Research Article
BibTex RIS Cite

Kablosuz Güç Aktarım Sisteminde Adaptif Frekans Kontrolünün RF Modülleri ile Gerçekleştirilmesi

Year 2026, Volume: 14 Issue: 1, 105 - 116, 21.01.2026
https://doi.org/10.29130/dubited.1759355

Abstract

Bu makalede, değişen çalışma koşullarının neden olduğu rezonans frekansı değişimlerini izleyen ve sistemin maksimum verimlilikte çalışmasını sağlayan kablosuz güç transferi sistemleri için adaptif frekans kontrol yöntemi sunulmaktadır. Sistem hem sabit frekansta hem de önerilen adaptif kontrol yaklaşımı ile simülasyon ortamında değerlendirilmiştir. Daha sonra fiziksel olarak tasarlanmış ve test edilmiştir. Simülasyon sonuçları, adaptif frekans kontrolü ile sistemin farklı sargı mesafelerinde rezonans durumuna otomatik olarak adapte olduğunu ve sabit frekans yapısına kıyasla daha yüksek çıkış gücü elde edildiğini göstermektedir. Fiziksel prototip üzerinde yapılan testlerde, düşük RMS voltajlı bileşenler ve uygulamaya özgü montaj, hizalama ve çevresel etkiler nedeniyle simülasyona kıyasla daha düşük güç transferi gözlemlenmiştir. Geliştirilen sistem ayrıca, RF iletişim tabanlı, pilsiz taşınabilir bir kontrol cihazı aracılığıyla bir kapı kilidi mekanizmasının kablosuz kontrolünü de yapabilmektedir. Sonuçlar, adaptif frekans kontrolünün WPT sistemlerinde enerji verimliliği ve güç transferi açısından önemli avantajlar sağladığını göstermektedir.

References

  • Al-Saadi, M., Hussien, E. A., & Crǎciunescu, A. (2019). Maximum power point tracking and power/voltage regulation for ınductive wireless battery charging. In 2019 Electric Vehicles International Conference (EV 2019). https://doi.org/10.1109/EV.2019.8892868
  • Aslan, E., & Özüpak, Y. (2024). Kablosuz güç transferi sistemi için Q faktörü etkisinin analizi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(2), 632–638. https://doi.org/10.28948/NGUMUH.1415695
  • Aydin, E., Pashaei̇, A., Yildiriz, E., & Timur Aydemir, M. (2018). Elektrikli araçlar için 2.2 kW gücünde bir kablosuz güç aktarım sisteminin tasarımı. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 30(3), 1–6.
  • Ayir, N., & Riihonen, T. (2020). Impact of software-defined radio transmitter on the efficiency of RF wireless power transfer. In 2020 IEEE Wireless Power Transfer Conference (WPTC 2020) (pp. 83–86). https://doi.org/10.1109/WPTC48563.2020.9295605
  • Babaki, A., Vaez-Zadeh, S., Zakerian, A., & Covic, G. A. (2021). Variable-frequency retuned WPT system for power transfer and efficiency improvement in dynamic EV charging with fixed voltage characteristic. IEEE Transactions on Energy Conversion, 36(3), 2141–2151. https://doi.org/10.1109/TEC.2020.3048196
  • Bai, H. K., Costinett, D., Tolbert, L. M., Qin, R., Zhu, L., Liang, Z., & Huang, Y. (2022). Charging electric vehicle batteries: Wired and wireless power transfer: Exploring EV charging technologies. IEEE Power Electronics Magazine, 9(2), 14–29. https://doi.org/10.1109/MPEL.2022.3173543
  • Bao, J., Hu, S., Xie, Z., Hu, G., Lu, Y., & Zheng, L. (2022). Optimization of the coupling coefficient of the inductive link for wireless power transfer to biomedical implants. International Journal of Antennas and Propagation, 2022(1), Article 8619514. https://doi.org/10.1155/2022/8619514
  • Bertoluzzo, M., Buja, G., Desideri, D., & Sagar, A. (2023). A new approach to the analysis of the compensation networks of WPT systems. IEEE Access, 11, 132368–132379. https://doi.org/10.1109/ACCESS.2023.3335170
  • Bouanou, T., El Fadil, H., Lassioui, A., Assaddiki, O., & Njili, S. (2021). Analysis of coil parameters and comparison of circular, rectangular, and hexagonal coils used in WPT system for electric vehicle charging. World Electric Vehicle Journal, 12(1), Article 45. https://doi.org/10.3390/WEVJ12010045
  • Cha, H. R., Park, K. R., Kim, T. J., & Kim, R. Y. (2021). Design of magnetic structure for omnidirectional wireless power transfer. IEEE Transactions on Power Electronics, 36(8), 8849–8860. https://doi.org/10.1109/TPEL.2021.3055863
  • Chen, H., Qian, Z., Zhang, R., Zhang, Z., Wu, J., Ma, H., & He, X. (2021). Modular four-channel 50 kW WPT system with decoupled coil design for fast EV charging. IEEE Access, 9, 136083–136093. https://doi.org/10.1109/ACCESS.2021.3116696
  • Drici, I., Allag, H., & Chebout, M. (2022). Implemented frequency tracking technique for resonant wireless power transfer system. In 2022 19th IEEE International Multi-Conference on Systems, Signals and Devices (SSD 2022) (pp. 1858–1864). https://doi.org/10.1109/SSD54932.2022.9955949
  • Guan, Y., Xiao, Y., Cui, Y., & Xu, D. (2022). Analysis and optimal design of mid-range WPT system based on multiple repeaters. IEEE Transactions on Industry Applications, 58(1), 1092–1100. https://doi.org/10.1109/TIA.2021.3072931
  • Housman, Y. Z. (2018). Radio frequency power source design for wireless power transfer system. In 2018 IEEE Wireless Power Transfer Conference (WPTC 2018). https://doi.org/10.1109/WPT.2018.8639140
  • Iqbal, A., Sura, P. R., Al-Hasan, M., Mabrouk, I. B., & Denidni, T. A. (2022). Wireless power transfer system for deep-implanted biomedical devices. Scientific Reports, 12(1), Article 13689. https://doi.org/10.1038/s41598-022-18000-6
  • Kamalapathi, K., Srinivasa Rao Nayak, P., & Tyagi, V. K. (2021). Design and implementation of dual-source (WPT + PV) charger for EV battery charging. International Transactions on Electrical Energy Systems, 31(11), Article e13084. https://doi.org/10.1002/2050-7038.13084
  • Kisseleff, S., Akyildiz, I. F., & Gerstacker, W. H. (2017). Magnetic induction-based simultaneous wireless information and power transfer for single information and multiple power receivers. IEEE Transactions on Communications, 65(3), 1396–1410. https://doi.org/10.1109/TCOMM.2016.2646684
  • Kohar, D. K., Biswas, A., Pati, A. K., & Kumar, A. (2022). Design approaches of wireless power transfer (WPT) coil using ANSYS Maxwell Simplorer. In Proceedings of 2022 IEEE International Conference on Current Development in Engineering and Technology (CCET 2022). https://doi.org/10.1109/CCET56606.2022.10080516
  • Lee, I. G., Kim, N., Cho, I. K., & Hong, I. P. (2017). Design of a patterned soft magnetic structure to reduce magnetic flux leakage of magnetic induction wireless power transfer systems. IEEE Transactions on Electromagnetic Compatibility, 59(6), 1856–1863. https://doi.org/10.1109/TEMC.2017.2690967
  • Le-Huu, H., & Seo, C. (2023). Dual-band transmitter for wireless power transfer to biomedical implant applications. IEEE Antennas and Wireless Propagation Letters, 22(6), 1461–1465. https://doi.org/10.1109/LAWP.2023.3246163
  • Li, X. L., Liu, Y. C., Tse, C. K., & Zhu, C. (2024). Integrated multiple compensation circuits for wireless power transfer with fewer components. IEEE Transactions on Industrial Electronics, 71(8), 8892–8902. https://doi.org/10.1109/TIE.2023.3319714
  • Luo, Z., & Wei, X. (2018). Analysis of square and circular planar spiral coils in wireless power transfer system for electric vehicles. IEEE Transactions on Industrial Electronics, 65(1), 331–341. https://doi.org/10.1109/TIE.2017.2723867
  • Meng, M., & Kiani, M. (2017). Design and optimization of ultrasonic wireless power transmission links for millimeter-sized biomedical implants. IEEE Transactions on Biomedical Circuits and Systems, 11(1), 98–107. https://doi.org/10.1109/TBCAS.2016.2583783
  • Özdemir, C. (2017). Kablosuz güç aktarım sistemlerinde maksimum güç aktarımı için bir adaptif frekans kontrol sistemi tasarlanması ve gerçeklenmesi [Master’s thesis, Mersin University, Institute of Natural Sciences].
  • Özüpak, Y. (2024). Analysis and experimental verification of efficiency parameters affecting inductively coupled wireless power transfer systems. Heliyon, 10(5), Article e27420. https://doi.org/10.1016/j.heliyon.2024.e27420
  • Tran, D. H., Vu, V. B., & Choi, W. (2018). Design of a high-efficiency wireless power transfer system with intermediate coils for the on-board chargers of electric vehicles. IEEE Transactions on Power Electronics, 33(1), 175–187. https://doi.org/10.1109/TPEL.2017.2662067
  • Wang, D., Fu, C., Bei, X., & Zhao, Q. (2023). A reconfigurable half-bridge compensation topology-based WPT system with constant current and constant voltage outputs. IEEE Transactions on Circuits and Systems II: Express Briefs, 70(1), 256–260. https://doi.org/10.1109/TCSII.2022.3206582
  • Yang, L., Jiang, S., Wang, C., & Zhang, L. (2023). Analysis and design of a CLC/N compensated CC-Type WPT system with compact and low-cost receiver. Sensors, 23(2), Article 838. https://doi.org/10.3390/S23020838
  • Yang, L., Li, X., Liu, S., Xu, Z., Cai, C., & Guo, P. (2019). Analysis and design of three-coil structure WPT system with constant output current and voltage for battery charging applications. IEEE Access, 7, 87334–87344. https://doi.org/10.1109/ACCESS.2019.2925388
  • Zhang, X., Meng, H., Wei, B., Wang, S., & Yang, Q. (2019). Mutual inductance calculation for coils with misalignment in wireless power transfer. The Journal of Engineering, 2019(16), 1041–1044. https://doi.org/10.1049/JOE.2018.8670
  • Zhang, X., Liu, F., & Mei, T. (2021). Multifrequency phase-shifted control for multiphase multiload MCR WPT system to achieve targeted power distribution and high misalignment tolerance. IEEE Transactions on Power Electronics, 36(1), 991–1003. https://doi.org/10.1109/TPEL.2020.3000511

Adaptive Frequency Control in a Wireless Power Transfer System Using RF Modules

Year 2026, Volume: 14 Issue: 1, 105 - 116, 21.01.2026
https://doi.org/10.29130/dubited.1759355

Abstract

This paper presents an adaptive frequency control method for wireless power transfer systems, which monitors the resonant frequency variations caused by changing operating conditions and guarantees optimal system performance. The system is evaluated both at fixed frequency and with the proposed adaptive control approach in a simulation environment. It is then physically designed and tested. The simulation results show that the system automatically adapts to the resonance condition at different winding distances with adaptive frequency control, and higher output power is obtained compared to the fixed frequency structure. In the tests performed on the physical prototype, lower power transfer was observed compared to the simulation due to the low voltage components and application-specific mounting, alignment, and environmental effects. The developed system is also capable of wireless control of a door lock mechanism through a radio frequency communication based, battery-free portable controller. The results show that adaptive frequency control provides significant advantages in terms of energy efficiency and power transfer in wireless power transfer systems.

Ethical Statement

This study does not involve human or animal participants. All procedures followed scientific and ethical principles, and all referenced studies are appropriately cited.

Supporting Institution

This research received no external funding.

Thanks

The author/authors do not wish to acknowledge any individual or institution.

References

  • Al-Saadi, M., Hussien, E. A., & Crǎciunescu, A. (2019). Maximum power point tracking and power/voltage regulation for ınductive wireless battery charging. In 2019 Electric Vehicles International Conference (EV 2019). https://doi.org/10.1109/EV.2019.8892868
  • Aslan, E., & Özüpak, Y. (2024). Kablosuz güç transferi sistemi için Q faktörü etkisinin analizi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(2), 632–638. https://doi.org/10.28948/NGUMUH.1415695
  • Aydin, E., Pashaei̇, A., Yildiriz, E., & Timur Aydemir, M. (2018). Elektrikli araçlar için 2.2 kW gücünde bir kablosuz güç aktarım sisteminin tasarımı. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 30(3), 1–6.
  • Ayir, N., & Riihonen, T. (2020). Impact of software-defined radio transmitter on the efficiency of RF wireless power transfer. In 2020 IEEE Wireless Power Transfer Conference (WPTC 2020) (pp. 83–86). https://doi.org/10.1109/WPTC48563.2020.9295605
  • Babaki, A., Vaez-Zadeh, S., Zakerian, A., & Covic, G. A. (2021). Variable-frequency retuned WPT system for power transfer and efficiency improvement in dynamic EV charging with fixed voltage characteristic. IEEE Transactions on Energy Conversion, 36(3), 2141–2151. https://doi.org/10.1109/TEC.2020.3048196
  • Bai, H. K., Costinett, D., Tolbert, L. M., Qin, R., Zhu, L., Liang, Z., & Huang, Y. (2022). Charging electric vehicle batteries: Wired and wireless power transfer: Exploring EV charging technologies. IEEE Power Electronics Magazine, 9(2), 14–29. https://doi.org/10.1109/MPEL.2022.3173543
  • Bao, J., Hu, S., Xie, Z., Hu, G., Lu, Y., & Zheng, L. (2022). Optimization of the coupling coefficient of the inductive link for wireless power transfer to biomedical implants. International Journal of Antennas and Propagation, 2022(1), Article 8619514. https://doi.org/10.1155/2022/8619514
  • Bertoluzzo, M., Buja, G., Desideri, D., & Sagar, A. (2023). A new approach to the analysis of the compensation networks of WPT systems. IEEE Access, 11, 132368–132379. https://doi.org/10.1109/ACCESS.2023.3335170
  • Bouanou, T., El Fadil, H., Lassioui, A., Assaddiki, O., & Njili, S. (2021). Analysis of coil parameters and comparison of circular, rectangular, and hexagonal coils used in WPT system for electric vehicle charging. World Electric Vehicle Journal, 12(1), Article 45. https://doi.org/10.3390/WEVJ12010045
  • Cha, H. R., Park, K. R., Kim, T. J., & Kim, R. Y. (2021). Design of magnetic structure for omnidirectional wireless power transfer. IEEE Transactions on Power Electronics, 36(8), 8849–8860. https://doi.org/10.1109/TPEL.2021.3055863
  • Chen, H., Qian, Z., Zhang, R., Zhang, Z., Wu, J., Ma, H., & He, X. (2021). Modular four-channel 50 kW WPT system with decoupled coil design for fast EV charging. IEEE Access, 9, 136083–136093. https://doi.org/10.1109/ACCESS.2021.3116696
  • Drici, I., Allag, H., & Chebout, M. (2022). Implemented frequency tracking technique for resonant wireless power transfer system. In 2022 19th IEEE International Multi-Conference on Systems, Signals and Devices (SSD 2022) (pp. 1858–1864). https://doi.org/10.1109/SSD54932.2022.9955949
  • Guan, Y., Xiao, Y., Cui, Y., & Xu, D. (2022). Analysis and optimal design of mid-range WPT system based on multiple repeaters. IEEE Transactions on Industry Applications, 58(1), 1092–1100. https://doi.org/10.1109/TIA.2021.3072931
  • Housman, Y. Z. (2018). Radio frequency power source design for wireless power transfer system. In 2018 IEEE Wireless Power Transfer Conference (WPTC 2018). https://doi.org/10.1109/WPT.2018.8639140
  • Iqbal, A., Sura, P. R., Al-Hasan, M., Mabrouk, I. B., & Denidni, T. A. (2022). Wireless power transfer system for deep-implanted biomedical devices. Scientific Reports, 12(1), Article 13689. https://doi.org/10.1038/s41598-022-18000-6
  • Kamalapathi, K., Srinivasa Rao Nayak, P., & Tyagi, V. K. (2021). Design and implementation of dual-source (WPT + PV) charger for EV battery charging. International Transactions on Electrical Energy Systems, 31(11), Article e13084. https://doi.org/10.1002/2050-7038.13084
  • Kisseleff, S., Akyildiz, I. F., & Gerstacker, W. H. (2017). Magnetic induction-based simultaneous wireless information and power transfer for single information and multiple power receivers. IEEE Transactions on Communications, 65(3), 1396–1410. https://doi.org/10.1109/TCOMM.2016.2646684
  • Kohar, D. K., Biswas, A., Pati, A. K., & Kumar, A. (2022). Design approaches of wireless power transfer (WPT) coil using ANSYS Maxwell Simplorer. In Proceedings of 2022 IEEE International Conference on Current Development in Engineering and Technology (CCET 2022). https://doi.org/10.1109/CCET56606.2022.10080516
  • Lee, I. G., Kim, N., Cho, I. K., & Hong, I. P. (2017). Design of a patterned soft magnetic structure to reduce magnetic flux leakage of magnetic induction wireless power transfer systems. IEEE Transactions on Electromagnetic Compatibility, 59(6), 1856–1863. https://doi.org/10.1109/TEMC.2017.2690967
  • Le-Huu, H., & Seo, C. (2023). Dual-band transmitter for wireless power transfer to biomedical implant applications. IEEE Antennas and Wireless Propagation Letters, 22(6), 1461–1465. https://doi.org/10.1109/LAWP.2023.3246163
  • Li, X. L., Liu, Y. C., Tse, C. K., & Zhu, C. (2024). Integrated multiple compensation circuits for wireless power transfer with fewer components. IEEE Transactions on Industrial Electronics, 71(8), 8892–8902. https://doi.org/10.1109/TIE.2023.3319714
  • Luo, Z., & Wei, X. (2018). Analysis of square and circular planar spiral coils in wireless power transfer system for electric vehicles. IEEE Transactions on Industrial Electronics, 65(1), 331–341. https://doi.org/10.1109/TIE.2017.2723867
  • Meng, M., & Kiani, M. (2017). Design and optimization of ultrasonic wireless power transmission links for millimeter-sized biomedical implants. IEEE Transactions on Biomedical Circuits and Systems, 11(1), 98–107. https://doi.org/10.1109/TBCAS.2016.2583783
  • Özdemir, C. (2017). Kablosuz güç aktarım sistemlerinde maksimum güç aktarımı için bir adaptif frekans kontrol sistemi tasarlanması ve gerçeklenmesi [Master’s thesis, Mersin University, Institute of Natural Sciences].
  • Özüpak, Y. (2024). Analysis and experimental verification of efficiency parameters affecting inductively coupled wireless power transfer systems. Heliyon, 10(5), Article e27420. https://doi.org/10.1016/j.heliyon.2024.e27420
  • Tran, D. H., Vu, V. B., & Choi, W. (2018). Design of a high-efficiency wireless power transfer system with intermediate coils for the on-board chargers of electric vehicles. IEEE Transactions on Power Electronics, 33(1), 175–187. https://doi.org/10.1109/TPEL.2017.2662067
  • Wang, D., Fu, C., Bei, X., & Zhao, Q. (2023). A reconfigurable half-bridge compensation topology-based WPT system with constant current and constant voltage outputs. IEEE Transactions on Circuits and Systems II: Express Briefs, 70(1), 256–260. https://doi.org/10.1109/TCSII.2022.3206582
  • Yang, L., Jiang, S., Wang, C., & Zhang, L. (2023). Analysis and design of a CLC/N compensated CC-Type WPT system with compact and low-cost receiver. Sensors, 23(2), Article 838. https://doi.org/10.3390/S23020838
  • Yang, L., Li, X., Liu, S., Xu, Z., Cai, C., & Guo, P. (2019). Analysis and design of three-coil structure WPT system with constant output current and voltage for battery charging applications. IEEE Access, 7, 87334–87344. https://doi.org/10.1109/ACCESS.2019.2925388
  • Zhang, X., Meng, H., Wei, B., Wang, S., & Yang, Q. (2019). Mutual inductance calculation for coils with misalignment in wireless power transfer. The Journal of Engineering, 2019(16), 1041–1044. https://doi.org/10.1049/JOE.2018.8670
  • Zhang, X., Liu, F., & Mei, T. (2021). Multifrequency phase-shifted control for multiphase multiload MCR WPT system to achieve targeted power distribution and high misalignment tolerance. IEEE Transactions on Power Electronics, 36(1), 991–1003. https://doi.org/10.1109/TPEL.2020.3000511
There are 31 citations in total.

Details

Primary Language English
Subjects Electrical Energy Transmission, Networks and Systems, Engineering Electromagnetics
Journal Section Research Article
Authors

Sadullah Esmer 0000-0002-5583-0517

Nihat Daldal 0000-0001-7345-2727

Submission Date August 6, 2025
Acceptance Date November 10, 2025
Publication Date January 21, 2026
Published in Issue Year 2026 Volume: 14 Issue: 1

Cite

APA Esmer, S., & Daldal, N. (2026). Adaptive Frequency Control in a Wireless Power Transfer System Using RF Modules. Duzce University Journal of Science and Technology, 14(1), 105-116. https://doi.org/10.29130/dubited.1759355
AMA Esmer S, Daldal N. Adaptive Frequency Control in a Wireless Power Transfer System Using RF Modules. DUBİTED. January 2026;14(1):105-116. doi:10.29130/dubited.1759355
Chicago Esmer, Sadullah, and Nihat Daldal. “Adaptive Frequency Control in a Wireless Power Transfer System Using RF Modules”. Duzce University Journal of Science and Technology 14, no. 1 (January 2026): 105-16. https://doi.org/10.29130/dubited.1759355.
EndNote Esmer S, Daldal N (January 1, 2026) Adaptive Frequency Control in a Wireless Power Transfer System Using RF Modules. Duzce University Journal of Science and Technology 14 1 105–116.
IEEE S. Esmer and N. Daldal, “Adaptive Frequency Control in a Wireless Power Transfer System Using RF Modules”, DUBİTED, vol. 14, no. 1, pp. 105–116, 2026, doi: 10.29130/dubited.1759355.
ISNAD Esmer, Sadullah - Daldal, Nihat. “Adaptive Frequency Control in a Wireless Power Transfer System Using RF Modules”. Duzce University Journal of Science and Technology 14/1 (January2026), 105-116. https://doi.org/10.29130/dubited.1759355.
JAMA Esmer S, Daldal N. Adaptive Frequency Control in a Wireless Power Transfer System Using RF Modules. DUBİTED. 2026;14:105–116.
MLA Esmer, Sadullah and Nihat Daldal. “Adaptive Frequency Control in a Wireless Power Transfer System Using RF Modules”. Duzce University Journal of Science and Technology, vol. 14, no. 1, 2026, pp. 105-16, doi:10.29130/dubited.1759355.
Vancouver Esmer S, Daldal N. Adaptive Frequency Control in a Wireless Power Transfer System Using RF Modules. DUBİTED. 2026;14(1):105-16.