Research Article
BibTex RIS Cite

Yapay Sinir Ağları Kullanarak Üç Seviyeli NPC İnvertörler için Sektör ve Bölge Tahmini

Year 2026, Volume: 14 Issue: 1, 60 - 71, 21.01.2026
https://doi.org/10.29130/dubited.1739006

Abstract

Yenilenebilir enerji sistemlerinin en önemli donanım birimi olan inverterlerin performansı, referans gerilim vektörüne bağlı olarak çalıştığı sektör ve bölge değerlerine bağlıdır. Sektör ve bölgenin doğru bir şekilde tespit edilmesi kritik bir öneme sahiptir. Bu çalışma, klasik matematiksel modellere dayalı sektör ve bölge tespitinin eksikliklerini ortadan kaldırmayı amaçlamaktadır. Bu amaç doğrultusunda sektör (6 sınıf) ve bölge (4 sınıf) tespitinin yapay sinir ağları (ANN) mimarileri yardımıyla yüksek doğrulukta tahmin edilmesi sağlanmıştır. Bu kapsamda, Narrow, Medium, Wide, Bilayered ve Trilayered mimari yapıları kullanılmıştır ve sistematik bir şekilde karşılaştırılmıştır. Sektör tespitinde, Narrow NN ve Wide NN %99,97 doğruluk elde ederek en yüksek performansı göstermişlerdir. Bölge tespitinde ise Wide NN %98,81 başarım oranı ile diğer mimari yapılar arasında en yüksek performans değerine sahiptir. Önerilen mimari simülasyon ortamında modellenerek inverter sektör ve bölge, çıkış akım ve gerilim değerleri bakımından incelenmiştir. Simulasyon sonuçları, klasik ve yapay sinir ağları mimarisine dayalı modellerin uyumlu olduğunu ortaya koymakta ve işlem yükünü azaltmaya yönelik bir çözüm sunmaktadır.

References

  • Alharbi, M., & Altarjami, I. (2024). Dispatch optimization scheme for high renewable energy penetration using an artificial intelligence model. Energies, 17(12), Article 2799. https://doi.org/10.3390/en17122799
  • Annoukoubi, M., Essadki, A., & Akarne, Y. (2024). Model predictive control of multilevel inverter used in a wind energy conversion system application. E-Prime – Advances in Electrical Engineering, Electronics and Energy, 9, Article 100717. https://doi.org/10.1016/j.prime.2024.100717
  • Arslan, Ö. (2024). A machine learning approach for voice pathology detection using mode decomposition-based acoustic cepstral features. Mathematical Modelling and Numerical Simulation with Applications, 4(4), 469–494. https://doi.org/10.53391/mmnsa.1473574
  • Bakeer, A., Mohamed, I. S., Malidarreh, P. B., Hattabi, I., & Liu, L. (2022). An artificial neural network-based model predictive control for three-phase flying capacitor multilevel inverter. IEEE Access, 10, 70305–70316. https://doi.org/10.1109/ACCESS.2022.3187996
  • Cavdar, M., & Ozcira Ozkilic, S. (2024). A novel linear-based closed-loop control and analysis of solid-state transformer. Electronics, 13(16), Article 3253. https://doi.org/10.3390/electronics13163253
  • Chouhan, J., Gawhade, P., Ojha, A., & Swarnkar, P. (2024). A comprehensive review of hybrid energy systems utilizing multilevel inverters with minimal switch count. Electrical Engineering, 107, 8937-8961. https://doi.org/10.1007/s00202-024-02598-z
  • Cooper, M. I. (2022). Is mass related to latitude, longitude, and weather in Centrobolus Cook, 1897? International Journal of Engineering Science Invention Research & Development, 9(1), 27–32.
  • Dhiman, P., Kaur, A., Balasaraswathi, V. R., Gulzar, Y., Alwan, A. A., & Hamid, Y. (2023). Image acquisition, preprocessing and classification of citrus fruit diseases: A systematic literature review. Sustainability, 15(12), Article 9643. https://doi.org/10.3390/su15129643
  • Ghadi, Y. Y., Iqbal, M. S., Adnan, M., Amjad, K., Ahmad, I., & Farooq, U. (2023). An improved artificial neural network-based approach for total harmonic distortion reduction in cascaded H-bridge multilevel inverters. IEEE Access, 11, 127348–127363. https://doi.org/10.1109/ACCESS.2023.3332245
  • Hassan, Q., Algburi, S., Sameen, A. Z., Al-Musawi, T. J., Al-Jiboory, A. K., Salman, H. M., Ali, B. M., & Jaszczur, M. (2024). A comprehensive review of international renewable energy growth. Energy and Built Environment. https://doi.org/10.1016/j.enbenv.2023.12.002
  • Horiuchi, Y., Aoyama, K., Tokai, Y., Hirasawa, T., Yoshimizu, S., Ishiyama, A., Yoshio, T., Tsuchida, T., Fujisaki, J., & Tada, T. (2020). Convolutional neural network for differentiating gastric cancer from gastritis using magnified endoscopy with narrow band imaging. Digestive Diseases and Sciences, 65, 1355–1363. https://doi.org/10.1007/s10620-019-05898-9
  • Hossain, S., Biswas, S. P., Mondal, S., Islam, M. R., & Fekih, A. (2024). A capacitor voltage balancing hybrid PWM technique to improve the performance of T-type NPC inverters. IEEE Access, 12, 87545–87559. https://doi.org/10.1109/ACCESS.2024.3416834
  • Jayakumar, V., Chokkalingam, B., & Munda, J. L. (2021). A comprehensive review on space vector modulation techniques for neutral point clamped multilevel inverters. IEEE Access, 9, 112104–112144. https://doi.org/10.1109/ACCESS.2021.3100346
  • Kadhim, I. J., & Hasan, M. J. (2024). Enhancing power stability and efficiency with multilevel inverter technology based on renewable energy sources. Electric Power Systems Research, 231, Article 110290. https://doi.org/10.1016/j.epsr.2024.110290
  • Kapustin, A. V., & Shchurov, N. I. (2023). An overview of main multilevel inverter topologies. Russian Electrical Engineering, 94(5), 334–339. https://doi.org/10.3103/S1068371223050061
  • Khalid, M. (2024). Smart grids and renewable energy systems: Perspectives and grid integration challenges. Energy Strategy Reviews, 51, Article 101299. https://doi.org/10.1016/j.esr.2024.101299
  • Khan, M. U., Samer, S., Alshehri, M. D., Baloch, N. K., Khan, H., Hussain, F., Kim, S. W., & Zikria, Y. B. (2022). Artificial neural network-based cardiovascular disease prediction using spectral features. Computers & Electrical Engineering, 101, Article 108094. https://doi.org/10.1016/j.compeleceng.2022.108094
  • Kocalmış Bilhan, A., & Emikönel, S. (2022). Design of P&O and FL based MPPT controllers of PV array by using positive super lift DC/DC boost converter. International Journal of Energy and Smart Grid, 7(1–2), 36–46. https://doi.org/10.55088/ijesg.1201016
  • Krithiga, G., & Mohan, V. (2022). Elimination of harmonics in multilevel inverter using multi-group marine predator algorithm-based enhanced RNN. International Transactions on Electrical Energy Systems, 2022(1), Article 8004425. https://doi.org/10.1155/2022/8004425
  • Laib, A., Krim, F., Talbi, B., & Sahli, A. (2020). A predictive control scheme for large-scale grid-connected PV system using high-level NPC inverter. Arabian Journal for Science and Engineering, 45, 1685–1701. https://doi.org/10.1007/s13369-019-04182-1
  • Munawar, S., Iqbal, M. S., Adnan, M., Akbar, M. A., & Bermak, A. (2024). Multilevel inverters design, topologies, and applications: Research issues, current, and future directions. IEEE Access, 12, 149320 - 149350. https://doi.org/10.1109/ACCESS.2024.3472752
  • Pal, P. K., Jana, K. C., Siwakoti, Y. P., Majumdar, S., & Blaabjerg, F. (2022). An active-neutral-point-clamped switched-capacitor multilevel inverter with quasi-resonant capacitor charging. IEEE Transactions on Power Electronics, 37(12), 14888–14901. https://doi.org/10.1109/TPEL.2022.3187736
  • Qashqai, P., Babaie, M., Zgheib, R., & Al-Haddad, K. (2023). A model-free switching and control method for three-level neutral point clamped converter using deep reinforcement learning. IEEE Access, 11, 105394–105409. https://doi.org/10.1109/ACCESS.2023.3318264
  • Ramadan, E. A., Moawad, N. M., Abouzalm, B. A., Sakr, A. A., Abouzaid, W. F., & El-Banby, G. M. (2024). An innovative transformer neural network for fault detection and classification for photovoltaic modules. Energy Conversion and Management, 314, Article 118718. https://doi.org/10.1016/j.enconman.2024.118718
  • Sarhan, M. A., Barczentewicz, S., & Lerch, T. (2024). Hybrid islanding detection method using PMU-ANN approach for inverter-based distributed generation systems. IET Renewable Power Generation, 18(S1), 4453–4464. https://doi.org/10.1049/rpg2.13123
  • Sathik, M. J. (2023). A nine-level ANPC boosts type inverter topology with reduced component stress. IEEE Transactions on Circuits and Systems II: Express Briefs, 71(1), 380–384. https://doi.org/10.1109/TCSII.2023.3305230
  • Shiny, G., & Baiju, M. R. (2009). Space vector PWM scheme without sector identification for an open-end winding induction motor based 3-level inverter. In Proceedings of the 35th Annual Conference of IEEE Industrial Electronics (pp. 1310–1315). https://doi.org/10.1109/IECON.2009.5414649
  • Sirohi, V., Saggu, T. S., Kumar, J., & Gill, B. (2024). Implementation of a novel multilevel inverter topology with minimal components: An experimental study. IEEE Canadian Journal of Electrical and Computer Engineering, 47(1), 7–14. https://doi.org/10.1109/ICJECE.2023.3340326
  • Song, Z., Yang, S., & Zhang, R. (2021). Does preprocessing help training over-parameterized neural networks? Advances in Neural Information Processing Systems, 34, 22890–22904. https://arxiv.org/abs/2110.04622
  • Subbulakshmy, R., & Palanisamy, R. (2023). SVPWM control strategy for novel interleaved high gain DC converter fed 3-level NPC inverter for renewable energy applications. ISA Transactions, 140, 426–437. https://doi.org/10.1016/j.isatra.2023.05.019
  • Viswa Teja, A., Razia Sultana, W., & Salkuti, S. R. (2023). Performance explorations of a PMS motor drive using an ANN-based MPPT controller for solar-battery powered electric vehicles. Designs, 7(3), Article 79. https://doi.org/10.3390/designs7030079
  • Wang, Z., Liu, K., Ye, C., & Wan, S. (2025). Synchronized SVPWM schemes for closed-loop current control of three-level NPC inverters. Journal of Power Electronics, 25(12), 1490-1502. https://doi.org/10.1007/s43236-025-00999-2
  • Xue, C., Zhou, D., & Li, Y. (2020). Finite-control-set model predictive control for three-level NPC inverter-fed PMSM drives with LC filter. IEEE Transactions on Industrial Electronics, 68(12), 11980–11991. https://doi.org/10.1109/TIE.2020.3042156
  • Yan, H., Yang, J., & Zeng, F. (2022). Three-phase current reconstruction for PMSM drive with modified twelve-sector space vector pulse width modulation. IEEE Transactions on Power Electronics, 37(12), 15209–15220. https://doi.org/10.1109/TPEL.2022.3188425
  • Yan, Y., Wu, J., Cao, Y., Liu, B., Li, C., & Shi, T. (2024). An open-circuit fault diagnosis method for three-level neutral point clamped inverters based on multi-scale shuffled convolutional neural network. Sensors, 24(6), Article 1745. https://doi.org/10.3390/s24061745
  • Yarikkaya, S., & Vardar, K. (2023). Neural network-based predictive current controllers for three-phase inverter. IEEE Access, 11, 27155–27167. https://doi.org/10.1109/ACCESS.2023.3258679
  • Zhang, G., Band, S. S., Ardabili, S., Chau, K.-W., & Mosavi, A. (2022). Integration of neural network and fuzzy logic decision making compared with bilayered neural network in the simulation of daily dew point temperature. Engineering Applications of Computational Fluid Mechanics, 16(1), 713–723. https://doi.org/10.1080/19942060.2022.2043187
  • Zhang, S., Wang, R., Si, Y., & Wang, L. (2021). An improved convolutional neural network for three-phase inverter fault diagnosis. IEEE Transactions on Instrumentation and Measurement, 71, Article 3510915. https://doi.org/10.1109/TIM.2021.3129198

Prediction of Sector and Region for Three-Level NPC Inverters Using Artificial Neural Networks

Year 2026, Volume: 14 Issue: 1, 60 - 71, 21.01.2026
https://doi.org/10.29130/dubited.1739006

Abstract

The performance of inverters, the most important hardware unit of renewable energy systems, depends on the sector and region values in which they operate in relation to the reference voltage vector. The accurate identification of sectors and regions is crucial. This study aims to overcome the shortcomings of sector and region identification based on classical mathematical models. To this end, the identification of sectors (6 classes) and regions (4 classes) is predicted with highly accuracy using artificial neural network (ANN) architectures. In this context, Narrow, Medium, Wide, Bilayered and Trilayered architectures were used and systematically compared. For sector detection, Narrow NN and Wide NN showed the highest performance with 99.97% accuracy. For region detection, Wide NN has the highest performance among the other architectures with 98.81% accuracy. The proposed architecture is modelled in a simulation environment and analyzed in terms of inverter sector and region, output current and voltage values. The simulation results show that the models based on classical and artificial neural networks are compatible and provide a solution to reduce the processing load.

Ethical Statement

This study does not involve human or animal participants. All procedures followed scientific and ethical principles, and all referenced studies are appropriately cited.

Supporting Institution

This research received no external funding.

Thanks

The author/authors do not wish to acknowledge any individual or institution.

References

  • Alharbi, M., & Altarjami, I. (2024). Dispatch optimization scheme for high renewable energy penetration using an artificial intelligence model. Energies, 17(12), Article 2799. https://doi.org/10.3390/en17122799
  • Annoukoubi, M., Essadki, A., & Akarne, Y. (2024). Model predictive control of multilevel inverter used in a wind energy conversion system application. E-Prime – Advances in Electrical Engineering, Electronics and Energy, 9, Article 100717. https://doi.org/10.1016/j.prime.2024.100717
  • Arslan, Ö. (2024). A machine learning approach for voice pathology detection using mode decomposition-based acoustic cepstral features. Mathematical Modelling and Numerical Simulation with Applications, 4(4), 469–494. https://doi.org/10.53391/mmnsa.1473574
  • Bakeer, A., Mohamed, I. S., Malidarreh, P. B., Hattabi, I., & Liu, L. (2022). An artificial neural network-based model predictive control for three-phase flying capacitor multilevel inverter. IEEE Access, 10, 70305–70316. https://doi.org/10.1109/ACCESS.2022.3187996
  • Cavdar, M., & Ozcira Ozkilic, S. (2024). A novel linear-based closed-loop control and analysis of solid-state transformer. Electronics, 13(16), Article 3253. https://doi.org/10.3390/electronics13163253
  • Chouhan, J., Gawhade, P., Ojha, A., & Swarnkar, P. (2024). A comprehensive review of hybrid energy systems utilizing multilevel inverters with minimal switch count. Electrical Engineering, 107, 8937-8961. https://doi.org/10.1007/s00202-024-02598-z
  • Cooper, M. I. (2022). Is mass related to latitude, longitude, and weather in Centrobolus Cook, 1897? International Journal of Engineering Science Invention Research & Development, 9(1), 27–32.
  • Dhiman, P., Kaur, A., Balasaraswathi, V. R., Gulzar, Y., Alwan, A. A., & Hamid, Y. (2023). Image acquisition, preprocessing and classification of citrus fruit diseases: A systematic literature review. Sustainability, 15(12), Article 9643. https://doi.org/10.3390/su15129643
  • Ghadi, Y. Y., Iqbal, M. S., Adnan, M., Amjad, K., Ahmad, I., & Farooq, U. (2023). An improved artificial neural network-based approach for total harmonic distortion reduction in cascaded H-bridge multilevel inverters. IEEE Access, 11, 127348–127363. https://doi.org/10.1109/ACCESS.2023.3332245
  • Hassan, Q., Algburi, S., Sameen, A. Z., Al-Musawi, T. J., Al-Jiboory, A. K., Salman, H. M., Ali, B. M., & Jaszczur, M. (2024). A comprehensive review of international renewable energy growth. Energy and Built Environment. https://doi.org/10.1016/j.enbenv.2023.12.002
  • Horiuchi, Y., Aoyama, K., Tokai, Y., Hirasawa, T., Yoshimizu, S., Ishiyama, A., Yoshio, T., Tsuchida, T., Fujisaki, J., & Tada, T. (2020). Convolutional neural network for differentiating gastric cancer from gastritis using magnified endoscopy with narrow band imaging. Digestive Diseases and Sciences, 65, 1355–1363. https://doi.org/10.1007/s10620-019-05898-9
  • Hossain, S., Biswas, S. P., Mondal, S., Islam, M. R., & Fekih, A. (2024). A capacitor voltage balancing hybrid PWM technique to improve the performance of T-type NPC inverters. IEEE Access, 12, 87545–87559. https://doi.org/10.1109/ACCESS.2024.3416834
  • Jayakumar, V., Chokkalingam, B., & Munda, J. L. (2021). A comprehensive review on space vector modulation techniques for neutral point clamped multilevel inverters. IEEE Access, 9, 112104–112144. https://doi.org/10.1109/ACCESS.2021.3100346
  • Kadhim, I. J., & Hasan, M. J. (2024). Enhancing power stability and efficiency with multilevel inverter technology based on renewable energy sources. Electric Power Systems Research, 231, Article 110290. https://doi.org/10.1016/j.epsr.2024.110290
  • Kapustin, A. V., & Shchurov, N. I. (2023). An overview of main multilevel inverter topologies. Russian Electrical Engineering, 94(5), 334–339. https://doi.org/10.3103/S1068371223050061
  • Khalid, M. (2024). Smart grids and renewable energy systems: Perspectives and grid integration challenges. Energy Strategy Reviews, 51, Article 101299. https://doi.org/10.1016/j.esr.2024.101299
  • Khan, M. U., Samer, S., Alshehri, M. D., Baloch, N. K., Khan, H., Hussain, F., Kim, S. W., & Zikria, Y. B. (2022). Artificial neural network-based cardiovascular disease prediction using spectral features. Computers & Electrical Engineering, 101, Article 108094. https://doi.org/10.1016/j.compeleceng.2022.108094
  • Kocalmış Bilhan, A., & Emikönel, S. (2022). Design of P&O and FL based MPPT controllers of PV array by using positive super lift DC/DC boost converter. International Journal of Energy and Smart Grid, 7(1–2), 36–46. https://doi.org/10.55088/ijesg.1201016
  • Krithiga, G., & Mohan, V. (2022). Elimination of harmonics in multilevel inverter using multi-group marine predator algorithm-based enhanced RNN. International Transactions on Electrical Energy Systems, 2022(1), Article 8004425. https://doi.org/10.1155/2022/8004425
  • Laib, A., Krim, F., Talbi, B., & Sahli, A. (2020). A predictive control scheme for large-scale grid-connected PV system using high-level NPC inverter. Arabian Journal for Science and Engineering, 45, 1685–1701. https://doi.org/10.1007/s13369-019-04182-1
  • Munawar, S., Iqbal, M. S., Adnan, M., Akbar, M. A., & Bermak, A. (2024). Multilevel inverters design, topologies, and applications: Research issues, current, and future directions. IEEE Access, 12, 149320 - 149350. https://doi.org/10.1109/ACCESS.2024.3472752
  • Pal, P. K., Jana, K. C., Siwakoti, Y. P., Majumdar, S., & Blaabjerg, F. (2022). An active-neutral-point-clamped switched-capacitor multilevel inverter with quasi-resonant capacitor charging. IEEE Transactions on Power Electronics, 37(12), 14888–14901. https://doi.org/10.1109/TPEL.2022.3187736
  • Qashqai, P., Babaie, M., Zgheib, R., & Al-Haddad, K. (2023). A model-free switching and control method for three-level neutral point clamped converter using deep reinforcement learning. IEEE Access, 11, 105394–105409. https://doi.org/10.1109/ACCESS.2023.3318264
  • Ramadan, E. A., Moawad, N. M., Abouzalm, B. A., Sakr, A. A., Abouzaid, W. F., & El-Banby, G. M. (2024). An innovative transformer neural network for fault detection and classification for photovoltaic modules. Energy Conversion and Management, 314, Article 118718. https://doi.org/10.1016/j.enconman.2024.118718
  • Sarhan, M. A., Barczentewicz, S., & Lerch, T. (2024). Hybrid islanding detection method using PMU-ANN approach for inverter-based distributed generation systems. IET Renewable Power Generation, 18(S1), 4453–4464. https://doi.org/10.1049/rpg2.13123
  • Sathik, M. J. (2023). A nine-level ANPC boosts type inverter topology with reduced component stress. IEEE Transactions on Circuits and Systems II: Express Briefs, 71(1), 380–384. https://doi.org/10.1109/TCSII.2023.3305230
  • Shiny, G., & Baiju, M. R. (2009). Space vector PWM scheme without sector identification for an open-end winding induction motor based 3-level inverter. In Proceedings of the 35th Annual Conference of IEEE Industrial Electronics (pp. 1310–1315). https://doi.org/10.1109/IECON.2009.5414649
  • Sirohi, V., Saggu, T. S., Kumar, J., & Gill, B. (2024). Implementation of a novel multilevel inverter topology with minimal components: An experimental study. IEEE Canadian Journal of Electrical and Computer Engineering, 47(1), 7–14. https://doi.org/10.1109/ICJECE.2023.3340326
  • Song, Z., Yang, S., & Zhang, R. (2021). Does preprocessing help training over-parameterized neural networks? Advances in Neural Information Processing Systems, 34, 22890–22904. https://arxiv.org/abs/2110.04622
  • Subbulakshmy, R., & Palanisamy, R. (2023). SVPWM control strategy for novel interleaved high gain DC converter fed 3-level NPC inverter for renewable energy applications. ISA Transactions, 140, 426–437. https://doi.org/10.1016/j.isatra.2023.05.019
  • Viswa Teja, A., Razia Sultana, W., & Salkuti, S. R. (2023). Performance explorations of a PMS motor drive using an ANN-based MPPT controller for solar-battery powered electric vehicles. Designs, 7(3), Article 79. https://doi.org/10.3390/designs7030079
  • Wang, Z., Liu, K., Ye, C., & Wan, S. (2025). Synchronized SVPWM schemes for closed-loop current control of three-level NPC inverters. Journal of Power Electronics, 25(12), 1490-1502. https://doi.org/10.1007/s43236-025-00999-2
  • Xue, C., Zhou, D., & Li, Y. (2020). Finite-control-set model predictive control for three-level NPC inverter-fed PMSM drives with LC filter. IEEE Transactions on Industrial Electronics, 68(12), 11980–11991. https://doi.org/10.1109/TIE.2020.3042156
  • Yan, H., Yang, J., & Zeng, F. (2022). Three-phase current reconstruction for PMSM drive with modified twelve-sector space vector pulse width modulation. IEEE Transactions on Power Electronics, 37(12), 15209–15220. https://doi.org/10.1109/TPEL.2022.3188425
  • Yan, Y., Wu, J., Cao, Y., Liu, B., Li, C., & Shi, T. (2024). An open-circuit fault diagnosis method for three-level neutral point clamped inverters based on multi-scale shuffled convolutional neural network. Sensors, 24(6), Article 1745. https://doi.org/10.3390/s24061745
  • Yarikkaya, S., & Vardar, K. (2023). Neural network-based predictive current controllers for three-phase inverter. IEEE Access, 11, 27155–27167. https://doi.org/10.1109/ACCESS.2023.3258679
  • Zhang, G., Band, S. S., Ardabili, S., Chau, K.-W., & Mosavi, A. (2022). Integration of neural network and fuzzy logic decision making compared with bilayered neural network in the simulation of daily dew point temperature. Engineering Applications of Computational Fluid Mechanics, 16(1), 713–723. https://doi.org/10.1080/19942060.2022.2043187
  • Zhang, S., Wang, R., Si, Y., & Wang, L. (2021). An improved convolutional neural network for three-phase inverter fault diagnosis. IEEE Transactions on Instrumentation and Measurement, 71, Article 3510915. https://doi.org/10.1109/TIM.2021.3129198
There are 38 citations in total.

Details

Primary Language English
Subjects Machine Learning Algorithms, Electrical Energy Generation (Incl. Renewables, Excl. Photovoltaics), Electrical Engineering (Other)
Journal Section Research Article
Authors

Fatih Özen 0000-0002-4232-5394

Rana Ortaç Kabaoğlu 0000-0003-0861-0711

Tarık Veli Mumcu 0000-0002-8995-9300

Submission Date July 9, 2025
Acceptance Date October 16, 2025
Publication Date January 21, 2026
Published in Issue Year 2026 Volume: 14 Issue: 1

Cite

APA Özen, F., Ortaç Kabaoğlu, R., & Mumcu, T. V. (2026). Prediction of Sector and Region for Three-Level NPC Inverters Using Artificial Neural Networks. Duzce University Journal of Science and Technology, 14(1), 60-71. https://doi.org/10.29130/dubited.1739006
AMA Özen F, Ortaç Kabaoğlu R, Mumcu TV. Prediction of Sector and Region for Three-Level NPC Inverters Using Artificial Neural Networks. DUBİTED. January 2026;14(1):60-71. doi:10.29130/dubited.1739006
Chicago Özen, Fatih, Rana Ortaç Kabaoğlu, and Tarık Veli Mumcu. “Prediction of Sector and Region for Three-Level NPC Inverters Using Artificial Neural Networks”. Duzce University Journal of Science and Technology 14, no. 1 (January 2026): 60-71. https://doi.org/10.29130/dubited.1739006.
EndNote Özen F, Ortaç Kabaoğlu R, Mumcu TV (January 1, 2026) Prediction of Sector and Region for Three-Level NPC Inverters Using Artificial Neural Networks. Duzce University Journal of Science and Technology 14 1 60–71.
IEEE F. Özen, R. Ortaç Kabaoğlu, and T. V. Mumcu, “Prediction of Sector and Region for Three-Level NPC Inverters Using Artificial Neural Networks”, DUBİTED, vol. 14, no. 1, pp. 60–71, 2026, doi: 10.29130/dubited.1739006.
ISNAD Özen, Fatih et al. “Prediction of Sector and Region for Three-Level NPC Inverters Using Artificial Neural Networks”. Duzce University Journal of Science and Technology 14/1 (January2026), 60-71. https://doi.org/10.29130/dubited.1739006.
JAMA Özen F, Ortaç Kabaoğlu R, Mumcu TV. Prediction of Sector and Region for Three-Level NPC Inverters Using Artificial Neural Networks. DUBİTED. 2026;14:60–71.
MLA Özen, Fatih et al. “Prediction of Sector and Region for Three-Level NPC Inverters Using Artificial Neural Networks”. Duzce University Journal of Science and Technology, vol. 14, no. 1, 2026, pp. 60-71, doi:10.29130/dubited.1739006.
Vancouver Özen F, Ortaç Kabaoğlu R, Mumcu TV. Prediction of Sector and Region for Three-Level NPC Inverters Using Artificial Neural Networks. DUBİTED. 2026;14(1):60-71.