ramming and M. Lindén, “Detailed in situ ATR-FTIR spectroscopy study of the early stages of CSH formation during hydration of monoclinic C3S,” Cement and Concrete Research, vol. 142, 2021, Art. no. 106367.
  • [18] R. Zamiri et al., “Far-infrared optical constants of ZnO and ZnO/Ag nanostructures,” RSC Advances, vol. 4, no. 40, pp. 20902-20908, 2014.
  • [19] A. Ślosarczyk, A. Kwiecińska and E. Pełszyk, “Influence of selected metal oxides in micro and nanoscale on the mechanical and physical properties of the cement mortars,” Procedia Engineering, vol. 172, pp. 1031-1038, 2017.
  • [20] S. Dong et al., “Comparative study on the effects of five nano-metallic oxide particles on the long-term mechanical property and durability of cement mortar,” Buildings, vol. 13, no. 3, pp. 619, 2023.
  • [21] H. F. W. Taylor, Cement Chemistry, 2nd ed., London: Thomas Telford, 1997.
  • [22] C. Nwidi, “Modeling of compressive strength of concrete using pulse velocity values from a non-destructive testing of concrete,” Journal of Civil Engineering and Construction Technology, vol. 12, pp. 13-19, 2019.
  • [23] W. Xie, J. Chen and D. Duan, “Study on the flowability and strength of cement-based materials added with limestone powder and PVA fiber,” in Journal of Physics: Conference Series, vol. 2639, no. 1, 2023, Art. no. 012036, 2023.
  • [24] A. M. Mocioiu et al., “Self-cleaning and antibacterial properties of the cement mortar with ZnO/Hydroxyapatite Powders,” Inorganics, vol. 10, no. 12, pp. 241-251, 2022.
There are 24 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Research Article
Authors

Bayram Poyraz 0000-0003-1209-8095

Submission Date March 17, 2025
Acceptance Date April 21, 2025
Publication Date July 31, 2025
Published in Issue Year 2025 Volume: 13 Issue: 3

Cite

APA Poyraz, B. (2025). Influence Inorganic Metals on Antibacterial, Physical and Mechanical Properties of Cement Mortar. Duzce University Journal of Science and Technology, 13(3), 1112-1122. https://doi.org/10.29130/dubited.1659593
AMA Poyraz B. Influence Inorganic Metals on Antibacterial, Physical and Mechanical Properties of Cement Mortar. DUBİTED. July 2025;13(3):1112-1122. doi:10.29130/dubited.1659593
Chicago Poyraz, Bayram. “Influence Inorganic Metals on Antibacterial, Physical and Mechanical Properties of Cement Mortar”. Duzce University Journal of Science and Technology 13, no. 3 (July 2025): 1112-22. https://doi.org/10.29130/dubited.1659593.
EndNote Poyraz B (July 1, 2025) Influence Inorganic Metals on Antibacterial, Physical and Mechanical Properties of Cement Mortar. Duzce University Journal of Science and Technology 13 3 1112–1122.
IEEE B. Poyraz, “Influence Inorganic Metals on Antibacterial, Physical and Mechanical Properties of Cement Mortar”, DUBİTED, vol. 13, no. 3, pp. 1112–1122, 2025, doi: 10.29130/dubited.1659593.
ISNAD Poyraz, Bayram. “Influence Inorganic Metals on Antibacterial, Physical and Mechanical Properties of Cement Mortar”. Duzce University Journal of Science and Technology 13/3 (July2025), 1112-1122. https://doi.org/10.29130/dubited.1659593.
JAMA Poyraz B. Influence Inorganic Metals on Antibacterial, Physical and Mechanical Properties of Cement Mortar. DUBİTED. 2025;13:1112–1122.
MLA Poyraz, Bayram. “Influence Inorganic Metals on Antibacterial, Physical and Mechanical Properties of Cement Mortar”. Duzce University Journal of Science and Technology, vol. 13, no. 3, 2025, pp. 1112-2, doi:10.29130/dubited.1659593.
Vancouver Poyraz B. Influence Inorganic Metals on Antibacterial, Physical and Mechanical Properties of Cement Mortar. DUBİTED. 2025;13(3):1112-2.